ppsspp/Core/MIPS/ARM64/Arm64RegCache.cpp

927 lines
27 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM64)
#include "base/logging.h"
#include "Core/MemMap.h"
#include "Core/MIPS/ARM64/Arm64RegCache.h"
#include "Core/MIPS/ARM64/Arm64Jit.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/Reporting.h"
#include "Common/Arm64Emitter.h"
#ifndef offsetof
#include "stddef.h"
#endif
using namespace Arm64Gen;
using namespace Arm64JitConstants;
Arm64RegCache::Arm64RegCache(MIPSState *mips, MIPSComp::JitState *js, MIPSComp::JitOptions *jo) : mips_(mips), js_(js), jo_(jo) {
}
void Arm64RegCache::Init(ARM64XEmitter *emitter) {
emit_ = emitter;
}
void Arm64RegCache::Start(MIPSAnalyst::AnalysisResults &stats) {
for (int i = 0; i < NUM_ARMREG; i++) {
ar[i].mipsReg = MIPS_REG_INVALID;
ar[i].isDirty = false;
ar[i].pointerified = false;
ar[i].tempLocked = false;
}
for (int i = 0; i < NUM_MIPSREG; i++) {
mr[i].loc = ML_MEM;
mr[i].reg = INVALID_REG;
mr[i].imm = -1;
mr[i].spillLock = false;
mr[i].isStatic = false;
}
int numStatics;
const StaticAllocation *statics = GetStaticAllocations(numStatics);
for (int i = 0; i < numStatics; i++) {
ar[statics[i].ar].mipsReg = statics[i].mr;
ar[statics[i].ar].pointerified = statics[i].pointerified && jo_->enablePointerify;
mr[statics[i].mr].loc = ML_ARMREG;
mr[statics[i].mr].reg = statics[i].ar;
mr[statics[i].mr].isStatic = true;
mr[statics[i].mr].spillLock = true;
}
}
const ARM64Reg *Arm64RegCache::GetMIPSAllocationOrder(int &count) {
// See register alloc remarks in Arm64Asm.cpp
// W19-W23 are most suitable for static allocation. Those that are chosen for static allocation
// should be omitted here and added in GetStaticAllocations.
static const ARM64Reg allocationOrder[] = {
W19, W20, W21, W22, W23, W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15,
};
static const ARM64Reg allocationOrderStaticAlloc[] = {
W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15,
};
if (jo_->useStaticAlloc) {
count = ARRAY_SIZE(allocationOrderStaticAlloc);
return allocationOrderStaticAlloc;
} else {
count = ARRAY_SIZE(allocationOrder);
return allocationOrder;
}
}
const Arm64RegCache::StaticAllocation *Arm64RegCache::GetStaticAllocations(int &count) {
static const StaticAllocation allocs[] = {
{MIPS_REG_SP, W19, true},
{MIPS_REG_V0, W20},
{MIPS_REG_V1, W22},
{MIPS_REG_A0, W21},
{MIPS_REG_RA, W23},
};
if (jo_->useStaticAlloc) {
count = ARRAY_SIZE(allocs);
return allocs;
} else {
count = 0;
return nullptr;
}
}
void Arm64RegCache::EmitLoadStaticRegisters() {
int count;
const StaticAllocation *allocs = GetStaticAllocations(count);
// TODO: Use LDP when possible.
for (int i = 0; i < count; i++) {
int offset = GetMipsRegOffset(allocs[i].mr);
emit_->LDR(INDEX_UNSIGNED, allocs[i].ar, CTXREG, offset);
if (allocs[i].pointerified && jo_->enablePointerify) {
emit_->MOVK(EncodeRegTo64(allocs[i].ar), ((uint64_t)Memory::base) >> 32, SHIFT_32);
}
}
}
void Arm64RegCache::EmitSaveStaticRegisters() {
int count;
const StaticAllocation *allocs = GetStaticAllocations(count);
// TODO: Use STP when possible.
