ppsspp/Core/MIPS/ARM/ArmRegCacheFPU.cpp
2022-04-13 11:44:55 +02:00

984 lines
28 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cstring>
#include "Common/CPUDetect.h"
#include "Common/Log.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/ARM/ArmRegCacheFPU.h"
#include "Core/MIPS/ARM/ArmJit.h"
#include "Core/MIPS/MIPSTables.h"
using namespace ArmGen;
using namespace ArmJitConstants;
ArmRegCacheFPU::ArmRegCacheFPU(MIPSState *mipsState, MIPSComp::JitState *js, MIPSComp::JitOptions *jo) : mips_(mipsState), js_(js), jo_(jo), vr(mr + 32) {}
void ArmRegCacheFPU::Start(MIPSAnalyst::AnalysisResults &stats) {
if (!initialReady) {
SetupInitialRegs();
initialReady = true;
}
memcpy(ar, arInitial, sizeof(ar));
memcpy(mr, mrInitial, sizeof(mr));
pendingFlush = false;
}
void ArmRegCacheFPU::SetupInitialRegs() {
for (int i = 0; i < NUM_ARMFPUREG; i++) {
arInitial[i].mipsReg = -1;
arInitial[i].isDirty = false;
}
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
mrInitial[i].loc = ML_MEM;
mrInitial[i].reg = INVALID_REG;
mrInitial[i].spillLock = false;
mrInitial[i].tempLock = false;
}
for (int i = 0; i < NUM_ARMQUADS; i++) {
qr[i].isDirty = false;
qr[i].mipsVec = -1;
qr[i].sz = V_Invalid;
qr[i].spillLock = false;
qr[i].isTemp = false;
memset(qr[i].vregs, 0xff, 4);
}
}
const ARMReg *ArmRegCacheFPU::GetMIPSAllocationOrder(int &count) {
// VFP mapping
// VFPU registers and regular FP registers are mapped interchangably on top of the standard
// 16 FPU registers.
// NEON mapping
// We map FPU and VFPU registers entirely separately. FPU is mapped to 12 of the bottom 16 S registers.
// VFPU is mapped to the upper 48 regs, 32 of which can only be reached through NEON
// (or D16-D31 as doubles, but not relevant).
// Might consider shifting the split in the future, giving more regs to NEON allowing it to map more quads.
// We should attempt to map scalars to low Q registers and wider things to high registers,
// as the NEON instructions are all 2-vector or 4-vector, they don't do scalar, we want to be
// able to use regular VFP instructions too.
static const ARMReg allocationOrderNEON[] = {
// Reserve four temp registers. Useful when building quads until we really figure out
// how to do that best.
S4, S5, S6, S7, // Q1
S8, S9, S10, S11, // Q2
S12, S13, S14, S15, // Q3
S16, S17, S18, S19, // Q4
S20, S21, S22, S23, // Q5
S24, S25, S26, S27, // Q6
S28, S29, S30, S31, // Q7
// Q8-Q15 free for NEON tricks
};
static const ARMReg allocationOrderNEONVFPU[] = {
// Reserve four temp registers. Useful when building quads until we really figure out
// how to do that best.
S4, S5, S6, S7, // Q1
S8, S9, S10, S11, // Q2
S12, S13, S14, S15, // Q3
// Q4-Q15 free for VFPU
};
// NOTE: It's important that S2/S3 are not allocated with bNEON, even if !useNEONVFPU.
// They are used by a few instructions, like vh2f.
if (jo_->useNEONVFPU) {
count = sizeof(allocationOrderNEONVFPU) / sizeof(const ARMReg);
return allocationOrderNEONVFPU;
} else {
count = sizeof(allocationOrderNEON) / sizeof(const ARMReg);
return allocationOrderNEON;
}
}
bool ArmRegCacheFPU::IsMapped(MIPSReg r) {
return mr[r].loc == ML_ARMREG;
}
ARMReg ArmRegCacheFPU::MapReg(MIPSReg mipsReg, int mapFlags) {
// INFO_LOG(JIT, "FPR MapReg: %i flags=%i", mipsReg, mapFlags);
if (jo_->useNEONVFPU && mipsReg >= 32) {
ERROR_LOG(JIT, "Cannot map VFPU registers to ARM VFP registers in NEON mode. PC=%08x", js_->compilerPC);
return S0;
}
pendingFlush = true;
// Let's see if it's already mapped. If so we just need to update the dirty flag.
// We don't need to check for ML_NOINIT because we assume that anyone who maps
// with that flag immediately writes a "known" value to the register.
if (mr[mipsReg].loc == ML_ARMREG) {
if (ar[mr[mipsReg].reg].mipsReg != mipsReg) {
ERROR_LOG(JIT, "Reg mapping out of sync! MR %i", mipsReg);
}
if (mapFlags & MAP_DIRTY) {
ar[mr[mipsReg].reg].isDirty = true;
}
//INFO_LOG(JIT, "Already mapped %i to %i", mipsReg, mr[mipsReg].reg);
return (ARMReg)(mr[mipsReg].reg + S0);
}
// Okay, not mapped, so we need to allocate an ARM register.
int allocCount;
const ARMReg *allocOrder = GetMIPSAllocationOrder(allocCount);
allocate:
for (int i = 0; i < allocCount; i++) {
int reg = allocOrder[i] - S0;
if (ar[reg].mipsReg == -1) {
// That means it's free. Grab it, and load the value into it (if requested).
ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false;
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
if (mr[mipsReg].loc == ML_MEM && mipsReg < TEMP0) {
emit_->VLDR((ARMReg)(reg + S0), CTXREG, GetMipsRegOffset(mipsReg));
}
}
ar[reg].mipsReg = mipsReg;
mr[mipsReg].loc = ML_ARMREG;
mr[mipsReg].reg = reg;
//INFO_LOG(JIT, "Mapped %i to %i", mipsReg, mr[mipsReg].reg);
return (ARMReg)(reg + S0);
}
}
// Still nothing. Let's spill a reg and goto 10.
// TODO: Use age or something to choose which register to spill?
// TODO: Spill dirty regs first? or opposite?
int bestToSpill = -1;
for (int i = 0; i < allocCount; i++) {
int reg = allocOrder[i] - S0;
if (ar[reg].mipsReg != -1 && (mr[ar[reg].mipsReg].spillLock || mr[ar[reg].mipsReg].tempLock))
continue;
bestToSpill = reg;
break;
}
if (bestToSpill != -1) {
FlushArmReg((ARMReg)(S0 + bestToSpill));
goto allocate;
}
// Uh oh, we have all them spilllocked....
ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", js_->compilerPC);
return INVALID_REG;
}
void ArmRegCacheFPU::MapInIn(MIPSReg rd, MIPSReg rs) {
SpillLock(rd, rs);
MapReg(rd);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
}
void ArmRegCacheFPU::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) {
SpillLock(rd, rs);
bool load = !avoidLoad || rd == rs;
MapReg(rd, load ? MAP_DIRTY : MAP_NOINIT);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
}
void ArmRegCacheFPU::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) {
SpillLock(rd, rs, rt);
bool load = !avoidLoad || (rd == rs || rd == rt);
MapReg(rd, load ? MAP_DIRTY : MAP_NOINIT);
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd);
ReleaseSpillLock(rs);
ReleaseSpillLock(rt);
}
void ArmRegCacheFPU::SpillLockV(const u8 *v, VectorSize sz) {
for (int i = 0; i < GetNumVectorElements(sz); i++) {
vr[v[i]].spillLock = true;
}
}
void ArmRegCacheFPU::SpillLockV(int vec, VectorSize sz) {
u8 v[4];
GetVectorRegs(v, sz, vec);
SpillLockV(v, sz);
}
void ArmRegCacheFPU::MapRegV(int vreg, int flags) {
MapReg(vreg + 32, flags);
}
void ArmRegCacheFPU::LoadToRegV(ARMReg armReg, int vreg) {
if (vr[vreg].loc == ML_ARMREG) {
emit_->VMOV(armReg, (ARMReg)(S0 + vr[vreg].reg));
} else {
MapRegV(vreg);
emit_->VMOV(armReg, V(vreg));
}
}
void ArmRegCacheFPU::MapRegsAndSpillLockV(int vec, VectorSize sz, int flags) {
u8 v[4];
GetVectorRegs(v, sz, vec);
SpillLockV(v, sz);
for (int i = 0; i < GetNumVectorElements(sz); i++) {
MapRegV(v[i], flags);
}
}
void ArmRegCacheFPU::MapRegsAndSpillLockV(const u8 *v, VectorSize sz, int flags) {
SpillLockV(v, sz);
for (int i = 0; i < GetNumVectorElements(sz); i++) {
MapRegV(v[i], flags);
}
}
void ArmRegCacheFPU::MapInInV(int vs, int vt) {
SpillLockV(vs);
SpillLockV(vt);
MapRegV(vs);
MapRegV(vt);
ReleaseSpillLockV(vs);
ReleaseSpillLockV(vt);
}
void ArmRegCacheFPU::MapDirtyInV(int vd, int vs, bool avoidLoad) {
bool load = !avoidLoad || (vd == vs);
SpillLockV(vd);
SpillLockV(vs);
MapRegV(vd, load ? MAP_DIRTY : MAP_NOINIT);
MapRegV(vs);
ReleaseSpillLockV(vd);
ReleaseSpillLockV(vs);
}
void ArmRegCacheFPU::MapDirtyInInV(int vd, int vs, int vt, bool avoidLoad) {
bool load = !avoidLoad || (vd == vs || vd == vt);
SpillLockV(vd);
SpillLockV(vs);
SpillLockV(vt);
MapRegV(vd, load ? MAP_DIRTY : MAP_NOINIT);
MapRegV(vs);
MapRegV(vt);
ReleaseSpillLockV(vd);
ReleaseSpillLockV(vs);
ReleaseSpillLockV(vt);
}
void ArmRegCacheFPU::FlushArmReg(ARMReg r) {
if (r >= S0 && r <= S31) {
int reg = r - S0;
if (ar[reg].mipsReg == -1) {
// Nothing to do, reg not mapped.
return;
}
if (ar[reg].mipsReg != -1) {
if (ar[reg].isDirty && mr[ar[reg].mipsReg].loc == ML_ARMREG)
{
//INFO_LOG(JIT, "Flushing ARM reg %i", reg);
emit_->VSTR(r, CTXREG, GetMipsRegOffset(ar[reg].mipsReg));
}
// IMMs won't be in an ARM reg.
mr[ar[reg].mipsReg].loc = ML_MEM;
mr[ar[reg].mipsReg].reg = INVALID_REG;
} else {
ERROR_LOG(JIT, "Dirty but no mipsreg?");
}
ar[reg].isDirty = false;
ar[reg].mipsReg = -1;
} else if (r >= D0 && r <= D31) {
// TODO: Convert to S regs and flush them individually.
} else if (r >= Q0 && r <= Q15) {
QFlush(r);
}
}
void ArmRegCacheFPU::FlushV(MIPSReg r) {
FlushR(r + 32);
}
/*
void ArmRegCacheFPU::FlushQWithV(MIPSReg r) {
// Look for it in all the quads. If it's in any, flush that quad clean.
int flushCount = 0;
for (int i = 0; i < MAX_ARMQUADS; i++) {
if (qr[i].sz == V_Invalid)
continue;
int n = qr[i].sz;
bool flushThis = false;
for (int j = 0; j < n; j++) {
if (qr[i].vregs[j] == r) {
flushThis = true;
}
}
if (flushThis) {
QFlush(i);
flushCount++;
}
}
if (flushCount > 1) {
WARN_LOG(JIT, "ERROR: More than one quad was flushed to flush reg %i", r);
}
}
*/
void ArmRegCacheFPU::FlushR(MIPSReg r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
break;
case ML_ARMREG:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG(JIT, "FlushR: MipsReg had bad ArmReg");
}
if (mr[r].reg >= Q0 && mr[r].reg <= Q15) {
// This should happen rarely, but occasionally we need to flush a single stray
// mipsreg that's been part of a quad.
int quad = mr[r].reg - Q0;
if (qr[quad].isDirty) {
WARN_LOG(JIT, "FlushR found quad register %i - PC=%08x", quad, js_->compilerPC);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffset(r), R1);
emit_->VST1_lane(F_32, (ARMReg)mr[r].reg, R0, mr[r].lane, true);
}
} else {
if (ar[mr[r].reg].isDirty) {
//INFO_LOG(JIT, "Flushing dirty reg %i", mr[r].reg);
emit_->VSTR((ARMReg)(mr[r].reg + S0), CTXREG, GetMipsRegOffset(r));
ar[mr[r].reg].isDirty = false;
}
ar[mr[r].reg].mipsReg = -1;
}
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
//BAD
break;
}
mr[r].loc = ML_MEM;
mr[r].reg = (int)INVALID_REG;
}
// Scalar only. Need a similar one for sequential Q vectors.
int ArmRegCacheFPU::FlushGetSequential(int a) {
int c = 1;
int lastMipsOffset = GetMipsRegOffset(ar[a].mipsReg);
a++;
while (a < 32) {
if (!ar[a].isDirty || ar[a].mipsReg == -1)
break;
int mipsOffset = GetMipsRegOffset(ar[a].mipsReg);
if (mipsOffset != lastMipsOffset + 4) {
break;
}
lastMipsOffset = mipsOffset;
a++;
c++;
}
return c;
}
void ArmRegCacheFPU::FlushAll() {
if (!pendingFlush) {
// Nothing allocated. FPU regs are not nearly as common as GPR.
return;
}
// Discard temps!
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; i++) {
DiscardR(i);
}
// Flush quads!
// These could also use sequential detection.
for (int i = 4; i < NUM_ARMQUADS; i++) {
QFlush(i);
}
// Loop through the ARM registers, then use GetMipsRegOffset to determine if MIPS registers are
// sequential. This is necessary because we store VFPU registers in a staggered order to get
// columns sequential (most VFPU math in nearly all games is in columns, not rows).
int numArmRegs;
// We rely on the allocation order being sequential.
const ARMReg baseReg = GetMIPSAllocationOrder(numArmRegs)[0];
for (int i = 0; i < numArmRegs; i++) {
int a = (baseReg - S0) + i;
int m = ar[a].mipsReg;
if (ar[a].isDirty) {
if (m == -1) {
INFO_LOG(JIT, "ARM reg %i is dirty but has no mipsreg", a);
continue;
}
int c = FlushGetSequential(a);
if (c == 1) {
// INFO_LOG(JIT, "Got single register: %i (%i)", a, m);
emit_->VSTR((ARMReg)(a + S0), CTXREG, GetMipsRegOffset(m));
} else if (c == 2) {
// Probably not worth using VSTMIA for two.
int offset = GetMipsRegOffset(m);
emit_->VSTR((ARMReg)(a + S0), CTXREG, offset);
emit_->VSTR((ARMReg)(a + 1 + S0), CTXREG, offset + 4);
} else {
// INFO_LOG(JIT, "Got sequence: %i at %i (%i)", c, a, m);
emit_->ADDI2R(SCRATCHREG1, CTXREG, GetMipsRegOffset(m), SCRATCHREG2);
// INFO_LOG(JIT, "VSTMIA R0, %i, %i", a, c);
emit_->VSTMIA(SCRATCHREG1, false, (ARMReg)(S0 + a), c);
}
// Skip past, and mark as non-dirty.
for (int j = 0; j < c; j++) {
int b = a + j;
mr[ar[b].mipsReg].loc = ML_MEM;
mr[ar[b].mipsReg].reg = (int)INVALID_REG;
ar[a + j].mipsReg = -1;
ar[a + j].isDirty = false;
}
i += c - 1;
} else {
if (m != -1) {
mr[m].loc = ML_MEM;
mr[m].reg = (int)INVALID_REG;
}
ar[a].mipsReg = -1;
// already not dirty
}
}
// Sanity check
for (int i = 0; i < NUM_ARMFPUREG; i++) {
if (ar[i].mipsReg != -1) {
ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
}
}
pendingFlush = false;
}
void ArmRegCacheFPU::DiscardR(MIPSReg r) {
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
// IMM is not allowed for FP (yet).
ERROR_LOG(JIT, "Imm in FP register?");
break;
case ML_ARMREG:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG(JIT, "DiscardR: MipsReg had bad ArmReg");
} else {
// Note that we DO NOT write it back here. That's the whole point of Discard.
ar[mr[r].reg].isDirty = false;
ar[mr[r].reg].mipsReg = -1;
}
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
//BAD
break;
}
mr[r].loc = ML_MEM;
mr[r].reg = (int)INVALID_REG;
mr[r].tempLock = false;
mr[r].spillLock = false;
}
bool ArmRegCacheFPU::IsTempX(ARMReg r) const {
return ar[r - S0].mipsReg >= TEMP0;
}
int ArmRegCacheFPU::GetTempR() {
if (jo_->useNEONVFPU) {
ERROR_LOG(JIT, "VFP temps not allowed in NEON mode");
return 0;
}
pendingFlush = true;
for (int r = TEMP0; r < TEMP0 + NUM_TEMPS; ++r) {
if (mr[r].loc == ML_MEM && !mr[r].tempLock) {
mr[r].tempLock = true;
return r;
}
}
ERROR_LOG(CPU, "Out of temp regs! Might need to DiscardR() some");
_assert_msg_(false, "Regcache ran out of temp regs, might need to DiscardR() some.");
return -1;
}
int ArmRegCacheFPU::GetMipsRegOffset(MIPSReg r) {
// These are offsets within the MIPSState structure. First there are the GPRS, then FPRS, then the "VFPURs", then the VFPU ctrls.
if (r < 0 || r > 32 + 128 + NUM_TEMPS) {
ERROR_LOG(JIT, "bad mips register %i, out of range", r);
return 0; // or what?
}
if (r < 32 || r >= 32 + 128) {
return (32 + r) << 2;
} else {
// r is between 32 and 128 + 32
return (32 + 32 + voffset[r - 32]) << 2;
}
}
void ArmRegCacheFPU::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) {
mr[r1].spillLock = true;
if (r2 != -1) mr[r2].spillLock = true;
if (r3 != -1) mr[r3].spillLock = true;
if (r4 != -1) mr[r4].spillLock = true;
}
// This is actually pretty slow with all the 160 regs...
void ArmRegCacheFPU::ReleaseSpillLocksAndDiscardTemps() {
for (int i = 0; i < NUM_MIPSFPUREG; i++) {
mr[i].spillLock = false;
}
for (int i = TEMP0; i < TEMP0 + NUM_TEMPS; ++i) {
DiscardR(i);
}
for (int i = 0; i < NUM_ARMQUADS; i++) {
qr[i].spillLock = false;
if (qr[i].isTemp) {
qr[i].isTemp = false;
qr[i].sz = V_Invalid;
}
}
}
ARMReg ArmRegCacheFPU::R(int mipsReg) {
if (mr[mipsReg].loc == ML_ARMREG) {
return (ARMReg)(mr[mipsReg].reg + S0);
} else {
if (mipsReg < 32) {
ERROR_LOG(JIT, "FReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
} else if (mipsReg < 32 + 128) {
ERROR_LOG(JIT, "VReg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
} else {
ERROR_LOG(JIT, "Tempreg %i not in ARM reg. compilerPC = %08x : %s", mipsReg - 128 - 32, js_->compilerPC, MIPSDisasmAt(js_->compilerPC));
}
return INVALID_REG; // BAAAD
}
}
inline ARMReg QuadAsD(int quad) {
return (ARMReg)(D0 + quad * 2);
}
inline ARMReg QuadAsQ(int quad) {
return (ARMReg)(Q0 + quad);
}
bool MappableQ(int quad) {
return quad >= 4;
}
void ArmRegCacheFPU::QLoad4x4(MIPSGPReg regPtr, int vquads[4]) {
ERROR_LOG(JIT, "QLoad4x4 not implemented");
// TODO
}
void ArmRegCacheFPU::QFlush(int quad) {
if (!MappableQ(quad)) {
ERROR_LOG(JIT, "Cannot flush non-mappable quad %i", quad);
return;
}
if (qr[quad].isDirty && !qr[quad].isTemp) {
INFO_LOG(JIT, "Flushing Q%i (%s)", quad, GetVectorNotation(qr[quad].mipsVec, qr[quad].sz));
ARMReg q = QuadAsQ(quad);
// Unlike reads, when writing to the register file we need to be careful to write the correct
// number of floats.
switch (qr[quad].sz) {
case V_Single:
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1_lane(F_32, q, R0, 0, true);
// WARN_LOG(JIT, "S: Falling back to individual flush: pc=%08x", js_->compilerPC);
break;
case V_Pair:
if (Consecutive(qr[quad].vregs[0], qr[quad].vregs[1])) {
// Can combine, it's a column!
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1(F_32, q, R0, 1, ALIGN_NONE); // TODO: Allow ALIGN_64 when applicable
} else {
// WARN_LOG(JIT, "P: Falling back to individual flush: pc=%08x", js_->compilerPC);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1_lane(F_32, q, R0, 0, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[1]), R1);
emit_->VST1_lane(F_32, q, R0, 1, true);
}
break;
case V_Triple:
if (Consecutive(qr[quad].vregs[0], qr[quad].vregs[1], qr[quad].vregs[2])) {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1(F_32, QuadAsD(quad), R0, 1, ALIGN_NONE, REG_UPDATE); // TODO: Allow ALIGN_64 when applicable
emit_->VST1_lane(F_32, q, R0, 2, true);
} else {
// WARN_LOG(JIT, "T: Falling back to individual flush: pc=%08x", js_->compilerPC);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1_lane(F_32, q, R0, 0, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[1]), R1);
emit_->VST1_lane(F_32, q, R0, 1, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[2]), R1);
emit_->VST1_lane(F_32, q, R0, 2, true);
}
break;
case V_Quad:
if (Consecutive(qr[quad].vregs[0], qr[quad].vregs[1], qr[quad].vregs[2], qr[quad].vregs[3])) {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1(F_32, QuadAsD(quad), R0, 2, ALIGN_NONE); // TODO: Allow ALIGN_64 when applicable
} else {
// WARN_LOG(JIT, "Q: Falling back to individual flush: pc=%08x", js_->compilerPC);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[0]), R1);
emit_->VST1_lane(F_32, q, R0, 0, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[1]), R1);
emit_->VST1_lane(F_32, q, R0, 1, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[2]), R1);
emit_->VST1_lane(F_32, q, R0, 2, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(qr[quad].vregs[3]), R1);
emit_->VST1_lane(F_32, q, R0, 3, true);
}
break;
default:
ERROR_LOG(JIT, "Unknown quad size %i", qr[quad].sz);
break;
}
qr[quad].isDirty = false;
int n = GetNumVectorElements(qr[quad].sz);
for (int i = 0; i < n; i++) {
int vr = qr[quad].vregs[i];
if (vr < 0 || vr > 128) {
ERROR_LOG(JIT, "Bad vr %i", vr);
}
FPURegMIPS &m = mr[32 + vr];
m.loc = ML_MEM;
m.lane = -1;
m.reg = -1;
}
} else {
if (qr[quad].isTemp) {
WARN_LOG(JIT, "Not flushing quad %i; dirty = %i, isTemp = %i", quad, qr[quad].isDirty, qr[quad].isTemp);
}
}
qr[quad].isTemp = false;
qr[quad].mipsVec = -1;
qr[quad].sz = V_Invalid;
memset(qr[quad].vregs, 0xFF, 4);
}
int ArmRegCacheFPU::QGetFreeQuad(int start, int count, const char *reason) {
// Search for a free quad. A quad is free if the first register in it is free.
for (int i = 0; i < count; i++) {
int q = (i + start) & 15;
if (!MappableQ(q))
continue;
// Don't steal temp quads!
if (qr[q].mipsVec == (int)INVALID_REG && !qr[q].isTemp) {
// INFO_LOG(JIT, "Free quad: %i", q);
// Oh yeah! Free quad!
return q;
}
}
// Okay, find the "best scoring" reg to replace. Scoring algorithm TBD but may include some
// sort of age.
int bestQuad = -1;
int bestScore = -1;
for (int i = 0; i < count; i++) {
int q = (i + start) & 15;
if (!MappableQ(q))
continue;
if (qr[q].spillLock)
continue;
if (qr[q].isTemp)
continue;
int score = 0;
if (!qr[q].isDirty) {
score += 5;
}
if (score > bestScore) {
bestQuad = q;
bestScore = score;
}
}
if (bestQuad == -1) {
ERROR_LOG(JIT, "Failed finding a free quad. Things will now go haywire!");
return -1;
} else {
INFO_LOG(JIT, "No register found in %i and the next %i, kicked out #%i (%s)", start, count, bestQuad, reason ? reason : "no reason");
QFlush(bestQuad);
return bestQuad;
}
}
ARMReg ArmRegCacheFPU::QAllocTemp(VectorSize sz) {
int q = QGetFreeQuad(8, 16, "allocating temporary"); // Prefer high quads as temps
if (q < 0) {
ERROR_LOG(JIT, "Failed to allocate temp quad");
q = 0;
}
qr[q].spillLock = true;
qr[q].isTemp = true;
qr[q].sz = sz;
qr[q].isDirty = false; // doesn't matter
INFO_LOG(JIT, "Allocated temp quad %i", q);
if (sz == V_Single || sz == V_Pair) {
return D_0(ARMReg(Q0 + q));
} else {
return ARMReg(Q0 + q);
}
}
bool ArmRegCacheFPU::Consecutive(int v1, int v2) const {
return (voffset[v1] + 1) == voffset[v2];
}
bool ArmRegCacheFPU::Consecutive(int v1, int v2, int v3) const {
return Consecutive(v1, v2) && Consecutive(v2, v3);
}
bool ArmRegCacheFPU::Consecutive(int v1, int v2, int v3, int v4) const {
return Consecutive(v1, v2) && Consecutive(v2, v3) && Consecutive(v3, v4);
}
void ArmRegCacheFPU::QMapMatrix(ARMReg *regs, int matrix, MatrixSize mz, int flags) {
u8 vregs[4];
if (flags & MAP_MTX_TRANSPOSED) {
GetMatrixRows(matrix, mz, vregs);
} else {
GetMatrixColumns(matrix, mz, vregs);
}
// TODO: Zap existing mappings, reserve 4 consecutive regs, then do a fast load.
int n = GetMatrixSide(mz);
VectorSize vsz = GetVectorSize(mz);
for (int i = 0; i < n; i++) {
regs[i] = QMapReg(vregs[i], vsz, flags);
}
}
ARMReg ArmRegCacheFPU::QMapReg(int vreg, VectorSize sz, int flags) {
qTime_++;
int n = GetNumVectorElements(sz);
u8 vregs[4];
GetVectorRegs(vregs, sz, vreg);
// Range of registers to consider
int start = 0;
int count = 16;
if (flags & MAP_PREFER_HIGH) {
start = 8;
} else if (flags & MAP_PREFER_LOW) {
start = 4;
} else if (flags & MAP_FORCE_LOW) {
start = 4;
count = 4;
} else if (flags & MAP_FORCE_HIGH) {
start = 8;
count = 8;
}
// Let's check if they are all mapped in a quad somewhere.
// At the same time, check for the quad already being mapped.
// Later we can check for possible transposes as well.
// First just loop over all registers. If it's here and not in range, or overlapped, kick.
std::vector<int> quadsToFlush;
for (int i = 0; i < 16; i++) {
int q = (i + start) & 15;
if (!MappableQ(q))
continue;
// Skip unmapped quads.
if (qr[q].sz == V_Invalid)
continue;
// Check if completely there already. If so, set spill-lock, transfer dirty flag and exit.
if (vreg == qr[q].mipsVec && sz == qr[q].sz) {
if (i < count) {
INFO_LOG(JIT, "Quad already mapped: %i : %i (size %i)", q, vreg, sz);
qr[q].isDirty = qr[q].isDirty || (flags & MAP_DIRTY);
qr[q].spillLock = true;
// Sanity check vregs
for (int i = 0; i < n; i++) {
if (vregs[i] != qr[q].vregs[i]) {
ERROR_LOG(JIT, "Sanity check failed: %i vs %i", vregs[i], qr[q].vregs[i]);
}
}
return (ARMReg)(Q0 + q);
} else {
INFO_LOG(JIT, "Quad already mapped at %i which is out of requested range [%i-%i) (count = %i), needs moving. For now we flush.", q, start, start+count, count);
quadsToFlush.push_back(q);
continue;
}
}
// Check for any overlap. Overlap == flush.
