ppsspp/ext/sha1/sha1.cpp
2020-09-30 00:30:42 +02:00

259 lines
6.7 KiB
C++

/*
100% free public domain implementation of the SHA-1 algorithm
by Dominik Reichl <dominik.reichl@t-online.de>
Web: http://www.dominik-reichl.de/
See header file for version history and test vectors.
*/
// If compiling with MFC, you might want to add #include "StdAfx.h"
#include "sha1.h"
#ifdef SHA1_UTILITY_FUNCTIONS
#define SHA1_MAX_FILE_BUFFER (32 * 20 * 820)
#endif
// Rotate _val32 by _nBits bits to the left
#ifndef ROL32
#ifdef _MSC_VER
#define ROL32(_val32,_nBits) _rotl(_val32,_nBits)
#else
#define ROL32(_val32,_nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
#endif
#endif
#ifdef SHA1_LITTLE_ENDIAN
#define SHABLK0(i) (m_block->l[i] = \
(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
#else
#define SHABLK0(i) (m_block->l[i])
#endif
#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ \
m_block->l[(i+8)&15] ^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))
// SHA-1 rounds
#define _R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);}
#define _R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);}
#define _R2(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5);w=ROL32(w,30);}
#define _R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5);w=ROL32(w,30);}
#define _R4(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5);w=ROL32(w,30);}
#ifdef _MSC_VER
#pragma warning(push)
// Disable compiler warning 'Conditional expression is constant'
#pragma warning(disable: 4127)
#endif
CSHA1::CSHA1()
{
m_block = (SHA1_WORKSPACE_BLOCK*)m_workspace;
Reset();
}
CSHA1::~CSHA1()
{
Reset();
}
void CSHA1::Reset()
{
// SHA1 initialization constants
m_state[0] = 0x67452301;
m_state[1] = 0xEFCDAB89;
m_state[2] = 0x98BADCFE;
m_state[3] = 0x10325476;
m_state[4] = 0xC3D2E1F0;
m_count[0] = 0;
m_count[1] = 0;
}
void CSHA1::Transform(UINT_32* pState, const UINT_8* pBuffer)
{
UINT_32 a = pState[0], b = pState[1], c = pState[2], d = pState[3], e = pState[4];
memcpy(m_block, pBuffer, 64);
// 4 rounds of 20 operations each, loop unrolled
_R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);
_R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);
_R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);
_R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);
_R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);
_R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);
_R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);
_R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);
_R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);
_R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);
_R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);
_R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);
_R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);
_R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);
_R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);
_R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);
_R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);
_R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);
_R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);
_R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);
// Add the working vars back into state
pState[0] += a;
pState[1] += b;
pState[2] += c;
pState[3] += d;
pState[4] += e;
// Wipe variables
#ifdef SHA1_WIPE_VARIABLES
a = b = c = d = e = 0;
#endif
}
void CSHA1::Update(const UINT_8* pbData, UINT_32 uLen)
{
UINT_32 j = ((m_count[0] >> 3) & 0x3F);
if((m_count[0] += (uLen << 3)) < (uLen << 3))
++m_count[1]; // Overflow
m_count[1] += (uLen >> 29);
UINT_32 i;
if((j + uLen) > 63)
{
i = 64 - j;
memcpy(&m_buffer[j], pbData, i);
Transform(m_state, m_buffer);
for( ; (i + 63) < uLen; i += 64)
Transform(m_state, &pbData[i]);
j = 0;
}
else i = 0;
if((uLen - i) != 0)
memcpy(&m_buffer[j], &pbData[i], uLen - i);
}
#ifdef SHA1_UTILITY_FUNCTIONS
bool CSHA1::HashFile(const TCHAR* tszFileName)
{
if(tszFileName == NULL) return false;
FILE* fpIn = _tfopen(tszFileName, _T("rb"));
if(fpIn == NULL) return false;
UINT_8* pbData = new UINT_8[SHA1_MAX_FILE_BUFFER];
if(pbData == NULL) { fclose(fpIn); return false; }
bool bSuccess = true;
while(true)
{
const size_t uRead = fread(pbData, 1, SHA1_MAX_FILE_BUFFER, fpIn);
if(uRead > 0)
Update(pbData, static_cast<UINT_32>(uRead));
if(uRead < SHA1_MAX_FILE_BUFFER)
{
if(feof(fpIn) == 0) bSuccess = false;
break;
}
}
fclose(fpIn);
delete[] pbData;
return bSuccess;
}
#endif
void CSHA1::Final()
{
UINT_32 i;
UINT_8 finalcount[8];
for(i = 0; i < 8; ++i)
finalcount[i] = (UINT_8)((m_count[((i >= 4) ? 0 : 1)]
>> ((3 - (i & 3)) * 8) ) & 255); // Endian independent
Update((UINT_8*)"\200", 1);
while ((m_count[0] & 504) != 448)
Update((UINT_8*)"\0", 1);
Update(finalcount, 8); // Cause a SHA1Transform()
for(i = 0; i < 20; ++i)
m_digest[i] = (UINT_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8)) & 0xFF);
// Wipe variables for security reasons
#ifdef SHA1_WIPE_VARIABLES
memset(m_buffer, 0, 64);
memset(m_state, 0, 20);
memset(m_count, 0, 8);
memset(finalcount, 0, 8);
Transform(m_state, m_buffer);
#endif
}
#ifdef SHA1_UTILITY_FUNCTIONS
bool CSHA1::ReportHash(TCHAR* tszReport, REPORT_TYPE rtReportType) const
{
if(tszReport == NULL) return false;
TCHAR tszTemp[16];
if((rtReportType == REPORT_HEX) || (rtReportType == REPORT_HEX_SHORT))
{
_sntprintf(tszTemp, 15, _T("%02X"), m_digest[0]);
_tcscpy(tszReport, tszTemp);
const TCHAR* lpFmt = ((rtReportType == REPORT_HEX) ? _T(" %02X") : _T("%02X"));
for(size_t i = 1; i < 20; ++i)
{
_sntprintf(tszTemp, 15, lpFmt, m_digest[i]);
_tcscat(tszReport, tszTemp);
}
}
else if(rtReportType == REPORT_DIGIT)
{
_sntprintf(tszTemp, 15, _T("%u"), m_digest[0]);
_tcscpy(tszReport, tszTemp);
for(size_t i = 1; i < 20; ++i)
{
_sntprintf(tszTemp, 15, _T(" %u"), m_digest[i]);
_tcscat(tszReport, tszTemp);
}
}
else return false;
return true;
}
#endif
#ifdef SHA1_STL_FUNCTIONS
bool CSHA1::ReportHashStl(std::basic_string<TCHAR>& strOut, REPORT_TYPE rtReportType) const
{
TCHAR tszOut[84];
const bool bResult = ReportHash(tszOut, rtReportType);
if(bResult) strOut = tszOut;
return bResult;
}
#endif
bool CSHA1::GetHash(UINT_8* pbDest20) const
{
if(pbDest20 == NULL) return false;
memcpy(pbDest20, m_digest, 20);
return true;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif