mirror of
https://github.com/hrydgard/ppsspp.git
synced 2025-01-07 05:41:35 +00:00
aba026f7e9
PR #16984 added more accurate versions of these functions, but they require large lookup tables stored in assets/. If these files are missing, PPSSPP would simply crash, which isn't good. We should probably try to warn the user somehow that these files are missing, though...
313 lines
7.0 KiB
C++
313 lines
7.0 KiB
C++
#include <cmath>
|
|
|
|
#include "Common/BitScan.h"
|
|
|
|
#include "Core/MIPS/MIPSVFPUFallbacks.h"
|
|
#include "Core/MIPS/MIPSVFPUUtils.h"
|
|
|
|
// MIPSVFPUUtils now has the high precision instructions implemented by fp64
|
|
// in https://github.com/hrydgard/ppsspp/pull/16984 .
|
|
//
|
|
// These are our older approximations that are quite good but has flaws,
|
|
// but we need them to fall back to if the table files are missing.
|
|
//
|
|
// Note that currently, some of the new functions are not integrated in the JIT
|
|
// and are thus not normally used anyway.
|
|
|
|
// First the "trivial" fallbacks where we haven't done any accuracy work previously.
|
|
|
|
float vfpu_asin_fallback(float angle) {
|
|
return (float)(asinf(angle) / M_PI_2);
|
|
}
|
|
|
|
float vfpu_rcp_fallback(float x) {
|
|
return 1.0f / x;
|
|
}
|
|
|
|
float vfpu_log2_fallback(float x) {
|
|
return log2f(x);
|
|
}
|
|
|
|
float vfpu_exp2_fallback(float x) {
|
|
return exp2f(x);
|
|
}
|
|
|
|
// Flushes the angle to 0 if exponent smaller than this in vfpu_sin/vfpu_cos/vfpu_sincos.
|
|
// Was measured to be around 0x68, but GTA on Mac is somehow super sensitive
|
|
// to the shape of the sine curve which seem to be very slightly different.
|
|
//
|
|
// So setting a lower value.
|
|
#define PRECISION_EXP_THRESHOLD 0x65
|
|
|
|
union float2int {
|
|
uint32_t i;
|
|
float f;
|
|
};
|
|
|
|
float vfpu_sqrt_fallback(float a) {
|
|
float2int val;
|
|
val.f = a;
|
|
|
|
if ((val.i & 0xff800000) == 0x7f800000) {
|
|
if ((val.i & 0x007fffff) != 0) {
|
|
val.i = 0x7f800001;
|
|
}
|
|
return val.f;
|
|
}
|
|
if ((val.i & 0x7f800000) == 0) {
|
|
// Kill any sign.
|
|
val.i = 0;
|
|
return val.f;
|
|
}
|
|
if (val.i & 0x80000000) {
|
|
val.i = 0x7f800001;
|
|
return val.f;
|
|
}
|
|
|
|
int k = get_exp(val.i);
|
|
uint32_t sp = get_mant(val.i);
|
|
int less_bits = k & 1;
|
|
k >>= 1;
|
|
|
|
uint32_t z = 0x00C00000 >> less_bits;
|
|
int64_t halfsp = sp >> 1;
|
|
halfsp <<= 23 - less_bits;
|
|
for (int i = 0; i < 6; ++i) {
|
|
z = (z >> 1) + (uint32_t)(halfsp / z);
|
|
}
|
|
|
|
val.i = ((k + 127) << 23) | ((z << less_bits) & 0x007FFFFF);
|
|
// The lower two bits never end up set on the PSP, it seems like.
