ppsspp/Core/Core.cpp
2024-11-12 11:25:35 +01:00

593 lines
16 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <set>
#include <chrono>
#include <cstdint>
#include <mutex>
#include <condition_variable>
#include "Common/System/NativeApp.h"
#include "Common/System/System.h"
#include "Common/System/Display.h"
#include "Common/TimeUtil.h"
#include "Common/Thread/ThreadUtil.h"
#include "Common/Profiler/Profiler.h"
#include "Common/GraphicsContext.h"
#include "Common/Log.h"
#include "Core/Core.h"
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPSDebugInterface.h"
#include "Core/SaveState.h"
#include "Core/System.h"
#include "Core/MemFault.h"
#include "Core/Debugger/Breakpoints.h"
#include "Core/HW/Display.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/HLE/sceNetAdhoc.h"
#include "GPU/Debugger/Stepping.h"
#include "Core/MIPS/MIPSTracer.h"
#ifdef _WIN32
#include "Common/CommonWindows.h"
#include "Windows/InputDevice.h"
#endif
// Step command to execute next
static std::mutex g_stepMutex;
struct StepCommand {
CPUStepType type;
int param;
const char *reason;
u32 relatedAddr;
bool empty() const {
return type == CPUStepType::None;
}
void clear() {
type = CPUStepType::None;
param = 0;
reason = "";
relatedAddr = 0;
}
};
static StepCommand g_stepCommand;
// This is so that external threads can wait for the CPU to become inactive.
static std::condition_variable m_InactiveCond;
static std::mutex m_hInactiveMutex;
static int steppingCounter = 0;
static std::set<CoreLifecycleFunc> lifecycleFuncs;
static std::set<CoreStopRequestFunc> stopFuncs;
static bool windowHidden = false;
static bool powerSaving = false;
static MIPSExceptionInfo g_exceptionInfo;
void Core_SetGraphicsContext(GraphicsContext *ctx) {
PSP_CoreParameter().graphicsContext = ctx;
}
void Core_NotifyWindowHidden(bool hidden) {
windowHidden = hidden;
// TODO: Wait until we can react?
}
bool Core_IsWindowHidden() {
return windowHidden;
}
void Core_ListenLifecycle(CoreLifecycleFunc func) {
lifecycleFuncs.insert(func);
}
void Core_NotifyLifecycle(CoreLifecycle stage) {
if (stage == CoreLifecycle::STARTING) {
Core_ResetException();
}
for (auto func : lifecycleFuncs) {
func(stage);
}
}
void Core_ListenStopRequest(CoreStopRequestFunc func) {
stopFuncs.insert(func);
}
void Core_Stop() {
Core_ResetException();
Core_UpdateState(CORE_POWERDOWN);
for (auto func : stopFuncs) {
func();
}
}
bool Core_ShouldRunBehind() {
// Enforce run-behind if ad-hoc connected
return g_Config.bRunBehindPauseMenu || Core_MustRunBehind();
}
bool Core_MustRunBehind() {
return __NetAdhocConnected();
}
bool Core_IsStepping() {
return coreState == CORE_STEPPING || coreState == CORE_POWERDOWN;
}
bool Core_IsActive() {
return coreState == CORE_RUNNING || coreState == CORE_NEXTFRAME || coreStatePending;
}
bool Core_IsInactive() {
return coreState != CORE_RUNNING && coreState != CORE_NEXTFRAME && !coreStatePending;
}
void Core_WaitInactive() {
while (Core_IsActive() && !GPUStepping::IsStepping()) {
std::unique_lock<std::mutex> guard(m_hInactiveMutex);
m_InactiveCond.wait(guard);
}
}
void Core_WaitInactive(int milliseconds) {
if (Core_IsActive() && !GPUStepping::IsStepping()) {
std::unique_lock<std::mutex> guard(m_hInactiveMutex);
m_InactiveCond.wait_for(guard, std::chrono::milliseconds(milliseconds));
}
}
void Core_SetPowerSaving(bool mode) {
powerSaving = mode;
}
bool Core_GetPowerSaving() {
return powerSaving;
}
static bool IsWindowSmall(int pixelWidth, int pixelHeight) {
// Can't take this from config as it will not be set if windows is maximized.
int w = (int)(pixelWidth * g_display.dpi_scale_x);
int h = (int)(pixelHeight * g_display.dpi_scale_y);
return g_Config.IsPortrait() ? (h < 480 + 80) : (w < 480 + 80);
}
// TODO: Feels like this belongs elsewhere.
