ppsspp/Common/CPUDetect.cpp
Unknown W. Brackets 9cfcbc46e6 Global: Cleanup initialization/pointer checks.
Cleaning up a lot of cases of uninitialized data, unchecked return values
for failures, and similar.
2022-12-10 21:13:36 -08:00

453 lines
14 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// Reference : https://stackoverflow.com/questions/6121792/how-to-check-if-a-cpu-supports-the-sse3-instruction-set
#include "ppsspp_config.h"
#if PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)
#ifdef __ANDROID__
#include <sys/stat.h>
#include <fcntl.h>
#elif PPSSPP_PLATFORM(MAC)
#include <sys/sysctl.h>
#endif
#include <algorithm>
#include <cstdint>
#include <memory.h>
#include <set>
#include "Common/Common.h"
#include "Common/CPUDetect.h"
#include "Common/File/FileUtil.h"
#include "Common/StringUtils.h"
#if defined(_WIN32)
#include "Common/CommonWindows.h"
#define _interlockedbittestandset workaround_ms_header_bug_platform_sdk6_set
#define _interlockedbittestandreset workaround_ms_header_bug_platform_sdk6_reset
#define _interlockedbittestandset64 workaround_ms_header_bug_platform_sdk6_set64
#define _interlockedbittestandreset64 workaround_ms_header_bug_platform_sdk6_reset64
#include <intrin.h>
#undef _interlockedbittestandset
#undef _interlockedbittestandreset
#undef _interlockedbittestandset64
#undef _interlockedbittestandreset64
void do_cpuidex(u32 regs[4], u32 cpuid_leaf, u32 ecxval) {
__cpuidex((int *)regs, cpuid_leaf, ecxval);
}
void do_cpuid(u32 regs[4], u32 cpuid_leaf) {
__cpuid((int *)regs, cpuid_leaf);
}
#ifdef __MINGW32__
static uint64_t do_xgetbv(unsigned int index) {
unsigned int eax, edx;
// This is xgetbv directly, so we can avoid compilers warning we need runtime checks.
asm(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(index));
return ((uint64_t)edx << 32) | eax;
}
#else
#define do_xgetbv _xgetbv
#endif
#else // _WIN32
#ifdef _M_SSE
#include <emmintrin.h>
static uint64_t do_xgetbv(unsigned int index) {
unsigned int eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((uint64_t)edx << 32) | eax;
}
#endif // _M_SSE
#if !PPSSPP_ARCH(MIPS)
void do_cpuidex(u32 regs[4], u32 cpuid_leaf, u32 ecxval) {
#if defined(__i386__) && defined(__PIC__)
asm (
"xchgl %%ebx, %1;\n\t"
"cpuid;\n\t"
"xchgl %%ebx, %1;\n\t"
:"=a" (regs[0]), "=r" (regs[1]), "=c" (regs[2]), "=d" (regs[3])
:"a" (cpuid_leaf), "c" (ecxval));
#else
asm (
"cpuid;\n\t"
:"=a" (regs[0]), "=b" (regs[1]), "=c" (regs[2]), "=d" (regs[3])
:"a" (cpuid_leaf), "c" (ecxval));
#endif
}
void do_cpuid(u32 regs[4], u32 cpuid_leaf)
{
do_cpuidex(regs, cpuid_leaf, 0);
}
#endif // !PPSSPP_ARCH(MIPS)
#endif // !win32
#ifndef _XCR_XFEATURE_ENABLED_MASK
#define _XCR_XFEATURE_ENABLED_MASK 0
#endif
CPUInfo cpu_info;
CPUInfo::CPUInfo() {
Detect();
}
#if PPSSPP_PLATFORM(LINUX)
static std::vector<int> ParseCPUList(const std::string &filename) {
std::string data;
std::vector<int> results;
if (File::ReadFileToString(true, Path(filename), data)) {
std::vector<std::string> ranges;
SplitString(data, ',', ranges);
for (auto range : ranges) {
int low = 0, high = 0;
int parts = sscanf(range.c_str(), "%d-%d", &low, &high);
if (parts == 1) {
high = low;
}
for (int i = low; i <= high; ++i) {
results.push_back(i);
}
}
}
return results;
}
#endif
// Detects the various cpu features
void CPUInfo::Detect() {
memset(this, 0, sizeof(*this));
#if PPSSPP_ARCH(X86)
Mode64bit = false;
#elif PPSSPP_ARCH(AMD64)
Mode64bit = true;
OS64bit = true;
#endif
num_cores = 1;
#if PPSSPP_PLATFORM(UWP)
OS64bit = Mode64bit; // TODO: Not always accurate!
