ppsspp/Core/MIPS/ARM/ArmCompALU.cpp
Unknown W. Brackets 419c1fbd73 Jit: Respect flags for jit types and features.
Left some free space for more.
2019-02-03 14:57:08 -08:00

890 lines
24 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM)
#include <algorithm>
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/ARM/ArmJit.h"
#include "Core/MIPS/ARM/ArmRegCache.h"
#include "Common/CPUDetect.h"
using namespace MIPSAnalyst;
#define _RS MIPS_GET_RS(op)
#define _RT MIPS_GET_RT(op)
#define _RD MIPS_GET_RD(op)
#define _FS MIPS_GET_FS(op)
#define _FT MIPS_GET_FT(op)
#define _FD MIPS_GET_FD(op)
#define _SA MIPS_GET_SA(op)
#define _POS ((op>> 6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
#define _IMM16 (signed short)(op & 0xFFFF)
#define _IMM26 (op & 0x03FFFFFF)
// All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly.
// Currently known non working ones should have DISABLE.
// #define CONDITIONAL_DISABLE { Comp_Generic(op); return; }
#define CONDITIONAL_DISABLE(flag) if (jo.Disabled(JitDisable::flag)) { Comp_Generic(op); return; }
#define DISABLE { Comp_Generic(op); return; }
namespace MIPSComp
{
using namespace ArmGen;
using namespace ArmJitConstants;
static u32 EvalOr(u32 a, u32 b) { return a | b; }
static u32 EvalEor(u32 a, u32 b) { return a ^ b; }
static u32 EvalAnd(u32 a, u32 b) { return a & b; }
static u32 EvalAdd(u32 a, u32 b) { return a + b; }
static u32 EvalSub(u32 a, u32 b) { return a - b; }
void ArmJit::CompImmLogic(MIPSGPReg rs, MIPSGPReg rt, u32 uimm, void (ARMXEmitter::*arith)(ARMReg dst, ARMReg src, Operand2 op2), bool (ARMXEmitter::*tryArithI2R)(ARMReg dst, ARMReg src, u32 val), u32 (*eval)(u32 a, u32 b))
{
if (gpr.IsImm(rs)) {
gpr.SetImm(rt, (*eval)(gpr.GetImm(rs), uimm));
} else {
gpr.MapDirtyIn(rt, rs);
if (!(this->*tryArithI2R)(gpr.R(rt), gpr.R(rs), uimm)) {
gpr.SetRegImm(SCRATCHREG1, uimm);
(this->*arith)(gpr.R(rt), gpr.R(rs), SCRATCHREG1);
}
}
}
void ArmJit::Comp_IType(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU_IMM);
s32 simm = (s32)(s16)(op & 0xFFFF); // sign extension
u32 uimm = op & 0xFFFF;
u32 suimm = (u32)(s32)simm;
MIPSGPReg rt = _RT;
MIPSGPReg rs = _RS;
// noop, won't write to ZERO.
if (rt == 0)
return;
switch (op >> 26)
{
case 8: // same as addiu?
case 9: // R(rt) = R(rs) + simm; break; //addiu
CompImmLogic(rs, rt, simm, &ARMXEmitter::ADD, &ARMXEmitter::TryADDI2R, &EvalAdd);
break;
case 12: CompImmLogic(rs, rt, uimm, &ARMXEmitter::AND, &ARMXEmitter::TryANDI2R, &EvalAnd); break;
case 13: CompImmLogic(rs, rt, uimm, &ARMXEmitter::ORR, &ARMXEmitter::TryORI2R, &EvalOr); break;
case 14: CompImmLogic(rs, rt, uimm, &ARMXEmitter::EOR, &ARMXEmitter::TryEORI2R, &EvalEor); break;
case 10: // R(rt) = (s32)R(rs) < simm; break; //slti
{
if (gpr.IsImm(rs)) {
gpr.SetImm(rt, (s32)gpr.GetImm(rs) < simm ? 1 : 0);
break;
} else if (simm == 0) {
gpr.MapDirtyIn(rt, rs);
// Shift to get the sign bit only (for < 0.)