int origN = GetNumVectorElements(qr[q].sz);
for (int a = 0; a < n; a++) {
for (int b = 0; b < origN; b++) {
if (vregs[a] == qr[q].vregs[b]) {
quadsToFlush.push_back(q);
goto doubleBreak;
}
}
}
doubleBreak:
;
}
// We didn't find the extra register, but we got a list of regs to flush. Flush 'em.
// Here we can check for opportunities to do a "transpose-flush" of row vectors, etc.
if (!quadsToFlush.empty()) {
INFO_LOG(JIT, "New mapping %s collided with %d quads, flushing them.", GetVectorNotation(vreg, sz), (int)quadsToFlush.size());
}
for (size_t i = 0; i < quadsToFlush.size(); i++) {
QFlush(quadsToFlush[i]);
}
// Find where we want to map it, obeying the constraints we gave.
int quad = QGetFreeQuad(start, count, "mapping");
if (quad < 0)
return INVALID_REG;
// If parts of our register are elsewhere, and we are dirty, we need to flush them
// before we reload in a new location.
// This may be problematic if inputs overlap irregularly with output, say:
// vdot S700, R000, C000
// It might still work by accident...
if (flags & MAP_DIRTY) {
for (int i = 0; i < n; i++) {
FlushV(vregs[i]);
}
}
qr[quad].sz = sz;
qr[quad].mipsVec = vreg;
if ((flags & MAP_NOINIT) != MAP_NOINIT) {
// Okay, now we will try to load the whole thing in one go. This is possible
// if it's a row and easy if it's a single.
// Rows are rare, columns are common - but thanks to our register reordering,
// columns are actually in-order in memory.
switch (sz) {
case V_Single:
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 0, true);
break;
case V_Pair:
if (Consecutive(vregs[0], vregs[1])) {
// Can combine, it's a column!
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1(F_32, QuadAsD(quad), R0, 1, ALIGN_NONE); // TODO: Allow ALIGN_64 when applicable
} else {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 0, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[1]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 1, true);
}
break;
case V_Triple:
if (Consecutive(vregs[0], vregs[1], vregs[2])) {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1(F_32, QuadAsD(quad), R0, 1, ALIGN_NONE, REG_UPDATE); // TODO: Allow ALIGN_64 when applicable
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 2, true);
} else {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 0, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[1]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 1, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[2]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 2, true);
}
break;
case V_Quad:
if (Consecutive(vregs[0], vregs[1], vregs[2], vregs[3])) {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1(F_32, QuadAsD(quad), R0, 2, ALIGN_NONE); // TODO: Allow ALIGN_64 when applicable
} else {
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[0]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 0, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[1]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 1, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[2]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 2, true);
emit_->ADDI2R(R0, CTXREG, GetMipsRegOffsetV(vregs[3]), R1);
emit_->VLD1_lane(F_32, QuadAsQ(quad), R0, 3, true);
}
break;
default:
;
}
}
// OK, let's fill out the arrays to confirm that we have grabbed these registers.
for (int i = 0; i < n; i++) {
int mipsReg = 32 + vregs[i];
mr[mipsReg].loc = ML_ARMREG;
mr[mipsReg].reg = QuadAsQ(quad);
mr[mipsReg].lane = i;
qr[quad].vregs[i] = vregs[i];
}
qr[quad].isDirty = (flags & MAP_DIRTY) != 0;
qr[quad].spillLock = true;
INFO_LOG(JIT, "Mapped Q%i to vfpu %i (%s), sz=%i, dirty=%i", quad, vreg, GetVectorNotation(vreg, sz), (int)sz, qr[quad].isDirty);
if (sz == V_Single || sz == V_Pair) {
return D_0(QuadAsQ(quad));
} else {
return QuadAsQ(quad);
}
}