ppsspp/Common/MemoryUtil.cpp

347 lines
10 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "ppsspp_config.h"
#include <cstring>
#include <cstdlib>
#include "Common/CommonTypes.h"
#include "Common/Log.h"
#include "Common/MemoryUtil.h"
#include "Common/StringUtils.h"
#include "Common/SysError.h"
#ifdef _WIN32
#include "Common/CommonWindows.h"
#else
#include <errno.h>
#include <stdio.h>
#endif
#ifdef __APPLE__
#include <sys/types.h>
#include <sys/mman.h>
#include <mach/vm_param.h>
#endif
#ifndef _WIN32
#include <unistd.h>
#endif
static int hint_location;
#ifdef __APPLE__
#define MEM_PAGE_SIZE (PAGE_SIZE)
#elif defined(_WIN32)
static SYSTEM_INFO sys_info;
#define MEM_PAGE_SIZE (uintptr_t)(sys_info.dwPageSize)
#else
#define MEM_PAGE_SIZE (getpagesize())
#endif
#define MEM_PAGE_MASK ((MEM_PAGE_SIZE)-1)
#define ppsspp_round_page(x) ((((uintptr_t)(x)) + MEM_PAGE_MASK) & ~(MEM_PAGE_MASK))
#ifdef _WIN32
// Win32 memory protection flags are odd...
static uint32_t ConvertProtFlagsWin32(uint32_t flags) {
uint32_t protect = 0;
switch (flags) {
case 0: protect = PAGE_NOACCESS; break;
case MEM_PROT_READ: protect = PAGE_READONLY; break;
case MEM_PROT_WRITE: protect = PAGE_READWRITE; break; // Can't set write-only
case MEM_PROT_EXEC: protect = PAGE_EXECUTE; break;
case MEM_PROT_READ | MEM_PROT_EXEC: protect = PAGE_EXECUTE_READ; break;
case MEM_PROT_WRITE | MEM_PROT_EXEC: protect = PAGE_EXECUTE_READWRITE; break; // Can't set write-only
case MEM_PROT_READ | MEM_PROT_WRITE: protect = PAGE_READWRITE; break;
case MEM_PROT_READ | MEM_PROT_WRITE | MEM_PROT_EXEC: protect = PAGE_EXECUTE_READWRITE; break;
}
return protect;
}
#else
static uint32_t ConvertProtFlagsUnix(uint32_t flags) {
uint32_t protect = 0;
if (flags & MEM_PROT_READ)
protect |= PROT_READ;
if (flags & MEM_PROT_WRITE)
protect |= PROT_WRITE;
if (flags & MEM_PROT_EXEC)
protect |= PROT_EXEC;
return protect;
}
#endif
#if defined(_WIN32) && PPSSPP_ARCH(AMD64)
static uintptr_t last_executable_addr;
static void *SearchForFreeMem(size_t size) {
if (!last_executable_addr)
last_executable_addr = (uintptr_t) &hint_location - sys_info.dwPageSize;
last_executable_addr -= size;
MEMORY_BASIC_INFORMATION info;
while (VirtualQuery((void *)last_executable_addr, &info, sizeof(info)) == sizeof(info)) {
// went too far, unusable for executable memory
if (last_executable_addr + 0x80000000 < (uintptr_t) &hint_location)
return NULL;
uintptr_t end = last_executable_addr + size;
if (info.State != MEM_FREE)
{
last_executable_addr = (uintptr_t) info.AllocationBase - size;
continue;
}
if ((uintptr_t)info.BaseAddress + (uintptr_t)info.RegionSize >= end &&
(uintptr_t)info.BaseAddress <= last_executable_addr)
return (void *)last_executable_addr;
last_executable_addr -= size;
}
return NULL;
}
#endif
// This is purposely not a full wrapper for virtualalloc/mmap, but it
// provides exactly the primitive operations that PPSSPP needs.
void *AllocateExecutableMemory(size_t size) {
#if defined(_WIN32)
void *ptr = nullptr;
DWORD prot = PAGE_EXECUTE_READWRITE;
if (PlatformIsWXExclusive())
prot = PAGE_READWRITE;
if (sys_info.dwPageSize == 0)
GetSystemInfo(&sys_info);
#if PPSSPP_ARCH(AMD64)
if ((uintptr_t)&hint_location > 0xFFFFFFFFULL) {
size_t aligned_size = ppsspp_round_page(size);
#if 1 // Turn off to hunt for RIP bugs on x86-64.
ptr = SearchForFreeMem(aligned_size);
if (!ptr) {
// Let's try again, from the top.