#elif defined(_WIN32) && PPSSPP_ARCH(X86)
BOOL f64 = false;
IsWow64Process(GetCurrentProcess(), &f64);
OS64bit = (f64 == TRUE) ? true : false;
#endif
// Set obvious defaults, for extra safety
if (Mode64bit) {
bSSE = true;
bSSE2 = true;
bLongMode = true;
}
// Assume CPU supports the CPUID instruction. Those that don't can barely
// boot modern OS:es anyway.
u32 cpu_id[4];
memset(cpu_string, 0, sizeof(cpu_string));
// Detect CPU's CPUID capabilities, and grab cpu string
do_cpuid(cpu_id, 0x00000000);
u32 max_std_fn = cpu_id[0]; // EAX
*((int *)cpu_string) = cpu_id[1];
*((int *)(cpu_string + 4)) = cpu_id[3];
*((int *)(cpu_string + 8)) = cpu_id[2];
do_cpuid(cpu_id, 0x80000000);
u32 max_ex_fn = cpu_id[0];
if (!strcmp(cpu_string, "GenuineIntel"))
vendor = VENDOR_INTEL;
else if (!strcmp(cpu_string, "AuthenticAMD"))
vendor = VENDOR_AMD;
else
vendor = VENDOR_OTHER;
// Set reasonable default brand string even if brand string not available.
strcpy(brand_string, cpu_string);
// Detect family and other misc stuff.
bool ht = false;
HTT = ht;
logical_cpu_count = 1;
if (max_std_fn >= 1) {
do_cpuid(cpu_id, 0x00000001);
int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff);
int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0);
// Detect people unfortunate enough to be running PPSSPP on an Atom
if (family == 6 && (model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 ||
model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D))
bAtom = true;
logical_cpu_count = (cpu_id[1] >> 16) & 0xFF;
ht = (cpu_id[3] >> 28) & 1;
if ((cpu_id[3] >> 25) & 1) bSSE = true;
if ((cpu_id[3] >> 26) & 1) bSSE2 = true;
if ((cpu_id[2]) & 1) bSSE3 = true;
if ((cpu_id[2] >> 9) & 1) bSSSE3 = true;
if ((cpu_id[2] >> 19) & 1) bSSE4_1 = true;
if ((cpu_id[2] >> 20) & 1) bSSE4_2 = true;
if ((cpu_id[2] >> 28) & 1) {
bAVX = true;
if ((cpu_id[2] >> 12) & 1)
bFMA3 = true;
}
if ((cpu_id[2] >> 25) & 1) bAES = true;
if ((cpu_id[3] >> 24) & 1)
{
// We can use FXSAVE.
bFXSR = true;
}
// AVX support requires 3 separate checks:
// - Is the AVX bit set in CPUID? (>>28)
// - Is the XSAVE bit set in CPUID? ( >>26)
// - Is the OSXSAVE bit set in CPUID? ( >>27)
// - XGETBV result has the XCR bit set.
if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1) && ((cpu_id[2] >> 26) & 1)) {
if ((do_xgetbv(_XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) {
bAVX = true;
if ((cpu_id[2] >> 12) & 1)
bFMA3 = true;
}
}
// TSX support require check:
// -- Is the RTM bit set in CPUID? (>>11)
// -- No need to check HLE bit because legacy processors ignore HLE hints
// -- See https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family
if (max_std_fn >= 7)
{
do_cpuid(cpu_id, 0x00000007);
// careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed
if ((cpu_id[1] >> 5) & 1)
bAVX2 = bAVX;
if ((cpu_id[1] >> 3) & 1)
bBMI1 = true;
if ((cpu_id[1] >> 8) & 1)
bBMI2 = true;
if ((cpu_id[1] >> 29) & 1)
bSHA = true;
if ((cpu_id[1] >> 11) & 1)
bRTM = true;
}
bBMI2_fast = bBMI2 && (vendor != VENDOR_AMD || family >= 0x19);
}
if (max_ex_fn >= 0x80000004) {
// Extract brand string
do_cpuid(cpu_id, 0x80000002);
memcpy(brand_string, cpu_id, sizeof(cpu_id));
do_cpuid(cpu_id, 0x80000003);
memcpy(brand_string + 16, cpu_id, sizeof(cpu_id));
do_cpuid(cpu_id, 0x80000004);
memcpy(brand_string + 32, cpu_id, sizeof(cpu_id));
}
if (max_ex_fn >= 0x80000001) {
// Check for more features.
do_cpuid(cpu_id, 0x80000001);
if (cpu_id[2] & 1) bLAHFSAHF64 = true;
if ((cpu_id[2] >> 6) & 1) bSSE4A = true;
if ((cpu_id[2] >> 16) & 1) bFMA4 = true;
if ((cpu_id[2] >> 11) & 1) bXOP = true;
// CmpLegacy (bit 2) is deprecated.
if ((cpu_id[3] >> 29) & 1) bLongMode = true;
}
num_cores = (logical_cpu_count == 0) ? 1 : logical_cpu_count;
if (max_ex_fn >= 0x80000008) {
// Get number of cores. This is a bit complicated. Following AMD manual here.
do_cpuid(cpu_id, 0x80000008);
int apic_id_core_id_size = (cpu_id[2] >> 12) & 0xF;
if (apic_id_core_id_size == 0) {
if (ht) {
// 0x0B is the preferred method on Core i series processors.
// Inspired by https://github.com/D-Programming-Language/druntime/blob/23b0d1f41e27638bda2813af55823b502195a58d/src/core/cpuid.d#L562.
bool hasLeafB = false;
if (vendor == VENDOR_INTEL && max_std_fn >= 0x0B) {
do_cpuidex(cpu_id, 0x0B, 0);
if (cpu_id[1] != 0) {
logical_cpu_count = cpu_id[1] & 0xFFFF;
do_cpuidex(cpu_id, 0x0B, 1);
int totalThreads = cpu_id[1] & 0xFFFF;
num_cores = totalThreads / logical_cpu_count;
hasLeafB = true;
}
}
// Old new mechanism for modern Intel CPUs.
if (!hasLeafB && vendor == VENDOR_INTEL) {
do_cpuid(cpu_id, 0x00000004);
int cores_x_package = ((cpu_id[0] >> 26) & 0x3F) + 1;
HTT = (cores_x_package < logical_cpu_count);
cores_x_package = ((logical_cpu_count % cores_x_package) == 0) ? cores_x_package : 1;
num_cores = (cores_x_package > 1) ? cores_x_package : num_cores;
logical_cpu_count /= cores_x_package;
}
}
} else {
// Use AMD's new method.
num_cores = (cpu_id[2] & 0xFF) + 1;
}
}
// The above only gets valid info for the active processor.
// Let's rely on OS APIs for accurate information, if available, below.
#if PPSSPP_PLATFORM(WINDOWS)
#if !PPSSPP_PLATFORM(UWP)
typedef BOOL (WINAPI *getLogicalProcessorInformationEx_f)(LOGICAL_PROCESSOR_RELATIONSHIP RelationshipType, PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX Buffer, PDWORD ReturnedLength);
getLogicalProcessorInformationEx_f getLogicalProcessorInformationEx = nullptr;
HMODULE kernel32 = GetModuleHandle(L"kernel32.dll");
if (kernel32)
getLogicalProcessorInformationEx = (getLogicalProcessorInformationEx_f)GetProcAddress(kernel32, "GetLogicalProcessorInformationEx");
#else
void *getLogicalProcessorInformationEx = nullptr;
#endif
if (getLogicalProcessorInformationEx) {
#if !PPSSPP_PLATFORM(UWP)
DWORD len = 0;
getLogicalProcessorInformationEx(RelationAll, nullptr, &len);
auto processors = new uint8_t[len];
if (getLogicalProcessorInformationEx(RelationAll, (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)processors, &len)) {
num_cores = 0;
logical_cpu_count = 0;
auto p = processors;
while (p < processors + len) {
const auto &processor = *(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)p;
if (processor.Relationship == RelationProcessorCore) {
num_cores++;
for (int j = 0; j < processor.Processor.GroupCount; ++j) {
const auto &mask = processor.Processor.GroupMask[j].Mask;
for (int i = 0; i < sizeof(mask) * 8; ++i) {
logical_cpu_count += (mask >> i) & 1;
}
}
}
p += processor.Size;
}
}
delete [] processors;
#endif
} else {
DWORD len = 0;
const DWORD sz = sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);
GetLogicalProcessorInformation(nullptr, &len);
std::vector<SYSTEM_LOGICAL_PROCESSOR_INFORMATION> processors;
processors.resize((len + sz - 1) / sz);
if (GetLogicalProcessorInformation(&processors[0], &len)) {
num_cores = 0;
logical_cpu_count = 0;
for (auto processor : processors) {
if (processor.Relationship == RelationProcessorCore) {
num_cores++;
for (int i = 0; i < sizeof(processor.ProcessorMask) * 8; ++i) {
logical_cpu_count += (processor.ProcessorMask >> i) & 1;
}
}
}
}
}
// This seems to be the count per core. Hopefully all cores are the same, but we counted each above.
logical_cpu_count /= std::max(num_cores, 1);
#elif PPSSPP_PLATFORM(LINUX)
if (File::Exists(Path("/sys/devices/system/cpu/present"))) {
// This may not count unplugged cores, but at least it's a best guess.
// Also, this assumes the CPU cores are heterogeneous (e.g. all cores could be active simultaneously.)
num_cores = 0;
logical_cpu_count = 0;
std::set<int> counted_cores;
auto present = ParseCPUList("/sys/devices/system/cpu/present");
for (int id : present) {
logical_cpu_count++;
if (counted_cores.count(id) == 0) {
num_cores++;
counted_cores.insert(id);
// Also count any thread siblings as counted.
auto threads = ParseCPUList(StringFromFormat("/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list", id));
for (int mark_id : threads) {
counted_cores.insert(mark_id);
}
}
}
}
// This seems to be the count per core. Hopefully all cores are the same, but we counted each above.
logical_cpu_count /= std::max(num_cores, 1);
#elif PPSSPP_PLATFORM(MAC)
int num = 0;
size_t sz = sizeof(num);
if (sysctlbyname("hw.physicalcpu_max", &num, &sz, nullptr, 0) == 0) {
num_cores = num;
sz = sizeof(num);
if (sysctlbyname("hw.logicalcpu_max", &num, &sz, nullptr, 0) == 0) {
logical_cpu_count = num / std::max(num_cores, 1);
}
}
#endif
if (logical_cpu_count <= 0)
logical_cpu_count = 1;
}
// Turn the cpu info into a string we can show
std::string CPUInfo::Summarize()
{
std::string sum;
if (num_cores == 1)
sum = StringFromFormat("%s, %d core", cpu_string, num_cores);
else
{
sum = StringFromFormat("%s, %d cores", cpu_string, num_cores);
if (HTT) sum += StringFromFormat(" (%i logical threads per physical core)", logical_cpu_count);
}
if (bSSE) sum += ", SSE";
if (bSSE2) sum += ", SSE2";
if (bSSE3) sum += ", SSE3";
if (bSSSE3) sum += ", SSSE3";
if (bSSE4_1) sum += ", SSE4.1";
if (bSSE4_2) sum += ", SSE4.2";
if (bSSE4A) sum += ", SSE4A";
if (HTT) sum += ", HTT";
if (bAVX) sum += ", AVX";
if (bAVX2) sum += ", AVX2";
if (bFMA3) sum += ", FMA3";
if (bFMA4) sum += ", FMA4";
if (bAES) sum += ", AES";
if (bSHA) sum += ", SHA";
if (bXOP) sum += ", XOP";
if (bRTM) sum += ", TSX";
if (bLongMode) sum += ", 64-bit support";
return sum;
}
#endif // PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)