ppsspp/Core/HLE/__sceAudio.cpp
Unknown W. Brackets 2450724be2 Make Memory::Memcpy() execute memchecks directly.
This makes it easier to handle breakpoints in HLE.
2015-04-05 18:09:20 -07:00

388 lines
12 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/mutex.h"
#include "Globals.h" // only for clamp_s16
#include "Common/CommonTypes.h"
#include "Common/ChunkFile.h"
#include "Common/FixedSizeQueue.h"
#include "Common/Atomics.h"
#ifdef _M_SSE
#include <emmintrin.h>
#endif
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "Core/Host.h"
#include "Core/MemMapHelpers.h"
#include "Core/Reporting.h"
#include "Core/HLE/__sceAudio.h"
#include "Core/HLE/sceAudio.h"
#include "Core/HLE/sceKernel.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/HW/StereoResampler.h"
#include "Core/Util/AudioFormat.h"
StereoResampler resampler;
AudioDebugStats g_AudioDebugStats;
// Should be used to lock anything related to the outAudioQueue.
// atomic locks are used on the lock. TODO: make this lock-free
atomic_flag atomicLock_;
recursive_mutex mutex_;
enum latency {
LOW_LATENCY = 0,
MEDIUM_LATENCY = 1,
HIGH_LATENCY = 2,
};
int eventAudioUpdate = -1;
int eventHostAudioUpdate = -1;
int mixFrequency = 44100;
const int hwSampleRate = 44100;
int hwBlockSize = 64;
int hostAttemptBlockSize = 512;
static int audioIntervalCycles;
static int audioHostIntervalCycles;
static s32 *mixBuffer;
// High and low watermarks, basically. For perfect emulation, the correct values are 0 and 1, respectively.
// TODO: Tweak. Hm, there aren't actually even used currently...
static int chanQueueMaxSizeFactor;
static int chanQueueMinSizeFactor;
static void hleAudioUpdate(u64 userdata, int cyclesLate) {
// Schedule the next cycle first. __AudioUpdate() may consume cycles.
CoreTiming::ScheduleEvent(audioIntervalCycles - cyclesLate, eventAudioUpdate, 0);
__AudioUpdate();
}
static void hleHostAudioUpdate(u64 userdata, int cyclesLate) {
CoreTiming::ScheduleEvent(audioHostIntervalCycles - cyclesLate, eventHostAudioUpdate, 0);
// Not all hosts need this call to poke their audio system once in a while, but those that don't
// can just ignore it.
host->UpdateSound();
}
static void __AudioCPUMHzChange() {
audioIntervalCycles = (int)(usToCycles(1000000ULL) * hwBlockSize / hwSampleRate);
audioHostIntervalCycles = (int)(usToCycles(1000000ULL) * hostAttemptBlockSize / hwSampleRate);
}
void __AudioInit() {
memset(&g_AudioDebugStats, 0, sizeof(g_AudioDebugStats));
mixFrequency = 44100;
switch (g_Config.iAudioLatency) {
case LOW_LATENCY:
chanQueueMaxSizeFactor = 1;
chanQueueMinSizeFactor = 1;
hwBlockSize = 16;
hostAttemptBlockSize = 256;
break;
case MEDIUM_LATENCY:
chanQueueMaxSizeFactor = 2;
chanQueueMinSizeFactor = 1;
hwBlockSize = 64;
hostAttemptBlockSize = 512;
break;
case HIGH_LATENCY:
chanQueueMaxSizeFactor = 4;
chanQueueMinSizeFactor = 2;
hwBlockSize = 64;
hostAttemptBlockSize = 512;
break;
}
__AudioCPUMHzChange();
eventAudioUpdate = CoreTiming::RegisterEvent("AudioUpdate", &hleAudioUpdate);
eventHostAudioUpdate = CoreTiming::RegisterEvent("AudioUpdateHost", &hleHostAudioUpdate);
CoreTiming::ScheduleEvent(audioIntervalCycles, eventAudioUpdate, 0);
CoreTiming::ScheduleEvent(audioHostIntervalCycles, eventHostAudioUpdate, 0);
for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++)
chans[i].clear();
mixBuffer = new s32[hwBlockSize * 2];
memset(mixBuffer, 0, hwBlockSize * 2 * sizeof(s32));
resampler.Clear();
CoreTiming::RegisterMHzChangeCallback(&__AudioCPUMHzChange);
}
void __AudioDoState(PointerWrap &p) {
auto s = p.Section("sceAudio", 1);
if (!s)
return;
p.Do(eventAudioUpdate);
CoreTiming::RestoreRegisterEvent(eventAudioUpdate, "AudioUpdate", &hleAudioUpdate);
p.Do(eventHostAudioUpdate);
CoreTiming::RestoreRegisterEvent(eventHostAudioUpdate, "AudioUpdateHost", &hleHostAudioUpdate);
p.Do(mixFrequency);
if (s >= 2) {
resampler.DoState(p);
} else {
// Only to preserve the previous file format. Might cause a slight audio glitch on upgrades?
