ppsspp/Windows/DinputDevice.cpp
2017-03-14 22:07:07 -07:00

375 lines
10 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <limits.h>
#include <algorithm>
#include "Core/HLE/sceCtrl.h"
#include "DinputDevice.h"
#include "Core/Config.h"
#include "input/input_state.h"
#include "base/NativeApp.h"
#include "input/keycodes.h"
#include "Core/Reporting.h"
#include "Xinput.h"
#pragma comment(lib,"dinput8.lib")
#ifdef min
#undef min
#undef max
#endif
//initialize static members of DinputDevice
unsigned int DinputDevice::pInstances = 0;
LPDIRECTINPUT8 DinputDevice::pDI = NULL;
std::vector<DIDEVICEINSTANCE> DinputDevice::devices;
// In order from 0. There can be 128, but most controllers do not have that many.
static const int dinput_buttons[] = {
NKCODE_BUTTON_1,
NKCODE_BUTTON_2,
NKCODE_BUTTON_3,
NKCODE_BUTTON_4,
NKCODE_BUTTON_5,
NKCODE_BUTTON_6,
NKCODE_BUTTON_7,
NKCODE_BUTTON_8,
NKCODE_BUTTON_9,
NKCODE_BUTTON_10,
NKCODE_BUTTON_11,
NKCODE_BUTTON_12,
NKCODE_BUTTON_13,
NKCODE_BUTTON_14,
NKCODE_BUTTON_15,
NKCODE_BUTTON_16,
};
static float NormalizedDeadzoneFilter(short value);
#define DIFF (JOY_POVRIGHT - JOY_POVFORWARD) / 2
#define JOY_POVFORWARD_RIGHT JOY_POVFORWARD + DIFF
#define JOY_POVRIGHT_BACKWARD JOY_POVRIGHT + DIFF
#define JOY_POVBACKWARD_LEFT JOY_POVBACKWARD + DIFF
#define JOY_POVLEFT_FORWARD JOY_POVLEFT + DIFF
struct XINPUT_DEVICE_NODE {
DWORD dwVidPid;
XINPUT_DEVICE_NODE* pNext;
};
XINPUT_DEVICE_NODE* g_pXInputDeviceList = NULL;
bool IsXInputDevice( const GUID* pGuidProductFromDirectInput ) {
XINPUT_DEVICE_NODE* pNode = g_pXInputDeviceList;
while( pNode )
{
if( pNode->dwVidPid == pGuidProductFromDirectInput->Data1 )
return true;
pNode = pNode->pNext;
}
return false;
}
LPDIRECTINPUT8 DinputDevice::getPDI()
{
if (pDI == NULL)
{
if (FAILED(DirectInput8Create(GetModuleHandle(NULL), DIRECTINPUT_VERSION, IID_IDirectInput8, (void**)&pDI, NULL)))
{
pDI = NULL;
}
}
return pDI;
}
BOOL CALLBACK DinputDevice::DevicesCallback(
LPCDIDEVICEINSTANCE lpddi,
LPVOID pvRef
)
{
//check if a device with the same Instance guid is already saved
auto res = std::find_if(devices.begin(), devices.end(),
[lpddi](const DIDEVICEINSTANCE &to_consider){
return lpddi->guidInstance == to_consider.guidInstance;
});
if (res == devices.end()) //not yet in the devices list
{
// Ignore if device supports XInput
if (!IsXInputDevice(&lpddi->guidProduct)) {
devices.push_back(*lpddi);
}
}
return DIENUM_CONTINUE;
}
void DinputDevice::getDevices()
{
if (devices.empty())
{
getPDI()->EnumDevices(DI8DEVCLASS_GAMECTRL, &DinputDevice::DevicesCallback, NULL, DIEDFL_ATTACHEDONLY);
}
}
DinputDevice::DinputDevice(int devnum) {
pInstances++;
pDevNum = devnum;
pJoystick = NULL;
memset(lastButtons_, 0, sizeof(lastButtons_));
memset(lastPOV_, 0, sizeof(lastPOV_));
last_lX_ = 0;
last_lY_ = 0;
last_lZ_ = 0;
last_lRx_ = 0;
last_lRy_ = 0;
last_lRz_ = 0;
if (getPDI() == NULL)
{
return;
}
if (devnum >= MAX_NUM_PADS)
{
return;
}
getDevices();
if ( (devnum >= (int)devices.size()) || FAILED(getPDI()->CreateDevice(devices.at(devnum).guidInstance, &pJoystick, NULL)))
{
return;
}
if (FAILED(pJoystick->SetDataFormat(&c_dfDIJoystick2))) {
pJoystick->Release();
pJoystick = NULL;
return;
}
DIPROPRANGE diprg;
diprg.diph.dwSize = sizeof(DIPROPRANGE);
diprg.diph.dwHeaderSize = sizeof(DIPROPHEADER);
diprg.diph.dwHow = DIPH_DEVICE;
diprg.diph.dwObj = 0;
diprg.lMin = -10000;
diprg.lMax = 10000;
analog = FAILED(pJoystick->SetProperty(DIPROP_RANGE, &diprg.diph)) ? false : true;
// Other devices suffer if the deadzone is not set.