bool UpdateScreenScale(int width, int height) {
bool smallWindow;
float g_logical_dpi = System_GetPropertyFloat(SYSPROP_DISPLAY_LOGICAL_DPI);
g_display.dpi = System_GetPropertyFloat(SYSPROP_DISPLAY_DPI);
if (g_display.dpi < 0.0f) {
g_display.dpi = 96.0f;
}
if (g_logical_dpi < 0.0f) {
g_logical_dpi = 96.0f;
}
g_display.dpi_scale_x = g_logical_dpi / g_display.dpi;
g_display.dpi_scale_y = g_logical_dpi / g_display.dpi;
g_display.dpi_scale_real_x = g_display.dpi_scale_x;
g_display.dpi_scale_real_y = g_display.dpi_scale_y;
smallWindow = IsWindowSmall(width, height);
if (smallWindow) {
g_display.dpi /= 2.0f;
g_display.dpi_scale_x *= 2.0f;
g_display.dpi_scale_y *= 2.0f;
}
g_display.pixel_in_dps_x = 1.0f / g_display.dpi_scale_x;
g_display.pixel_in_dps_y = 1.0f / g_display.dpi_scale_y;
int new_dp_xres = (int)(width * g_display.dpi_scale_x);
int new_dp_yres = (int)(height * g_display.dpi_scale_y);
bool dp_changed = new_dp_xres != g_display.dp_xres || new_dp_yres != g_display.dp_yres;
bool px_changed = g_display.pixel_xres != width || g_display.pixel_yres != height;
if (dp_changed || px_changed) {
g_display.dp_xres = new_dp_xres;
g_display.dp_yres = new_dp_yres;
g_display.pixel_xres = width;
g_display.pixel_yres = height;
NativeResized();
return true;
}
return false;
}
// Used by Windows, SDL, Qt.
void UpdateRunLoop(GraphicsContext *ctx) {
NativeFrame(ctx);
if (windowHidden && g_Config.bPauseWhenMinimized) {
sleep_ms(16);
return;
}
}
// Note: not used on Android.
void Core_RunLoop(GraphicsContext *ctx) {
if (windowHidden && g_Config.bPauseWhenMinimized) {
sleep_ms(16);
return;
}
NativeFrame(ctx);
}
bool Core_RequestSingleStep(CPUStepType type, int stepSize) {
std::lock_guard<std::mutex> guard(g_stepMutex);
if (g_stepCommand.type != CPUStepType::None) {
ERROR_LOG(Log::CPU, "Can't submit two steps in one frame");
return false;
}
g_stepCommand = { type, stepSize };
return true;
}
// See comment in header.
// Handles more advanced step types (used by the debugger).
// stepSize is to support stepping through compound instructions like fused lui+ladd (li).
// Yes, our disassembler does support those.
// Doesn't return the new address, as that's just mips->getPC().
// Internal use.
static void Core_PerformStep(MIPSDebugInterface *cpu, CPUStepType stepType, int stepSize) {
switch (stepType) {
case CPUStepType::Into:
{
u32 currentPc = cpu->GetPC();
u32 newAddress = currentPc + stepSize;
// If the current PC is on a breakpoint, the user still wants the step to happen.
CBreakPoints::SetSkipFirst(currentPc);
for (int i = 0; i < (int)(newAddress - currentPc) / 4; i++) {
currentMIPS->SingleStep();
}
return;
}
case CPUStepType::Over:
{
u32 currentPc = cpu->GetPC();
u32 breakpointAddress = currentPc + stepSize;
CBreakPoints::SetSkipFirst(currentPc);
MIPSAnalyst::MipsOpcodeInfo info = MIPSAnalyst::GetOpcodeInfo(cpu, cpu->GetPC());
if (info.isBranch) {
if (info.isConditional == false) {
if (info.isLinkedBranch) { // jal, jalr
// it's a function call with a delay slot - skip that too
breakpointAddress += cpu->getInstructionSize(0);
} else { // j, ...
// in case of absolute branches, set the breakpoint at the branch target
breakpointAddress = info.branchTarget;
}
} else { // beq, ...
if (info.conditionMet) {
breakpointAddress = info.branchTarget;
} else {
breakpointAddress = currentPc + 2 * cpu->getInstructionSize(0);
}
}
}
CBreakPoints::AddBreakPoint(breakpointAddress, true);
Core_Resume();
break;
}
case CPUStepType::Out:
{
u32 entry = cpu->GetPC();
u32 stackTop = 0;
auto threads = GetThreadsInfo();
for (size_t i = 0; i < threads.size(); i++) {
if (threads[i].isCurrent) {
entry = threads[i].entrypoint;
stackTop = threads[i].initialStack;
break;
}
}
auto frames = MIPSStackWalk::Walk(cpu->GetPC(), cpu->GetRegValue(0, 31), cpu->GetRegValue(0, 29), entry, stackTop);
if (frames.size() < 2) {
// Failure. PC not moving.
return;
}
u32 breakpointAddress = frames[1].pc;
// If the current PC is on a breakpoint, the user doesn't want to do nothing.