FixedSizeQueue<s16, 512 * 16> outAudioQueue;
outAudioQueue.DoState(p);
resampler.Clear();
}
int chanCount = ARRAY_SIZE(chans);
p.Do(chanCount);
if (chanCount != ARRAY_SIZE(chans))
{
ERROR_LOG(SCEAUDIO, "Savestate failure: different number of audio channels.");
return;
}
for (int i = 0; i < chanCount; ++i)
chans[i].DoState(p);
__AudioCPUMHzChange();
}
void __AudioShutdown() {
delete [] mixBuffer;
mixBuffer = 0;
for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++)
chans[i].clear();
}
u32 __AudioEnqueue(AudioChannel &chan, int chanNum, bool blocking) {
u32 ret = chan.sampleCount;
if (chan.sampleAddress == 0) {
// For some reason, multichannel audio lies and returns the sample count here.
if (chanNum == PSP_AUDIO_CHANNEL_SRC || chanNum == PSP_AUDIO_CHANNEL_OUTPUT2) {
ret = 0;
}
}
// If there's anything on the queue at all, it should be busy, but we try to be a bit lax.
//if (chan.sampleQueue.size() > chan.sampleCount * 2 * chanQueueMaxSizeFactor || chan.sampleAddress == 0) {
if (chan.sampleQueue.size() > 0) {
if (blocking) {
// TODO: Regular multichannel audio seems to block for 64 samples less? Or enqueue the first 64 sync?
int blockSamples = (int)chan.sampleQueue.size() / 2 / chanQueueMinSizeFactor;
if (__KernelIsDispatchEnabled()) {
AudioChannelWaitInfo waitInfo = {__KernelGetCurThread(), blockSamples};
chan.waitingThreads.push_back(waitInfo);
// Also remember the value to return in the waitValue.
__KernelWaitCurThread(WAITTYPE_AUDIOCHANNEL, (SceUID)chanNum + 1, ret, 0, false, "blocking audio");
} else {
// TODO: Maybe we shouldn't take this audio after all?
ret = SCE_KERNEL_ERROR_CAN_NOT_WAIT;
}
// Fall through to the sample queueing, don't want to lose the samples even though
// we're getting full. The PSP would enqueue after blocking.
} else {
// Non-blocking doesn't even enqueue, but it's not commonly used.
return SCE_ERROR_AUDIO_CHANNEL_BUSY;
}
}
if (chan.sampleAddress == 0) {
return ret;
}
int leftVol = chan.leftVolume;
int rightVol = chan.rightVolume;
if (leftVol == (1 << 15) && rightVol == (1 << 15) && chan.format == PSP_AUDIO_FORMAT_STEREO && IS_LITTLE_ENDIAN) {
// TODO: Add mono->stereo conversion to this path.
// Good news: the volume doesn't affect the values at all.
// We can just do a direct memory copy.
const u32 totalSamples = chan.sampleCount * (chan.format == PSP_AUDIO_FORMAT_STEREO ? 2 : 1);
s16 *buf1 = 0, *buf2 = 0;
size_t sz1, sz2;
chan.sampleQueue.pushPointers(totalSamples, &buf1, &sz1, &buf2, &sz2);
if (Memory::IsValidAddress(chan.sampleAddress + (totalSamples - 1) * sizeof(s16_le))) {
Memory::Memcpy(buf1, chan.sampleAddress, (u32)sz1 * sizeof(s16));
if (buf2)
Memory::Memcpy(buf2, chan.sampleAddress + (u32)sz1 * sizeof(s16), (u32)sz2 * sizeof(s16));
}
} else {
// Remember that maximum volume allowed is 0xFFFFF so left shift is no issue.
// This way we can optimally shift by 16.
leftVol <<=1;
rightVol <<=1;
if (chan.format == PSP_AUDIO_FORMAT_STEREO) {
const u32 totalSamples = chan.sampleCount * 2;
s16_le *sampleData = (s16_le *) Memory::GetPointer(chan.sampleAddress);
// Walking a pointer for speed. But let's make sure we wouldn't trip on an invalid ptr.
if (Memory::IsValidAddress(chan.sampleAddress + (totalSamples - 1) * sizeof(s16_le))) {
s16 *buf1 = 0, *buf2 = 0;
size_t sz1, sz2;
chan.sampleQueue.pushPointers(totalSamples, &buf1, &sz1, &buf2, &sz2);
AdjustVolumeBlock(buf1, sampleData, sz1, leftVol, rightVol);
if (buf2) {
AdjustVolumeBlock(buf2, sampleData + sz1, sz2, leftVol, rightVol);
}
}
} else if (chan.format == PSP_AUDIO_FORMAT_MONO) {
// Rare, so unoptimized. Expands to stereo.