LSR(gpr.R(rt), gpr.R(rs), 31);
break;
}
gpr.MapDirtyIn(rt, rs);
if (!TryCMPI2R(gpr.R(rs), simm)) {
gpr.SetRegImm(SCRATCHREG1, simm);
CMP(gpr.R(rs), SCRATCHREG1);
}
SetCC(CC_LT);
MOVI2R(gpr.R(rt), 1);
SetCC(CC_GE);
MOVI2R(gpr.R(rt), 0);
SetCC(CC_AL);
}
break;
case 11: // R(rt) = R(rs) < suimm; break; //sltiu
{
if (gpr.IsImm(rs)) {
gpr.SetImm(rt, gpr.GetImm(rs) < suimm ? 1 : 0);
break;
}
gpr.MapDirtyIn(rt, rs);
if (!TryCMPI2R(gpr.R(rs), suimm)) {
gpr.SetRegImm(SCRATCHREG1, suimm);
CMP(gpr.R(rs), SCRATCHREG1);
}
SetCC(CC_LO);
MOVI2R(gpr.R(rt), 1);
SetCC(CC_HS);
MOVI2R(gpr.R(rt), 0);
SetCC(CC_AL);
}
break;
case 15: // R(rt) = uimm << 16; //lui
gpr.SetImm(rt, uimm << 16);
break;
default:
Comp_Generic(op);
break;
}
}
void ArmJit::Comp_RType2(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU_BIT);
MIPSGPReg rs = _RS;
MIPSGPReg rd = _RD;
// Don't change $zr.
if (rd == 0)
return;
switch (op & 63)
{
case 22: //clz
if (gpr.IsImm(rs)) {
u32 value = gpr.GetImm(rs);
int x = 31;
int count = 0;
while (x >= 0 && !(value & (1 << x))) {
count++;
x--;
}
gpr.SetImm(rd, count);
break;
}
gpr.MapDirtyIn(rd, rs);
CLZ(gpr.R(rd), gpr.R(rs));
break;
case 23: //clo
if (gpr.IsImm(rs)) {
u32 value = gpr.GetImm(rs);
int x = 31;
int count = 0;
while (x >= 0 && (value & (1 << x))) {
count++;
x--;
}
gpr.SetImm(rd, count);
break;
}
gpr.MapDirtyIn(rd, rs);
MVN(SCRATCHREG1, gpr.R(rs));
CLZ(gpr.R(rd), SCRATCHREG1);
break;
default:
DISABLE;
}
}
void ArmJit::CompType3(MIPSGPReg rd, MIPSGPReg rs, MIPSGPReg rt, void (ARMXEmitter::*arith)(ARMReg dst, ARMReg rm, Operand2 rn), bool (ARMXEmitter::*tryArithI2R)(ARMReg dst, ARMReg rm, u32 val), u32 (*eval)(u32 a, u32 b), bool symmetric)
{
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
gpr.SetImm(rd, (*eval)(gpr.GetImm(rs), gpr.GetImm(rt)));
return;
}
if (gpr.IsImm(rt) || (gpr.IsImm(rs) && symmetric)) {
MIPSGPReg lhs = gpr.IsImm(rs) ? rt : rs;
MIPSGPReg rhs = gpr.IsImm(rs) ? rs : rt;
u32 rhsImm = gpr.GetImm(rhs);
gpr.MapDirtyIn(rd, lhs);
if ((this->*tryArithI2R)(gpr.R(rd), gpr.R(lhs), rhsImm)) {
return;
}
// If rd is rhs, we may have lost it in the MapDirtyIn(). lhs was kept.
// This means the rhsImm value was never flushed to rhs, and would be garbage.
if (rd == rhs) {
// Luckily, it was just an imm.
gpr.SetImm(rhs, rhsImm);
}
} else if (gpr.IsImm(rs) && !symmetric) {
Operand2 op2;
// For SUB, we can use RSB as a reverse operation.
if (eval == &EvalSub && TryMakeOperand2(gpr.GetImm(rs), op2)) {
gpr.MapDirtyIn(rd, rt);
RSB(gpr.R(rd), gpr.R(rt), op2);
return;
}
}
// Generic solution. If it's an imm, better to flush at this point.