// When we deallocate, this doesn't change, so we eventually run out of space.
last_executable_addr = 0;
ptr = SearchForFreeMem(aligned_size);
}
#endif
if (ptr) {
ptr = VirtualAlloc(ptr, aligned_size, MEM_RESERVE | MEM_COMMIT, prot);
} else {
WARN_LOG(COMMON, "Unable to find nearby executable memory for jit. Proceeding with far memory.");
// Can still run, thanks to "RipAccessible".
ptr = VirtualAlloc(nullptr, aligned_size, MEM_RESERVE | MEM_COMMIT, prot);
}
}
else
#endif
{
#if PPSSPP_PLATFORM(UWP)
ptr = VirtualAllocFromApp(0, size, MEM_RESERVE | MEM_COMMIT, prot);
#else
ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, prot);
#endif
}
#else
static char *map_hint = 0;
#if PPSSPP_ARCH(AMD64)
// Try to request one that is close to our memory location if we're in high memory.
// We use a dummy global variable to give us a good location to start from.
if (!map_hint) {
if ((uintptr_t) &hint_location > 0xFFFFFFFFULL)
map_hint = (char*)ppsspp_round_page(&hint_location) - 0x20000000; // 0.5gb lower than our approximate location
else
map_hint = (char*)0x20000000; // 0.5GB mark in memory
} else if ((uintptr_t) map_hint > 0xFFFFFFFFULL) {
map_hint -= ppsspp_round_page(size); /* round down to the next page if we're in high memory */
}
#endif
int prot = PROT_READ | PROT_WRITE | PROT_EXEC;
if (PlatformIsWXExclusive())
prot = PROT_READ | PROT_WRITE; // POST_EXEC is added later in this case.
void* ptr = mmap(map_hint, size, prot, MAP_ANON | MAP_PRIVATE, -1, 0);
#endif /* defined(_WIN32) */
#if !defined(_WIN32)
static const void *failed_result = MAP_FAILED;
#else
static const void *failed_result = nullptr;
#endif
if (ptr == failed_result) {
ptr = nullptr;
ERROR_LOG(MEMMAP, "Failed to allocate executable memory (%d) errno=%d", (int)size, errno);
}
#if PPSSPP_ARCH(AMD64) && !defined(_WIN32)
else if ((uintptr_t)map_hint <= 0xFFFFFFFF) {
// Round up if we're below 32-bit mark, probably allocating sequentially.
map_hint += ppsspp_round_page(size);
// If we moved ahead too far, skip backwards and recalculate.
// When we free, we keep moving forward and eventually move too far.
if ((uintptr_t)map_hint - (uintptr_t) &hint_location >= 0x70000000) {
map_hint = 0;
}
}
#endif
return ptr;
}
void *AllocateMemoryPages(size_t size, uint32_t memProtFlags) {
#ifdef _WIN32
if (sys_info.dwPageSize == 0)
GetSystemInfo(&sys_info);
uint32_t protect = ConvertProtFlagsWin32(memProtFlags);
// Make sure to do this after GetSystemInfo().