|
|
val.i &= 0xFFFFFFFC;
|
|
|
|
return val.f;
|
|
}
|
|
|
|
static inline uint32_t mant_mul(uint32_t a, uint32_t b) {
|
|
uint64_t m = (uint64_t)a * (uint64_t)b;
|
|
if (m & 0x007FFFFF) {
|
|
m += 0x01437000;
|
|
}
|
|
return (uint32_t)(m >> 23);
|
|
}
|
|
|
|
float vfpu_rsqrt_fallback(float a) {
|
|
float2int val;
|
|
val.f = a;
|
|
|
|
if (val.i == 0x7f800000) {
|
|
return 0.0f;
|
|
}
|
|
if ((val.i & 0x7fffffff) > 0x7f800000) {
|
|
val.i = (val.i & 0x80000000) | 0x7f800001;
|
|
return val.f;
|
|
}
|
|
if ((val.i & 0x7f800000) == 0) {
|
|
val.i = (val.i & 0x80000000) | 0x7f800000;
|
|
return val.f;
|
|
}
|
|
if (val.i & 0x80000000) {
|
|
val.i = 0xff800001;
|
|
return val.f;
|
|
}
|
|
|
|
int k = get_exp(val.i);
|
|
uint32_t sp = get_mant(val.i);
|
|
int less_bits = k & 1;
|
|
k = -(k >> 1);
|
|
|
|
uint32_t z = 0x00800000 >> less_bits;
|
|
uint32_t halfsp = sp >> (1 + less_bits);
|
|
for (int i = 0; i < 6; ++i) {
|
|
uint32_t zsq = mant_mul(z, z);
|
|
uint32_t correction = 0x00C00000 - mant_mul(halfsp, zsq);
|
|
z = mant_mul(z, correction);
|
|
}
|
|
|
|
int8_t shift = (int8_t)clz32_nonzero(z) - 8 + less_bits;
|
|
if (shift < 1) {
|
|
z >>= -shift;
|
|
k += -shift;
|
|
} else if (shift > 0) {
|
|
z <<= shift;
|
|
k -= shift;
|
|
}
|
|
|
|
z >>= less_bits;
|
|
|
|
val.i = ((k + 127) << 23) | (z & 0x007FFFFF);
|
|
val.i &= 0xFFFFFFFC;
|
|
|
|
return val.f;
|
|
}
|
|
|
|
float vfpu_sin_fallback(float a) {
|
|
float2int val;
|
|
val.f = a;
|
|
|
|
int32_t k = get_uexp(val.i);
|
|
if (k == 255) {
|
|
val.i = (val.i & 0xFF800001) | 1;
|
|
return val.f;
|
|
}
|
|
|
|
if (k < PRECISION_EXP_THRESHOLD) {
|
|
val.i &= 0x80000000;
|
|
return val.f;
|
|
}
|
|
|
|
// Okay, now modulus by 4 to begin with (identical wave every 4.)
|
|
int32_t mantissa = get_mant(val.i);
|
|
if (k > 0x80) {
|
|
const uint8_t over = k & 0x1F;
|
|
mantissa = (mantissa << over) & 0x00FFFFFF;
|
|
k = 0x80;
|
|
}
|
|
// This subtracts off the 2. If we do, flip sign to inverse the wave.
|
|
if (k == 0x80 && mantissa >= (1 << 23)) {
|
|
val.i ^= 0x80000000;
|
|
mantissa -= 1 << 23;
|
|
}
|
|
|
|
int8_t norm_shift = mantissa == 0 ? 32 : (int8_t)clz32_nonzero(mantissa) - 8;
|
|
mantissa <<= norm_shift;
|
|
k -= norm_shift;
|
|
|
|
if (k <= 0 || mantissa == 0) {
|
|
val.i &= 0x80000000;
|
|
return val.f;
|
|
}
|
|
|
|
// This is the value with modulus applied.
|
|
val.i = (val.i & 0x80000000) | (k << 23) | (mantissa & ~(1 << 23));
|
|
val.f = (float)sin((double)val.f * M_PI_2);
|
|
val.i &= 0xFFFFFFFC;
|
|
return val.f;
|
|
}
|
|
|
|
float vfpu_cos_fallback(float a) {
|
|
float2int val;
|
|
val.f = a;
|
|
bool negate = false;
|
|
|
|
int32_t k = get_uexp(val.i);
|
|
if (k == 255) {
|
|
// Note: unlike sin, cos always returns +NAN.
|
|
val.i = (val.i & 0x7F800001) | 1;
|
|
return val.f;
|
|
}
|
|
|
|
if (k < PRECISION_EXP_THRESHOLD)
|
|
return 1.0f;
|
|
|
|
// Okay, now modulus by 4 to begin with (identical wave every 4.)
|
|
int32_t mantissa = get_mant(val.i);
|
|
if (k > 0x80) {
|
|
const uint8_t over = k & 0x1F;
|
|
mantissa = (mantissa << over) & 0x00FFFFFF;
|
|
k = 0x80;
|
|
}
|
|
// This subtracts off the 2. If we do, negate the result value.