gpr.MapDirtyInIn(rd, rs, rt);
(this->*arith)(gpr.R(rd), gpr.R(rs), gpr.R(rt));
}
void ArmJit::Comp_RType3(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU);
MIPSGPReg rt = _RT;
MIPSGPReg rs = _RS;
MIPSGPReg rd = _RD;
// noop, won't write to ZERO.
if (rd == 0)
return;
switch (op & 63)
{
case 10: //if (!R(rt)) R(rd) = R(rs); break; //movz
if (rd == rs || (gpr.IsImm(rd) && gpr.IsImm(rs) && gpr.GetImm(rd) == gpr.GetImm(rs)))
break;
if (!gpr.IsImm(rt)) {
Operand2 op2;
// Avoid flushing the imm if possible.
if (gpr.IsImm(rs) && TryMakeOperand2(gpr.GetImm(rs), op2)) {
gpr.MapDirtyIn(rd, rt, false);
} else {
gpr.MapDirtyInIn(rd, rt, rs, false);
op2 = gpr.R(rs);
}
CMP(gpr.R(rt), Operand2(0));
SetCC(CC_EQ);
MOV(gpr.R(rd), op2);
SetCC(CC_AL);
} else if (gpr.GetImm(rt) == 0) {
// Yes, this actually happens.
if (gpr.IsImm(rs)) {
gpr.SetImm(rd, gpr.GetImm(rs));
} else {
gpr.MapDirtyIn(rd, rs);
MOV(gpr.R(rd), gpr.R(rs));
}
}
break;
case 11:// if (R(rt)) R(rd) = R(rs); break; //movn
if (rd == rs || (gpr.IsImm(rd) && gpr.IsImm(rs) && gpr.GetImm(rd) == gpr.GetImm(rs)))
break;
if (!gpr.IsImm(rt)) {
Operand2 op2;
// Avoid flushing the imm if possible.
if (gpr.IsImm(rs) && TryMakeOperand2(gpr.GetImm(rs), op2)) {
gpr.MapDirtyIn(rd, rt, false);
} else {
gpr.MapDirtyInIn(rd, rt, rs, false);
op2 = gpr.R(rs);
}
CMP(gpr.R(rt), Operand2(0));
SetCC(CC_NEQ);
MOV(gpr.R(rd), op2);
SetCC(CC_AL);
} else if (gpr.GetImm(rt) != 0) {
// Yes, this actually happens.
if (gpr.IsImm(rs)) {
gpr.SetImm(rd, gpr.GetImm(rs));
} else {
gpr.MapDirtyIn(rd, rs);
MOV(gpr.R(rd), gpr.R(rs));
}
}
break;
case 32: //R(rd) = R(rs) + R(rt); break; //add
case 33: //R(rd) = R(rs) + R(rt); break; //addu
// We optimize out 0 as an operand2 ADD.
CompType3(rd, rs, rt, &ARMXEmitter::ADD, &ARMXEmitter::TryADDI2R, &EvalAdd, true);
break;
case 34: //R(rd) = R(rs) - R(rt); break; //sub
case 35: //R(rd) = R(rs) - R(rt); break; //subu
CompType3(rd, rs, rt, &ARMXEmitter::SUB, &ARMXEmitter::TrySUBI2R, &EvalSub, false);
break;
case 36: //R(rd) = R(rs) & R(rt); break; //and
CompType3(rd, rs, rt, &ARMXEmitter::AND, &ARMXEmitter::TryANDI2R, &EvalAnd, true);
break;
case 37: //R(rd) = R(rs) | R(rt); break; //or
CompType3(rd, rs, rt, &ARMXEmitter::ORR, &ARMXEmitter::TryORI2R, &EvalOr, true);
break;
case 38: //R(rd) = R(rs) ^ R(rt); break; //xor/eor
CompType3(rd, rs, rt, &ARMXEmitter::EOR, &ARMXEmitter::TryEORI2R, &EvalEor, true);
break;
case 39: // R(rd) = ~(R(rs) | R(rt)); break; //nor
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
gpr.SetImm(rd, ~(gpr.GetImm(rs) | gpr.GetImm(rt)));
} else if (gpr.IsImm(rs) || gpr.IsImm(rt)) {
MIPSGPReg lhs = gpr.IsImm(rs) ? rt : rs;
MIPSGPReg rhs = gpr.IsImm(rs) ? rs : rt;
u32 rhsImm = gpr.GetImm(rhs);
Operand2 op2;
if (TryMakeOperand2(rhsImm, op2)) {
gpr.MapDirtyIn(rd, lhs);
} else {
gpr.MapDirtyInIn(rd, rs, rt);