for (u32 i = 0; i < chan.sampleCount; i++) {
s16 sample = (s16)Memory::Read_U16(chan.sampleAddress + 2 * i);
chan.sampleQueue.push(ApplySampleVolume(sample, leftVol));
chan.sampleQueue.push(ApplySampleVolume(sample, rightVol));
}
}
}
return ret;
}
inline void __AudioWakeThreads(AudioChannel &chan, int result, int step) {
u32 error;
bool wokeThreads = false;
for (size_t w = 0; w < chan.waitingThreads.size(); ++w) {
AudioChannelWaitInfo &waitInfo = chan.waitingThreads[w];
waitInfo.numSamples -= step;
// If it's done (there will still be samples on queue) and actually still waiting, wake it up.
u32 waitID = __KernelGetWaitID(waitInfo.threadID, WAITTYPE_AUDIOCHANNEL, error);
if (waitInfo.numSamples <= 0 && waitID != 0) {
// DEBUG_LOG(SCEAUDIO, "Woke thread %i for some buffer filling", waitingThread);
u32 ret = result == 0 ? __KernelGetWaitValue(waitInfo.threadID, error) : SCE_ERROR_AUDIO_CHANNEL_NOT_RESERVED;
__KernelResumeThreadFromWait(waitInfo.threadID, ret);
wokeThreads = true;
chan.waitingThreads.erase(chan.waitingThreads.begin() + w--);
}
// This means the thread stopped waiting, so stop trying to wake it.
else if (waitID == 0)
chan.waitingThreads.erase(chan.waitingThreads.begin() + w--);
}
if (wokeThreads) {
__KernelReSchedule("audio drain");
}
}
void __AudioWakeThreads(AudioChannel &chan, int result) {
__AudioWakeThreads(chan, result, 0x7FFFFFFF);
}
void __AudioSetOutputFrequency(int freq) {
if (freq != 44100) {
WARN_LOG_REPORT(SCEAUDIO, "Switching audio frequency to %i", freq);
} else {
DEBUG_LOG(SCEAUDIO, "Switching audio frequency to %i", freq);
}
mixFrequency = freq;
}
// Mix samples from the various audio channels into a single sample queue.
// This single sample queue is where __AudioMix should read from. If the sample queue is full, we should
// just sleep the main emulator thread a little.
void __AudioUpdate() {
// Audio throttle doesn't really work on the PSP since the mixing intervals are so closely tied
// to the CPU. Much better to throttle the frame rate on frame display and just throw away audio
// if the buffer somehow gets full.
bool firstChannel = true;
for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++) {
if (!chans[i].reserved)
continue;
__AudioWakeThreads(chans[i], 0, hwBlockSize);
if (!chans[i].sampleQueue.size()) {
continue;
}
if (hwBlockSize * 2 > (int)chans[i].sampleQueue.size()) {
ERROR_LOG(SCEAUDIO, "Channel %i buffer underrun at %i of %i", i, (int)chans[i].sampleQueue.size() / 2, hwBlockSize);
}
const s16 *buf1 = 0, *buf2 = 0;
size_t sz1, sz2;
chans[i].sampleQueue.popPointers(hwBlockSize * 2, &buf1, &sz1, &buf2, &sz2);
if (firstChannel) {
for (size_t s = 0; s < sz1; s++)
mixBuffer[s] = buf1[s];
if (buf2) {
for (size_t s = 0; s < sz2; s++)
mixBuffer[s + sz1] = buf2[s];
}
firstChannel = false;
} else {
// Surprisingly hard to SIMD efficiently on SSE2 due to lack of 16-to-32-bit sign extension. NEON should be straight-forward though, and SSE4.1 can do it nicely.
// Actually, the cmple/pack trick should work fine...
for (size_t s = 0; s < sz1; s++)
mixBuffer[s] += buf1[s];
if (buf2) {
for (size_t s = 0; s < sz2; s++)
mixBuffer[s + sz1] += buf2[s];
}
}
}
if (firstChannel) {
// Nothing was written above, let's memset.
memset(mixBuffer, 0, hwBlockSize * 2 * sizeof(s32));
}
if (g_Config.bEnableSound) {
resampler.PushSamples(mixBuffer, hwBlockSize);
}
}
// numFrames is number of stereo frames.
// This is called from *outside* the emulator thread.
int __AudioMix(short *outstereo, int numFrames, int sampleRate) {
resampler.Mix(outstereo, numFrames, false, sampleRate);
return numFrames;
}
const AudioDebugStats *__AudioGetDebugStats() {
resampler.GetAudioDebugStats(&g_AudioDebugStats);
return &g_AudioDebugStats;
}
void __PushExternalAudio(const s32 *audio, int numSamples) {
if (audio) {
resampler.PushSamples(audio, numSamples);
} else {
resampler.Clear();
}
}