size = ppsspp_round_page(size);
#if PPSSPP_PLATFORM(UWP)
void* ptr = VirtualAllocFromApp(0, size, MEM_COMMIT, protect);
#else
void* ptr = VirtualAlloc(0, size, MEM_COMMIT, protect);
#endif
if (!ptr) {
ERROR_LOG(MEMMAP, "Failed to allocate raw memory pages");
return nullptr;
}
#else
size = ppsspp_round_page(size);
uint32_t protect = ConvertProtFlagsUnix(memProtFlags);
void *ptr = mmap(0, size, protect, MAP_ANON | MAP_PRIVATE, -1, 0);
if (ptr == MAP_FAILED) {
ERROR_LOG(MEMMAP, "Failed to allocate raw memory pages: errno=%d", errno);
return nullptr;
}
#endif
// printf("Mapped memory at %p (size %ld)\n", ptr,
// (unsigned long)size);
return ptr;
}
void *AllocateAlignedMemory(size_t size, size_t alignment) {
#ifdef _WIN32
void* ptr = _aligned_malloc(size, alignment);
#else
void* ptr = NULL;
#ifdef __ANDROID__
ptr = memalign(alignment, size);
#else
if (posix_memalign(&ptr, alignment, size) != 0) {
ptr = nullptr;
}
#endif
#endif
_assert_msg_(ptr != nullptr, "Failed to allocate aligned memory of size %llu", size);
return ptr;
}
void FreeMemoryPages(void *ptr, size_t size) {
if (!ptr)
return;
uintptr_t page_size = GetMemoryProtectPageSize();
size = (size + page_size - 1) & (~(page_size - 1));
#ifdef _WIN32
if (!VirtualFree(ptr, 0, MEM_RELEASE)) {
ERROR_LOG(MEMMAP, "FreeMemoryPages failed!\n%s", GetLastErrorMsg().c_str());
}
#else
munmap(ptr, size);
#endif
}
void FreeAlignedMemory(void* ptr) {
if (!ptr)
return;
#ifdef _WIN32
_aligned_free(ptr);
#else
free(ptr);
#endif
}
bool PlatformIsWXExclusive() {
// Needed on platforms that disable W^X pages for security. Even without block linking, still should be much faster than IR JIT.
// This might also come in useful for UWP (Universal Windows Platform) if I'm understanding things correctly.
#if PPSSPP_PLATFORM(IOS) || PPSSPP_PLATFORM(UWP) || defined(__OpenBSD__)
return true;
#elif PPSSPP_PLATFORM(MAC) && PPSSPP_ARCH(ARM64)
return true;
#else
// Returning true here lets you test the W^X path on Windows and other non-W^X platforms.
return false;
#endif
}
bool ProtectMemoryPages(const void* ptr, size_t size, uint32_t memProtFlags) {
VERBOSE_LOG(JIT, "ProtectMemoryPages: %p (%d) : r%d w%d x%d", ptr, (int)size,
(memProtFlags & MEM_PROT_READ) != 0, (memProtFlags & MEM_PROT_WRITE) != 0, (memProtFlags & MEM_PROT_EXEC) != 0);
if (PlatformIsWXExclusive()) {
if ((memProtFlags & (MEM_PROT_WRITE | MEM_PROT_EXEC)) == (MEM_PROT_WRITE | MEM_PROT_EXEC)) {
_assert_msg_(false, "Bad memory protect flags %d: W^X is in effect, can't both write and exec", memProtFlags);
}
}
// Note - VirtualProtect will affect the full pages containing the requested range.
// mprotect does not seem to, at least not on Android unless I made a mistake somewhere, so we manually round.
#ifdef _WIN32
uint32_t protect = ConvertProtFlagsWin32(memProtFlags);
#if PPSSPP_PLATFORM(UWP)
DWORD oldValue;
if (!VirtualProtectFromApp((void *)ptr, size, protect, &oldValue)) {
ERROR_LOG(MEMMAP, "WriteProtectMemory failed!\n%s", GetLastErrorMsg().c_str());
return false;
}
#else
DWORD oldValue;
if (!VirtualProtect((void *)ptr, size, protect, &oldValue)) {
ERROR_LOG(MEMMAP, "WriteProtectMemory failed!\n%s", GetLastErrorMsg().c_str());
return false;
}
#endif
return true;
#else
uint32_t protect = ConvertProtFlagsUnix(memProtFlags);
uintptr_t page_size = GetMemoryProtectPageSize();
uintptr_t start = (uintptr_t)ptr;
uintptr_t end = (uintptr_t)ptr + size;
start &= ~(page_size - 1);
end = (end + page_size - 1) & ~(page_size - 1);
int retval = mprotect((void *)start, end - start, protect);
if (retval != 0) {
ERROR_LOG(MEMMAP, "mprotect failed (%p)! errno=%d (%s)", (void *)start, errno, strerror(errno));
return false;
}
return true;
#endif
}
int GetMemoryProtectPageSize() {
#ifdef _WIN32
if (sys_info.dwPageSize == 0)
GetSystemInfo(&sys_info);
return sys_info.dwPageSize;
#endif
return MEM_PAGE_SIZE;
}