op2 = gpr.R(rhs);
}
if (rhsImm == 0) {
MVN(gpr.R(rd), gpr.R(lhs));
} else {
ORR(gpr.R(rd), gpr.R(lhs), op2);
MVN(gpr.R(rd), gpr.R(rd));
}
} else {
gpr.MapDirtyInIn(rd, rs, rt);
ORR(gpr.R(rd), gpr.R(rs), gpr.R(rt));
MVN(gpr.R(rd), gpr.R(rd));
}
break;
case 42: //R(rd) = (int)R(rs) < (int)R(rt); break; //slt
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
gpr.SetImm(rd, (s32)gpr.GetImm(rs) < (s32)gpr.GetImm(rt));
} else {
CCFlags caseOne = CC_LT;
CCFlags caseZero = CC_GE;
Operand2 op2;
bool negated;
if (gpr.IsImm(rs) && TryMakeOperand2_AllowNegation(gpr.GetImm(rs), op2, &negated)) {
gpr.MapDirtyIn(rd, rt);
if (!negated)
CMP(gpr.R(rt), op2);
else
CMN(gpr.R(rt), op2);
// Swap the condition since we swapped the arguments.
caseOne = CC_GT;
caseZero = CC_LE;
} else if (gpr.IsImm(rt) && TryMakeOperand2_AllowNegation(gpr.GetImm(rt), op2, &negated)) {
gpr.MapDirtyIn(rd, rs);
if (!negated)
CMP(gpr.R(rs), op2);
else
CMN(gpr.R(rs), op2);
} else {
gpr.MapDirtyInIn(rd, rs, rt);
CMP(gpr.R(rs), gpr.R(rt));
}
SetCC(caseOne);
MOVI2R(gpr.R(rd), 1);
SetCC(caseZero);
MOVI2R(gpr.R(rd), 0);
SetCC(CC_AL);
}
break;
case 43: //R(rd) = R(rs) < R(rt); break; //sltu
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
gpr.SetImm(rd, gpr.GetImm(rs) < gpr.GetImm(rt));
} else {
CCFlags caseOne = CC_LO;
CCFlags caseZero = CC_HS;
Operand2 op2;
bool negated;
if (gpr.IsImm(rs) && TryMakeOperand2_AllowNegation(gpr.GetImm(rs), op2, &negated)) {
gpr.MapDirtyIn(rd, rt);
if (!negated)
CMP(gpr.R(rt), op2);
else
CMN(gpr.R(rt), op2);
// Swap the condition since we swapped the arguments.
caseOne = CC_HI;
caseZero = CC_LS;
} else if (gpr.IsImm(rt) && TryMakeOperand2_AllowNegation(gpr.GetImm(rt), op2, &negated)) {
gpr.MapDirtyIn(rd, rs);
if (!negated)
CMP(gpr.R(rs), op2);
else
CMN(gpr.R(rs), op2);
} else {
gpr.MapDirtyInIn(rd, rs, rt);
CMP(gpr.R(rs), gpr.R(rt));
}
SetCC(caseOne);
MOVI2R(gpr.R(rd), 1);
SetCC(caseZero);
MOVI2R(gpr.R(rd), 0);
SetCC(CC_AL);
}
break;
case 44: //R(rd) = max(R(rs), R(rt); break; //max
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
gpr.SetImm(rd, std::max(gpr.GetImm(rs), gpr.GetImm(rt)));
break;
}
gpr.MapDirtyInIn(rd, rs, rt);
CMP(gpr.R(rs), gpr.R(rt));
SetCC(CC_GT);
if (rd != rs)
MOV(gpr.R(rd), gpr.R(rs));
SetCC(CC_LE);
if (rd != rt)
MOV(gpr.R(rd), gpr.R(rt));
SetCC(CC_AL);
break;
case 45: //R(rd) = min(R(rs), R(rt)); break; //min
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
gpr.SetImm(rd, std::min(gpr.GetImm(rs), gpr.GetImm(rt)));
break;
}
gpr.MapDirtyInIn(rd, rs, rt);
CMP(gpr.R(rs), gpr.R(rt));
SetCC(CC_LT);
if (rd != rs)
MOV(gpr.R(rd), gpr.R(rs));
SetCC(CC_GE);
if (rd != rt)
MOV(gpr.R(rd), gpr.R(rt));
SetCC(CC_AL);
break;
default:
Comp_Generic(op);
break;
}
}
void ArmJit::CompShiftImm(MIPSOpcode op, ArmGen::ShiftType shiftType, int sa)
{
MIPSGPReg rd = _RD;
MIPSGPReg rt = _RT;