// TODO: The dead zone will be made configurable in the Control dialog.
DIPROPDWORD dipw;
dipw.diph.dwSize = sizeof(DIPROPDWORD);
dipw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipw.diph.dwHow = DIPH_DEVICE;
dipw.diph.dwObj = 0;
// dwData 10000 is deadzone(0% - 100%), multiply by config scalar
dipw.dwData = (int)(g_Config.fDInputAnalogDeadzone * 10000);
analog |= FAILED(pJoystick->SetProperty(DIPROP_DEADZONE, &dipw.diph)) ? false : true;
}
DinputDevice::~DinputDevice() {
if (pJoystick) {
pJoystick->Release();
pJoystick = NULL;
}
pInstances--;
//the whole instance counter is obviously highly thread-unsafe
//but I don't think creation and destruction operations will be
//happening at the same time and other values like pDI are
//unsafe as well anyway
if (pInstances == 0 && pDI) {
pDI->Release();
pDI = NULL;
}
}
void SendNativeAxis(int deviceId, short value, short &lastValue, int axisId) {
if (value == lastValue)
return;
AxisInput axis;
axis.deviceId = deviceId;
axis.axisId = axisId;
axis.value = (float)value / 10000.0f; // Convert axis to normalised float
NativeAxis(axis);
lastValue = value;
}
inline float Signs(short val) {
return (0 < val) - (val < 0);
}
inline float LinearMaps(short val, short a0, short a1, short b0, short b1) {
return b0 + (((val - a0) * (b1 - b0)) / (a1 - a0));
}
int DinputDevice::UpdateState() {
if (!pJoystick) return -1;
DIJOYSTATE2 js;
if (FAILED(pJoystick->Poll())) {
if(pJoystick->Acquire() == DIERR_INPUTLOST)
return -1;
}
if(FAILED(pJoystick->GetDeviceState(sizeof(DIJOYSTATE2), &js)))
return -1;
ApplyButtons(js);
if (analog) {
AxisInput axis;
axis.deviceId = DEVICE_ID_PAD_0 + pDevNum;
// Circle to Square mapping, cribbed from XInputDevice
float sx = js.lX;
float sy = js.lY;
float scaleFactor = sqrtf((sx * sx + sy * sy) / std::max(sx * sx, sy * sy));
js.lX = (short)(sx * scaleFactor);
js.lY = (short)(sy * scaleFactor);
// Linear range mapping (used to invert deadzones)
float dz = g_Config.fDInputAnalogDeadzone;
int idzm = g_Config.iDInputAnalogInverseMode;
float idz = g_Config.fDInputAnalogInverseDeadzone;
float md = std::max(dz, idz);
float st = g_Config.fDInputAnalogSensitivity;
float magnitude = sqrtf(js.lX * js.lX + js.lY * js.lY);
if (magnitude > dz * 10000.0f) {
if (idzm == 1)
{
short xSign = Signs(js.lX);
if (xSign != 0.0f) {
js.lX = LinearMaps(js.lX, xSign * (short)(dz * 10000), xSign * 10000, xSign * (short)(md * 10000), xSign * 10000 * st);
}
}
else if (idzm == 2)
{
short ySign = Signs(js.lY);
if (ySign != 0.0f) {
js.lY = LinearMaps(js.lY, ySign * (short)(dz * 10000.0f), ySign * 10000, ySign * (short)(md * 10000.0f), ySign * 10000 * st);
}
}
else if (idzm == 3)
{
float xNorm = (float)js.lX / magnitude;
float yNorm = (float)js.lY / magnitude;
float mapMag = LinearMaps(magnitude, dz * 10000.0f, 10000.0f, md * 10000.0f, 10000.0f * st);