// This only needs to run once (by Asm) so checks don't need to be fast.
for (int i = 0; i < count; i++) {
int offset = GetMipsRegOffset(allocs[i].mr);
emit_->STR(INDEX_UNSIGNED, allocs[i].ar, CTXREG, offset);
}
}
void Arm64RegCache::FlushBeforeCall() {
// These registers are not preserved by function calls.
for (int i = 0; i < 19; ++i) {
FlushArmReg(ARM64Reg(W0 + i));
}
FlushArmReg(W30);
}
bool Arm64RegCache::IsInRAM(MIPSGPReg reg) {
return mr[reg].loc == ML_MEM;
}
bool Arm64RegCache::IsMapped(MIPSGPReg mipsReg) {
return mr[mipsReg].loc == ML_ARMREG || mr[mipsReg].loc == ML_ARMREG_IMM;
}
bool Arm64RegCache::IsMappedAsPointer(MIPSGPReg mipsReg) {
if (mr[mipsReg].loc == ML_ARMREG) {
return ar[mr[mipsReg].reg].pointerified;
} else if (mr[mipsReg].loc == ML_ARMREG_IMM) {
if (ar[mr[mipsReg].reg].pointerified) {
ELOG("Really shouldn't be pointerified here");
}
} else if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) {
return true;
}
return false;
}
void Arm64RegCache::MarkDirty(ARM64Reg reg) {
ar[reg].isDirty = true;
}
void Arm64RegCache::SetRegImm(ARM64Reg reg, u64 imm) {
if (reg == INVALID_REG) {
ELOG("SetRegImm to invalid register: at %08x", js_->compilerPC);
return;
}
// On ARM64, at least Cortex A57, good old MOVT/MOVW (MOVK in 64-bit) is really fast.
emit_->MOVI2R(reg, imm);
// ar[reg].pointerified = false;
}
void Arm64RegCache::MapRegTo(ARM64Reg reg, MIPSGPReg mipsReg, int mapFlags) {
if (mr[mipsReg].isStatic) {
ELOG("Cannot MapRegTo static register %d", mipsReg);
return;
}
ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false;
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
if (mipsReg == MIPS_REG_ZERO) {
// If we get a request to load the zero register, at least we won't spend
// time on a memory access...
emit_->MOVI2R(reg, 0);
// This way, if we SetImm() it, we'll keep it.
mr[mipsReg].loc = ML_ARMREG_IMM;
mr[mipsReg].imm = 0;
} else {
switch (mr[mipsReg].loc) {
case ML_MEM:
{
int offset = GetMipsRegOffset(mipsReg);
ARM64Reg loadReg = reg;
// INFO_LOG(JIT, "MapRegTo %d mips: %d offset %d", (int)reg, mipsReg, offset);
if (mipsReg == MIPS_REG_LO) {
loadReg = EncodeRegTo64(loadReg);
}
// TODO: Scan ahead / hint when loading multiple regs?
// We could potentially LDP if mipsReg + 1 or mipsReg - 1 is needed.
emit_->LDR(INDEX_UNSIGNED, loadReg, CTXREG, offset);
mr[mipsReg].loc = ML_ARMREG;
break;
}
case ML_IMM:
SetRegImm(reg, mr[mipsReg].imm);
ar[reg].isDirty = true; // IMM is always dirty.
// If we are mapping dirty, it means we're gonna overwrite.
// So the imm value is no longer valid.
if (mapFlags & MAP_DIRTY)
mr[mipsReg].loc = ML_ARMREG;
else
mr[mipsReg].loc = ML_ARMREG_IMM;
break;
default:
_assert_msg_(JIT, mr[mipsReg].loc != ML_ARMREG_AS_PTR, "MapRegTo with a pointer?");
mr[mipsReg].loc = ML_ARMREG;
break;
}
}
} else {
mr[mipsReg].loc = ML_ARMREG;
}
ar[reg].mipsReg = mipsReg;
ar[reg].pointerified = false;
mr[mipsReg].reg = reg;
}
ARM64Reg Arm64RegCache::AllocateReg() {
int allocCount;
const ARM64Reg *allocOrder = GetMIPSAllocationOrder(allocCount);
allocate:
for (int i = 0; i < allocCount; i++) {
ARM64Reg reg = allocOrder[i];
if (ar[reg].mipsReg == MIPS_REG_INVALID && !ar[reg].tempLocked) {
return reg;
}
}
// Still nothing. Let's spill a reg and goto 10.
// TODO: Use age or something to choose which register to spill?