if (gpr.IsImm(rt)) {
switch (shiftType) {
case ST_LSL:
gpr.SetImm(rd, gpr.GetImm(rt) << sa);
break;
case ST_LSR:
gpr.SetImm(rd, gpr.GetImm(rt) >> sa);
break;
case ST_ASR:
gpr.SetImm(rd, (int)gpr.GetImm(rt) >> sa);
break;
case ST_ROR:
gpr.SetImm(rd, (gpr.GetImm(rt) >> sa) | (gpr.GetImm(rt) << (32 - sa)));
break;
default:
DISABLE;
}
} else {
gpr.MapDirtyIn(rd, rt);
MOV(gpr.R(rd), Operand2(gpr.R(rt), shiftType, sa));
}
}
void ArmJit::CompShiftVar(MIPSOpcode op, ArmGen::ShiftType shiftType)
{
MIPSGPReg rd = _RD;
MIPSGPReg rt = _RT;
MIPSGPReg rs = _RS;
if (gpr.IsImm(rs)) {
int sa = gpr.GetImm(rs) & 0x1F;
CompShiftImm(op, shiftType, sa);
return;
}
gpr.MapDirtyInIn(rd, rs, rt);
AND(SCRATCHREG1, gpr.R(rs), Operand2(0x1F));
MOV(gpr.R(rd), Operand2(gpr.R(rt), shiftType, SCRATCHREG1));
}
void ArmJit::Comp_ShiftType(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU);
MIPSGPReg rs = _RS;
MIPSGPReg rd = _RD;
int fd = _FD;
int sa = _SA;
// noop, won't write to ZERO.
if (rd == 0)
return;
// WARNING : ROTR
switch (op & 0x3f) {
case 0: CompShiftImm(op, ST_LSL, sa); break; //sll
case 2: CompShiftImm(op, rs == 1 ? ST_ROR : ST_LSR, sa); break; //srl
case 3: CompShiftImm(op, ST_ASR, sa); break; //sra
case 4: CompShiftVar(op, ST_LSL); break; //sllv
case 6: CompShiftVar(op, fd == 1 ? ST_ROR : ST_LSR); break; //srlv
case 7: CompShiftVar(op, ST_ASR); break; //srav
default:
Comp_Generic(op);
break;
}
}
void ArmJit::Comp_Special3(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU_BIT);
MIPSGPReg rs = _RS;
MIPSGPReg rt = _RT;
int pos = _POS;
int size = _SIZE + 1;
u32 mask = 0xFFFFFFFFUL >> (32 - size);
// Don't change $zr.
if (rt == 0)
return;
switch (op & 0x3f) {
case 0x0: //ext
if (gpr.IsImm(rs)) {
gpr.SetImm(rt, (gpr.GetImm(rs) >> pos) & mask);
return;
}
gpr.MapDirtyIn(rt, rs);
#if PPSSPP_ARCH(ARMV7)
UBFX(gpr.R(rt), gpr.R(rs), pos, size);
#else
MOV(gpr.R(rt), Operand2(gpr.R(rs), ST_LSR, pos));
ANDI2R(gpr.R(rt), gpr.R(rt), mask, SCRATCHREG1);
#endif
break;
case 0x4: //ins
{
u32 sourcemask = mask >> pos;
u32 destmask = ~(sourcemask << pos);
if (gpr.IsImm(rs)) {
u32 inserted = (gpr.GetImm(rs) & sourcemask) << pos;
if (gpr.IsImm(rt)) {
gpr.SetImm(rt, (gpr.GetImm(rt) & destmask) | inserted);
return;
}
gpr.MapReg(rt, MAP_DIRTY);
ANDI2R(gpr.R(rt), gpr.R(rt), destmask, SCRATCHREG1);
if (inserted != 0) {
ORI2R(gpr.R(rt), gpr.R(rt), inserted, SCRATCHREG1);
}
} else {
gpr.MapDirtyIn(rt, rs, false);
#if PPSSPP_ARCH(ARMV7)
BFI(gpr.R(rt), gpr.R(rs), pos, size - pos);
#else
ANDI2R(SCRATCHREG1, gpr.R(rs), sourcemask, SCRATCHREG2);
ANDI2R(gpr.R(rt), gpr.R(rt), destmask, SCRATCHREG2);
ORR(gpr.R(rt), gpr.R(rt), Operand2(SCRATCHREG1, ST_LSL, pos));
#endif
}
}
break;
}
}
void ArmJit::Comp_Allegrex(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU_BIT);
MIPSGPReg rt = _RT;
MIPSGPReg rd = _RD;
// Don't change $zr.