CBreakPoints::SetSkipFirst(currentMIPS->pc);
CBreakPoints::AddBreakPoint(breakpointAddress, true);
Core_Resume();
break;
}
default:
// Not yet implemented
break;
}
}
void Core_ProcessStepping(MIPSDebugInterface *cpu) {
coreStatePending = false;
// Check if there's any pending save state actions.
SaveState::Process();
if (coreState != CORE_STEPPING) {
return;
}
// Or any GPU actions.
GPUStepping::SingleStep();
// We're not inside jit now, so it's safe to clear the breakpoints.
static int lastSteppingCounter = -1;
if (lastSteppingCounter != steppingCounter) {
CBreakPoints::ClearTemporaryBreakPoints();
System_Notify(SystemNotification::DISASSEMBLY_AFTERSTEP);
System_Notify(SystemNotification::MEM_VIEW);
lastSteppingCounter = steppingCounter;
}
// Need to check inside the lock to avoid races.
std::lock_guard<std::mutex> guard(g_stepMutex);
if (coreState != CORE_STEPPING || g_stepCommand.empty()) {
return;
}
Core_ResetException();
if (!g_stepCommand.empty()) {
Core_PerformStep(cpu, g_stepCommand.type, g_stepCommand.param);
if (g_stepCommand.type == CPUStepType::Into) {
// We're already done. The other step types will resume the CPU.
System_Notify(SystemNotification::DISASSEMBLY_AFTERSTEP);
}
g_stepCommand.clear();
steppingCounter++;
}
// Update disasm dialog.
System_Notify(SystemNotification::MEM_VIEW);
}
// Many platforms, like Android, do not call this function but handle things on their own.
// Instead they simply call NativeFrame directly.
bool Core_Run(GraphicsContext *ctx) {
System_Notify(SystemNotification::DISASSEMBLY);
while (true) {
if (GetUIState() != UISTATE_INGAME) {
if (GetUIState() == UISTATE_EXIT) {
// Not sure why we do a final frame here?
NativeFrame(ctx);
return false;
}
Core_RunLoop(ctx);
continue;
}
switch (coreState) {
case CORE_RUNNING:
case CORE_STEPPING:
// enter a fast runloop
Core_RunLoop(ctx);
if (coreState == CORE_POWERDOWN) {
return true;
}
break;
case CORE_POWERUP:
case CORE_POWERDOWN:
case CORE_BOOT_ERROR:
case CORE_RUNTIME_ERROR:
// Exit loop!!
return true;
case CORE_NEXTFRAME:
return true;
}
}
}
// Free-threaded (hm, possibly except tracing).
void Core_Break(const char *reason, u32 relatedAddress) {
// Stop the tracer
{
std::lock_guard<std::mutex> lock(g_stepMutex);
if (!g_stepCommand.empty()) {
// Already broke.
ERROR_LOG(Log::CPU, "Core_Break called with a break already in progress: %s", g_stepCommand.reason);
return;
}
mipsTracer.stop_tracing();
g_stepCommand.reason = reason;
g_stepCommand.relatedAddr = relatedAddress;
steppingCounter++;
_assert_msg_(reason != nullptr, "No reason specified for break");
Core_UpdateState(CORE_STEPPING);
}
System_Notify(SystemNotification::DEBUG_MODE_CHANGE);
}
// Free-threaded (or at least should be)
void Core_Resume() {
// Clear the exception if we resume.
Core_ResetException();
coreState = CORE_RUNNING;
System_Notify(SystemNotification::DEBUG_MODE_CHANGE);
}
// Should be called from the EmuThread.
bool Core_NextFrame() {
if (coreState == CORE_RUNNING) {
coreState = CORE_NEXTFRAME;
return true;
} else {
return false;
}
}
int Core_GetSteppingCounter() {
return steppingCounter;
}
SteppingReason Core_GetSteppingReason() {
SteppingReason r;
std::lock_guard<std::mutex> lock(g_stepMutex);
if (!g_stepCommand.empty()) {
r.reason = g_stepCommand.reason;
r.relatedAddress = g_stepCommand.relatedAddr;
}
return r;
}
const char *ExceptionTypeAsString(MIPSExceptionType type) {
switch (type) {
case MIPSExceptionType::MEMORY: return "Invalid Memory Access";
case MIPSExceptionType::BREAK: return "Break";
case MIPSExceptionType::BAD_EXEC_ADDR: return "Bad Execution Address";
default: return "N/A";
}
}
const char *MemoryExceptionTypeAsString(MemoryExceptionType type) {
switch (type) {
case MemoryExceptionType::UNKNOWN: return "Unknown";
case MemoryExceptionType::READ_WORD: return "Read Word";
case MemoryExceptionType::WRITE_WORD: return "Write Word";
case MemoryExceptionType::READ_BLOCK: return "Read Block";
case MemoryExceptionType::WRITE_BLOCK: return "Read/Write Block";
case MemoryExceptionType::ALIGNMENT: return "Alignment";
default:
return "N/A";
}
}
const char *ExecExceptionTypeAsString(ExecExceptionType type) {
switch (type) {
case ExecExceptionType::JUMP: return "CPU Jump";
case ExecExceptionType::THREAD: return "Thread switch";
default:
return "N/A";
}
}
void Core_MemoryException(u32 address, u32 accessSize, u32 pc, MemoryExceptionType type) {
const char *desc = MemoryExceptionTypeAsString(type);
// In jit, we only flush PC when bIgnoreBadMemAccess is off.