// TODO: Spill dirty regs first? or opposite?
bool clobbered;
ARM64Reg bestToSpill = FindBestToSpill(true, &clobbered);
if (bestToSpill == INVALID_REG) {
bestToSpill = FindBestToSpill(false, &clobbered);
}
if (bestToSpill != INVALID_REG) {
if (clobbered) {
DiscardR(ar[bestToSpill].mipsReg);
} else {
FlushArmReg(bestToSpill);
}
// Now one must be free.
goto allocate;
}
// Uh oh, we have all of them spilllocked....
ERROR_LOG_REPORT(JIT, "Out of spillable registers at PC %08x!!!", mips_->pc);
return INVALID_REG;
}
ARM64Reg Arm64RegCache::FindBestToSpill(bool unusedOnly, bool *clobbered) {
int allocCount;
const ARM64Reg *allocOrder = GetMIPSAllocationOrder(allocCount);
static const int UNUSED_LOOKAHEAD_OPS = 30;
*clobbered = false;
for (int i = 0; i < allocCount; i++) {
ARM64Reg reg = allocOrder[i];
if (ar[reg].mipsReg != MIPS_REG_INVALID && mr[ar[reg].mipsReg].spillLock)
continue;
if (ar[reg].tempLocked)
continue;
// As it's in alloc-order, we know it's not static so we don't need to check for that.
// Awesome, a clobbered reg. Let's use it.
if (MIPSAnalyst::IsRegisterClobbered(ar[reg].mipsReg, compilerPC_, UNUSED_LOOKAHEAD_OPS)) {
bool canClobber = true;
// HI is stored inside the LO reg. They both have to clobber at the same time.
if (ar[reg].mipsReg == MIPS_REG_LO) {
canClobber = MIPSAnalyst::IsRegisterClobbered(MIPS_REG_HI, compilerPC_, UNUSED_LOOKAHEAD_OPS);
}
if (canClobber) {
*clobbered = true;
return reg;
}
}
// Not awesome. A used reg. Let's try to avoid spilling.
if (unusedOnly && MIPSAnalyst::IsRegisterUsed(ar[reg].mipsReg, compilerPC_, UNUSED_LOOKAHEAD_OPS)) {
continue;
}
return reg;
}
return INVALID_REG;
}
ARM64Reg Arm64RegCache::TryMapTempImm(MIPSGPReg r) {
// If already mapped, no need for a temporary.
if (IsMapped(r)) {
return R(r);
}
if (mr[r].loc == ML_IMM) {
if (mr[r].imm == 0) {
return WZR;
}
// Try our luck - check for an exact match in another armreg.
for (int i = 0; i < NUM_MIPSREG; ++i) {
if (mr[i].loc == ML_ARMREG_IMM && mr[i].imm == mr[r].imm) {
// Awesome, let's just use this reg.
return mr[i].reg;
}
}
}
return INVALID_REG;
}
ARM64Reg Arm64RegCache::GetAndLockTempR() {
ARM64Reg reg = AllocateReg();
if (reg != INVALID_REG) {
ar[reg].tempLocked = true;
}
return reg;
}
// TODO: Somewhat smarter spilling - currently simply spills the first available, should do
// round robin or FIFO or something.
ARM64Reg Arm64RegCache::MapReg(MIPSGPReg mipsReg, int mapFlags) {
if (mipsReg == MIPS_REG_HI) {
ERROR_LOG_REPORT(JIT, "Cannot map HI in Arm64RegCache");
return INVALID_REG;
}
if (mipsReg == MIPS_REG_INVALID) {
ERROR_LOG(JIT, "Cannot map invalid register");
return INVALID_REG;
}
ARM64Reg armReg = mr[mipsReg].reg;
if (mr[mipsReg].isStatic) {
if (armReg == INVALID_REG) {
ERROR_LOG(JIT, "MapReg on statically mapped reg %d failed - armReg got lost", mipsReg);
}
if (mr[mipsReg].loc == ML_IMM) {
// Back into the register, with or without the imm value.
// If noinit, the MAP_DIRTY check below will take care of the rest.
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
SetRegImm(armReg, mr[mipsReg].imm);
mr[mipsReg].loc = ML_ARMREG_IMM;
ar[armReg].pointerified = false;
}
} else if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) {
// Was mapped as pointer, now we want it mapped as a value, presumably to
// add or subtract stuff to it.