if (rd == 0)
return;
switch ((op >> 6) & 31) {
case 16: // seb // R(rd) = (u32)(s32)(s8)(u8)R(rt);
if (gpr.IsImm(rt)) {
gpr.SetImm(rd, (s32)(s8)(u8)gpr.GetImm(rt));
return;
}
gpr.MapDirtyIn(rd, rt);
SXTB(gpr.R(rd), gpr.R(rt));
break;
case 24: // seh
if (gpr.IsImm(rt)) {
gpr.SetImm(rd, (s32)(s16)(u16)gpr.GetImm(rt));
return;
}
gpr.MapDirtyIn(rd, rt);
SXTH(gpr.R(rd), gpr.R(rt));
break;
case 20: //bitrev
if (gpr.IsImm(rt)) {
// http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel
u32 v = gpr.GetImm(rt);
v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); // odd<->even
v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); // pair<->pair
v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); // nibb<->nibb
v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); // byte<->byte
v = ( v >> 16 ) | ( v << 16); // hword<->hword
gpr.SetImm(rd, v);
return;
}
#if PPSSPP_ARCH(ARMV7)
gpr.MapDirtyIn(rd, rt);
RBIT(gpr.R(rd), gpr.R(rt));
#else
Comp_Generic(op);
#endif
break;
default:
Comp_Generic(op);
return;
}
}
void ArmJit::Comp_Allegrex2(MIPSOpcode op)
{
CONDITIONAL_DISABLE(ALU_BIT);
MIPSGPReg rt = _RT;
MIPSGPReg rd = _RD;
// Don't change $zr.
if (rd == 0)
return;
switch (op & 0x3ff) {
case 0xA0: //wsbh
if (gpr.IsImm(rt)) {
gpr.SetImm(rd, ((gpr.GetImm(rt) & 0xFF00FF00) >> 8) | ((gpr.GetImm(rt) & 0x00FF00FF) << 8));
} else {
gpr.MapDirtyIn(rd, rt);
REV16(gpr.R(rd), gpr.R(rt));
}
break;
case 0xE0: //wsbw
if (gpr.IsImm(rt)) {
gpr.SetImm(rd, swap32(gpr.GetImm(rt)));
} else {
gpr.MapDirtyIn(rd, rt);
REV(gpr.R(rd), gpr.R(rt));
}
break;
default:
Comp_Generic(op);
break;
}
}
void ArmJit::Comp_MulDivType(MIPSOpcode op)
{
CONDITIONAL_DISABLE(MULDIV);
MIPSGPReg rt = _RT;
MIPSGPReg rs = _RS;
MIPSGPReg rd = _RD;
switch (op & 63) {
case 16: // R(rd) = HI; //mfhi
if (rd != MIPS_REG_ZERO) {
if (gpr.IsImm(MIPS_REG_HI)) {
gpr.SetImm(rd, gpr.GetImm(MIPS_REG_HI));
break;
}
gpr.MapDirtyIn(rd, MIPS_REG_HI);
MOV(gpr.R(rd), gpr.R(MIPS_REG_HI));
}
break;
case 17: // HI = R(rs); //mthi
if (gpr.IsImm(rs)) {
gpr.SetImm(MIPS_REG_HI, gpr.GetImm(rs));
break;
}
gpr.MapDirtyIn(MIPS_REG_HI, rs);
MOV(gpr.R(MIPS_REG_HI), gpr.R(rs));
break;
case 18: // R(rd) = LO; break; //mflo
if (rd != MIPS_REG_ZERO) {
if (gpr.IsImm(MIPS_REG_LO)) {
gpr.SetImm(rd, gpr.GetImm(MIPS_REG_LO));
break;
}
gpr.MapDirtyIn(rd, MIPS_REG_LO);
MOV(gpr.R(rd), gpr.R(MIPS_REG_LO));
}
break;
case 19: // LO = R(rs); break; //mtlo