if ((g_Config.iCpuCore == (int)CPUCore::JIT || g_Config.iCpuCore == (int)CPUCore::JIT_IR) && g_Config.bIgnoreBadMemAccess) {
WARN_LOG(Log::MemMap, "%s: Invalid access at %08x (size %08x)", desc, address, accessSize);
} else {
WARN_LOG(Log::MemMap, "%s: Invalid access at %08x (size %08x) PC %08x LR %08x", desc, address, accessSize, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
}
if (!g_Config.bIgnoreBadMemAccess) {
// Try to fetch a call stack, to start with.
std::vector<MIPSStackWalk::StackFrame> stackFrames = WalkCurrentStack(-1);
std::string stackTrace = FormatStackTrace(stackFrames);
WARN_LOG(Log::MemMap, "\n%s", stackTrace.c_str());
MIPSExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = MIPSExceptionType::MEMORY;
e.info.clear();
e.memory_type = type;
e.address = address;
e.accessSize = accessSize;
e.stackTrace = stackTrace;
e.pc = pc;
Core_Break("memory.exception", address);
}
}
void Core_MemoryExceptionInfo(u32 address, u32 accessSize, u32 pc, MemoryExceptionType type, std::string_view additionalInfo, bool forceReport) {
const char *desc = MemoryExceptionTypeAsString(type);
// In jit, we only flush PC when bIgnoreBadMemAccess is off.
if ((g_Config.iCpuCore == (int)CPUCore::JIT || g_Config.iCpuCore == (int)CPUCore::JIT_IR) && g_Config.bIgnoreBadMemAccess) {
WARN_LOG(Log::MemMap, "%s: Invalid access at %08x (size %08x). %.*s", desc, address, accessSize, (int)additionalInfo.length(), additionalInfo.data());
} else {
WARN_LOG(Log::MemMap, "%s: Invalid access at %08x (size %08x) PC %08x LR %08x %.*s", desc, address, accessSize, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA], (int)additionalInfo.length(), additionalInfo.data());
}
if (!g_Config.bIgnoreBadMemAccess || forceReport) {
// Try to fetch a call stack, to start with.
std::vector<MIPSStackWalk::StackFrame> stackFrames = WalkCurrentStack(-1);
std::string stackTrace = FormatStackTrace(stackFrames);
WARN_LOG(Log::MemMap, "\n%s", stackTrace.c_str());
MIPSExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = MIPSExceptionType::MEMORY;
e.info = additionalInfo;
e.memory_type = type;
e.address = address;
e.accessSize = accessSize;
e.stackTrace = stackTrace;
e.pc = pc;
Core_Break("memory.exception", address);
}
}
// Can't be ignored
void Core_ExecException(u32 address, u32 pc, ExecExceptionType type) {
const char *desc = ExecExceptionTypeAsString(type);
WARN_LOG(Log::MemMap, "%s: Invalid exec address %08x PC %08x LR %08x", desc, address, pc, currentMIPS->r[MIPS_REG_RA]);
MIPSExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = MIPSExceptionType::BAD_EXEC_ADDR;
e.info.clear();
e.exec_type = type;
e.address = address;
e.accessSize = 4; // size of an instruction
e.pc = pc;
// This just records the closest value that could be useful as reference.
e.ra = currentMIPS->r[MIPS_REG_RA];
Core_Break("cpu.exception", address);
}
void Core_BreakException(u32 pc) {
ERROR_LOG(Log::CPU, "BREAK!");
MIPSExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = MIPSExceptionType::BREAK;
e.info.clear();
e.pc = pc;
if (!g_Config.bIgnoreBadMemAccess) {
Core_Break("cpu.breakInstruction", currentMIPS->pc);
}
}
void Core_ResetException() {
g_exceptionInfo.type = MIPSExceptionType::NONE;
}
const MIPSExceptionInfo &Core_GetExceptionInfo() {
return g_exceptionInfo;
}