js.lX = (short)(xNorm * mapMag);
js.lY = (short)(yNorm * mapMag);
}
}
else
{
js.lX = 0;
js.lY = 0;
}
js.lX = (short)std::min(10000.0f, std::max((float)js.lX, -10000.0f));
js.lY = (short)std::min(10000.0f, std::max((float)js.lY, -10000.0f));
SendNativeAxis(DEVICE_ID_PAD_0 + pDevNum, js.lX, last_lX_, JOYSTICK_AXIS_X);
SendNativeAxis(DEVICE_ID_PAD_0 + pDevNum, js.lY, last_lY_, JOYSTICK_AXIS_Y);
SendNativeAxis(DEVICE_ID_PAD_0 + pDevNum, js.lZ, last_lZ_, JOYSTICK_AXIS_Z);
SendNativeAxis(DEVICE_ID_PAD_0 + pDevNum, js.lRx, last_lRx_, JOYSTICK_AXIS_RX);
SendNativeAxis(DEVICE_ID_PAD_0 + pDevNum, js.lRy, last_lRy_, JOYSTICK_AXIS_RY);
SendNativeAxis(DEVICE_ID_PAD_0 + pDevNum, js.lRz, last_lRz_, JOYSTICK_AXIS_RZ);
}
//check if the values have changed from last time and skip polling the rest of the dinput devices if they did
//this doesn't seem to quite work if only the axis have changed
if ((memcmp(js.rgbButtons, pPrevState.rgbButtons, sizeof(BYTE) * 128) != 0)
|| (memcmp(js.rgdwPOV, pPrevState.rgdwPOV, sizeof(DWORD) * 4) != 0)
|| js.lVX != 0 || js.lVY != 0 || js.lVZ != 0 || js.lVRx != 0 || js.lVRy != 0 || js.lVRz != 0)
{
pPrevState = js;
return UPDATESTATE_SKIP_PAD;
}
return -1;
}
void DinputDevice::ApplyButtons(DIJOYSTATE2 &state) {
BYTE *buttons = state.rgbButtons;
u32 downMask = 0x80;
for (int i = 0; i < ARRAY_SIZE(dinput_buttons); ++i) {
if (state.rgbButtons[i] == lastButtons_[i]) {
continue;
}
bool down = (state.rgbButtons[i] & downMask) == downMask;
KeyInput key;
key.deviceId = DEVICE_ID_PAD_0 + pDevNum;
key.flags = down ? KEY_DOWN : KEY_UP;
key.keyCode = dinput_buttons[i];
NativeKey(key);
lastButtons_[i] = state.rgbButtons[i];
}
// Now the POV hat, which can technically go in any degree but usually does not.
if (LOWORD(state.rgdwPOV[0]) != lastPOV_[0]) {
KeyInput dpad[4];
for (int i = 0; i < 4; ++i) {
dpad[i].deviceId = DEVICE_ID_PAD_0 + pDevNum;
dpad[i].flags = KEY_UP;
}
dpad[0].keyCode = NKCODE_DPAD_UP;
dpad[1].keyCode = NKCODE_DPAD_LEFT;
dpad[2].keyCode = NKCODE_DPAD_DOWN;
dpad[3].keyCode = NKCODE_DPAD_RIGHT;
if (LOWORD(state.rgdwPOV[0]) != JOY_POVCENTERED) {
// These are the edges, so we use or.
if (state.rgdwPOV[0] >= JOY_POVLEFT_FORWARD || state.rgdwPOV[0] <= JOY_POVFORWARD_RIGHT) {
dpad[0].flags = KEY_DOWN;
}
if (state.rgdwPOV[0] >= JOY_POVBACKWARD_LEFT && state.rgdwPOV[0] <= JOY_POVLEFT_FORWARD) {
dpad[1].flags = KEY_DOWN;
}
if (state.rgdwPOV[0] >= JOY_POVRIGHT_BACKWARD && state.rgdwPOV[0] <= JOY_POVBACKWARD_LEFT) {
dpad[2].flags = KEY_DOWN;
}
if (state.rgdwPOV[0] >= JOY_POVFORWARD_RIGHT && state.rgdwPOV[0] <= JOY_POVRIGHT_BACKWARD) {
dpad[3].flags = KEY_DOWN;
}
}
NativeKey(dpad[0]);
NativeKey(dpad[1]);
NativeKey(dpad[2]);
NativeKey(dpad[3]);
lastPOV_[0] = LOWORD(state.rgdwPOV[0]);
}
}
size_t DinputDevice::getNumPads()
{
if (devices.empty())
{
getDevices();
}
return devices.size();
}