if (gpr.IsImm(rs)) {
gpr.SetImm(MIPS_REG_LO, gpr.GetImm(rs));
break;
}
gpr.MapDirtyIn(MIPS_REG_LO, rs);
MOV(gpr.R(MIPS_REG_LO), gpr.R(rs));
break;
case 24: //mult (the most popular one). lo,hi = signed mul (rs * rt)
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
s64 result = (s64)(s32)gpr.GetImm(rs) * (s64)(s32)gpr.GetImm(rt);
u64 resultBits = (u64)result;
gpr.SetImm(MIPS_REG_LO, (u32)(resultBits >> 0));
gpr.SetImm(MIPS_REG_HI, (u32)(resultBits >> 32));
break;
}
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt);
SMULL(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_HI), gpr.R(rs), gpr.R(rt));
break;
case 25: //multu (2nd) lo,hi = unsigned mul (rs * rt)
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
u64 resultBits = (u64)gpr.GetImm(rs) * (u64)gpr.GetImm(rt);
gpr.SetImm(MIPS_REG_LO, (u32)(resultBits >> 0));
gpr.SetImm(MIPS_REG_HI, (u32)(resultBits >> 32));
break;
}
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt);
UMULL(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_HI), gpr.R(rs), gpr.R(rt));
break;
case 26: //div
if (cpu_info.bIDIVa) {
// TODO: Does this handle INT_MAX, 0, etc. correctly?
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt);
CMPI2R(gpr.R(rt), 0, SCRATCHREG1);
FixupBranch skipZero = B_CC(CC_NEQ);
MOV(gpr.R(MIPS_REG_HI), gpr.R(rs));
MOVI2R(gpr.R(MIPS_REG_LO), -1);
CMPI2R(gpr.R(rs), 0, SCRATCHREG1);
SetCC(CC_LT);
MOVI2R(gpr.R(MIPS_REG_LO), 1);
SetCC(CC_AL);
FixupBranch skipDiv = B();
SetJumpTarget(skipZero);
SDIV(gpr.R(MIPS_REG_LO), gpr.R(rs), gpr.R(rt));
SetJumpTarget(skipDiv);
MUL(SCRATCHREG1, gpr.R(rt), gpr.R(MIPS_REG_LO));
SUB(gpr.R(MIPS_REG_HI), gpr.R(rs), Operand2(SCRATCHREG1));
} else {
DISABLE;
}
break;
case 27: //divu
// Do we have a known power-of-two denominator? Yes, this happens.
if (gpr.IsImm(rt) && (gpr.GetImm(rt) & (gpr.GetImm(rt) - 1)) == 0 && gpr.GetImm(rt) != 0) {
u32 denominator = gpr.GetImm(rt);
gpr.MapDirtyDirtyIn(MIPS_REG_LO, MIPS_REG_HI, rs);
// Remainder is just an AND, neat.
ANDI2R(gpr.R(MIPS_REG_HI), gpr.R(rs), denominator - 1, SCRATCHREG1);
int shift = 0;
while (denominator != 0) {
++shift;
denominator >>= 1;
}
// The shift value is one too much for the divide by the same value.
if (shift > 1) {
LSR(gpr.R(MIPS_REG_LO), gpr.R(rs), shift - 1);
} else {
MOV(gpr.R(MIPS_REG_LO), gpr.R(rs));
}
} else if (cpu_info.bIDIVa) {
// TODO: Does this handle INT_MAX, 0, etc. correctly?