|
|
if (k == 0x80 && mantissa >= (1 << 23)) {
|
|
mantissa -= 1 << 23;
|
|
negate = true;
|
|
}
|
|
|
|
int8_t norm_shift = mantissa == 0 ? 32 : (int8_t)clz32_nonzero(mantissa) - 8;
|
|
mantissa <<= norm_shift;
|
|
k -= norm_shift;
|
|
|
|
if (k <= 0 || mantissa == 0)
|
|
return negate ? -1.0f : 1.0f;
|
|
|
|
// This is the value with modulus applied.
|
|
val.i = (val.i & 0x80000000) | (k << 23) | (mantissa & ~(1 << 23));
|
|
if (val.f == 1.0f || val.f == -1.0f) {
|
|
return negate ? 0.0f : -0.0f;
|
|
}
|
|
val.f = (float)cos((double)val.f * M_PI_2);
|
|
val.i &= 0xFFFFFFFC;
|
|
return negate ? -val.f : val.f;
|
|
}
|
|
|
|
void vfpu_sincos_fallback(float a, float &s, float &c) {
|
|
float2int val;
|
|
val.f = a;
|
|
// For sin, negate the input, for cos negate the output.
|
|
bool negate = false;
|
|
|
|
int32_t k = get_uexp(val.i);
|
|
if (k == 255) {
|
|
val.i = (val.i & 0xFF800001) | 1;
|
|
s = val.f;
|
|
val.i &= 0x7F800001;
|
|
c = val.f;
|
|
return;
|
|
}
|
|
|
|
if (k < PRECISION_EXP_THRESHOLD) {
|
|
val.i &= 0x80000000;
|
|
s = val.f;
|
|
c = 1.0f;
|
|
return;
|
|
}
|
|
|
|
// Okay, now modulus by 4 to begin with (identical wave every 4.)
|
|
int32_t mantissa = get_mant(val.i);
|
|
if (k > 0x80) {
|
|
const uint8_t over = k & 0x1F;
|
|
mantissa = (mantissa << over) & 0x00FFFFFF;
|
|
k = 0x80;
|
|
}
|
|
// This subtracts off the 2. If we do, flip signs.
|
|
if (k == 0x80 && mantissa >= (1 << 23)) {
|
|
mantissa -= 1 << 23;
|
|
negate = true;
|
|
}
|
|
|
|
int8_t norm_shift = mantissa == 0 ? 32 : (int8_t)clz32_nonzero(mantissa) - 8;
|
|
mantissa <<= norm_shift;
|
|
k -= norm_shift;
|
|
|
|
if (k <= 0 || mantissa == 0) {
|
|
val.i &= 0x80000000;
|
|
if (negate)
|
|
val.i ^= 0x80000000;
|
|
s = val.f;
|
|
c = negate ? -1.0f : 1.0f;
|
|
return;
|
|
}
|
|
|
|
// This is the value with modulus applied.
|
|
val.i = (val.i & 0x80000000) | (k << 23) | (mantissa & ~(1 << 23));
|
|
float2int i_sine, i_cosine;
|
|
if (val.f == 1.0f) {
|
|
i_sine.f = negate ? -1.0f : 1.0f;
|
|
i_cosine.f = negate ? 0.0f : -0.0f;
|
|
} else if (val.f == -1.0f) {
|
|
i_sine.f = negate ? 1.0f : -1.0f;
|
|
i_cosine.f = negate ? 0.0f : -0.0f;
|
|
} else if (negate) {
|
|
i_sine.f = (float)sin((double)-val.f * M_PI_2);
|
|
i_cosine.f = -(float)cos((double)val.f * M_PI_2);
|
|
} else {
|
|
double angle = (double)val.f * M_PI_2;
|
|
#if defined(__linux__)
|
|
double d_sine;
|
|
double d_cosine;
|
|
sincos(angle, &d_sine, &d_cosine);
|
|
i_sine.f = (float)d_sine;
|
|
i_cosine.f = (float)d_cosine;
|
|
#else
|
|
i_sine.f = (float)sin(angle);
|
|
i_cosine.f = (float)cos(angle);
|
|
#endif
|
|
}
|
|
|
|
i_sine.i &= 0xFFFFFFFC;
|
|
i_cosine.i &= 0xFFFFFFFC;
|
|
s = i_sine.f;
|
|
c = i_cosine.f;
|
|
return;
|
|
}
|