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt);
CMPI2R(gpr.R(rt), 0, SCRATCHREG1);
FixupBranch skipZero = B_CC(CC_NEQ);
MOV(gpr.R(MIPS_REG_HI), gpr.R(rs));
MOVI2R(SCRATCHREG1, 0xFFFF);
CMP(gpr.R(rs), SCRATCHREG1);
MOVI2R(gpr.R(MIPS_REG_LO), -1);
SetCC(CC_LS);
MOV(gpr.R(MIPS_REG_LO), SCRATCHREG1);
SetCC(CC_AL);
FixupBranch skipDiv = B();
SetJumpTarget(skipZero);
UDIV(gpr.R(MIPS_REG_LO), gpr.R(rs), gpr.R(rt));
SetJumpTarget(skipDiv);
MUL(SCRATCHREG1, gpr.R(rt), gpr.R(MIPS_REG_LO));
SUB(gpr.R(MIPS_REG_HI), gpr.R(rs), Operand2(SCRATCHREG1));
} else {
// If rt is 0, we either caught it above, or it's not an imm.
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt);
MOV(SCRATCHREG1, gpr.R(rt));
// We start at rs for the remainder and subtract out.
MOV(gpr.R(MIPS_REG_HI), gpr.R(rs));
CMP(gpr.R(rt), 0);
FixupBranch skipper = B_CC(CC_EQ);
// Double SCRATCHREG1 until it would be (but isn't) bigger than the numerator.
CMP(SCRATCHREG1, Operand2(gpr.R(rs), ST_LSR, 1));
const u8 *doubleLoop = GetCodePtr();
SetCC(CC_LS);
MOV(SCRATCHREG1, Operand2(SCRATCHREG1, ST_LSL, 1));
SetCC(CC_AL);
CMP(SCRATCHREG1, Operand2(gpr.R(rs), ST_LSR, 1));
B_CC(CC_LS, doubleLoop);
MOV(gpr.R(MIPS_REG_LO), 0);
// Subtract and halve SCRATCHREG1 (doubling and adding the result) until it's below the denominator.
const u8 *subLoop = GetCodePtr();
CMP(gpr.R(MIPS_REG_HI), SCRATCHREG1);
SetCC(CC_HS);
SUB(gpr.R(MIPS_REG_HI), gpr.R(MIPS_REG_HI), SCRATCHREG1);
SetCC(CC_AL);
// Carry will be set if we subtracted.
ADC(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_LO));
MOV(SCRATCHREG1, Operand2(SCRATCHREG1, ST_LSR, 1));
CMP(SCRATCHREG1, gpr.R(rt));
B_CC(CC_HS, subLoop);
// We didn't change rt. If it was 0, then clear HI and LO.
FixupBranch zeroSkip = B();
SetJumpTarget(skipper);
MOVI2R(SCRATCHREG1, 0xFFFF);
CMP(gpr.R(rs), SCRATCHREG1);
MOVI2R(gpr.R(MIPS_REG_LO), -1);
SetCC(CC_LS);
MOV(gpr.R(MIPS_REG_LO), SCRATCHREG1);
SetCC(CC_AL);
SetJumpTarget(zeroSkip);
}
break;
case 28: //madd
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt, false);
SMLAL(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_HI), gpr.R(rs), gpr.R(rt));
break;
case 29: //maddu
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt, false);
UMLAL(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_HI), gpr.R(rs), gpr.R(rt));
break;
case 46: // msub
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt, false);
SMULL(SCRATCHREG1, SCRATCHREG2, gpr.R(rs), gpr.R(rt));
SUBS(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_LO), SCRATCHREG1);
SBC(gpr.R(MIPS_REG_HI), gpr.R(MIPS_REG_HI), SCRATCHREG2);
break;
case 47: // msubu
gpr.MapDirtyDirtyInIn(MIPS_REG_LO, MIPS_REG_HI, rs, rt, false);
UMULL(SCRATCHREG1, SCRATCHREG2, gpr.R(rs), gpr.R(rt));
SUBS(gpr.R(MIPS_REG_LO), gpr.R(MIPS_REG_LO), SCRATCHREG1);
SBC(gpr.R(MIPS_REG_HI), gpr.R(MIPS_REG_HI), SCRATCHREG2);
break;
default:
DISABLE;
}
}
}
#endif // PPSSPP_ARCH(ARM)