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
emit_->SUB(EncodeRegTo64(armReg), EncodeRegTo64(armReg), MEMBASEREG);
}
mr[mipsReg].loc = ML_ARMREG;
}
// Erasing the imm on dirty (necessary since otherwise we will still think it's ML_ARMREG_IMM and return
// true for IsImm and calculate crazily wrong things). /unknown
if (mapFlags & MAP_DIRTY) {
mr[mipsReg].loc = ML_ARMREG; // As we are dirty, can't keep ARMREG_IMM, we will quickly drift out of sync
ar[armReg].pointerified = false;
ar[armReg].isDirty = true; // Not that it matters
}
return mr[mipsReg].reg;
}
// Let's see if it's already mapped. If so we just need to update the dirty flag.
// We don't need to check for ML_NOINIT because we assume that anyone who maps
// with that flag immediately writes a "known" value to the register.
if (mr[mipsReg].loc == ML_ARMREG || mr[mipsReg].loc == ML_ARMREG_IMM) {
if (ar[armReg].mipsReg != mipsReg) {
ERROR_LOG_REPORT(JIT, "Register mapping out of sync! %i", mipsReg);
}
if (mapFlags & MAP_DIRTY) {
// Mapping dirty means the old imm value is invalid.
mr[mipsReg].loc = ML_ARMREG;
ar[armReg].isDirty = true;
// If reg is written to, pointerification is lost.
ar[armReg].pointerified = false;
}
return mr[mipsReg].reg;
} else if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) {
// Was mapped as pointer, now we want it mapped as a value, presumably to
// add or subtract stuff to it.
if ((mapFlags & MAP_NOINIT) != MAP_NOINIT) {
emit_->SUB(EncodeRegTo64(armReg), EncodeRegTo64(armReg), MEMBASEREG);
}
mr[mipsReg].loc = ML_ARMREG;
if (mapFlags & MAP_DIRTY) {
ar[armReg].isDirty = true;
}
return (ARM64Reg)mr[mipsReg].reg;
}
// Okay, not mapped, so we need to allocate an ARM register.
ARM64Reg reg = AllocateReg();
if (reg != INVALID_REG) {
// Grab it, and load the value into it (if requested).
MapRegTo(reg, mipsReg, mapFlags);
}
return reg;
}
Arm64Gen::ARM64Reg Arm64RegCache::MapRegAsPointer(MIPSGPReg reg) {
// Already mapped.
if (mr[reg].loc == ML_ARMREG_AS_PTR) {
return mr[reg].reg;
}
ARM64Reg retval = INVALID_REG;
if (mr[reg].loc != ML_ARMREG && mr[reg].loc != ML_ARMREG_IMM) {
retval = MapReg(reg);
} else {
retval = mr[reg].reg;
}
if (mr[reg].loc == ML_ARMREG || mr[reg].loc == ML_ARMREG_IMM) {
// If there was an imm attached, discard it.
mr[reg].loc = ML_ARMREG;
ARM64Reg a = DecodeReg(mr[reg].reg);
if (!jo_->enablePointerify) {
// Convert to a pointer by adding the base and clearing off the top bits.
// If SP, we can probably avoid the top bit clear, let's play with that later.
#ifdef MASKED_PSP_MEMORY
emit_->ANDI2R(EncodeRegTo64(a), EncodeRegTo64(a), 0x3FFFFFFF);
#endif
emit_->ADD(EncodeRegTo64(a), EncodeRegTo64(a), MEMBASEREG);
mr[reg].loc = ML_ARMREG_AS_PTR;
} else if (!ar[a].pointerified) {
emit_->MOVK(EncodeRegTo64(a), ((uint64_t)Memory::base) >> 32, SHIFT_32);
ar[a].pointerified = true;
}
} else {
ELOG("MapRegAsPointer : MapReg failed to allocate a register?");
}
return retval;
}
void Arm64RegCache::MapIn(MIPSGPReg rs) {
MapReg(rs);
}
void Arm64RegCache::MapInIn(MIPSGPReg rd, MIPSGPReg rs) {
SpillLock(rd, rs);
MapReg(rd);
MapReg(rs);
ReleaseSpillLock(rd, rs);
}
void Arm64RegCache::MapDirtyIn(MIPSGPReg rd, MIPSGPReg rs, bool avoidLoad) {
SpillLock(rd, rs);
bool load = !avoidLoad || rd == rs;
MapReg(rd, load ? MAP_DIRTY : MAP_NOINIT);
MapReg(rs);
ReleaseSpillLock(rd, rs);
}
void Arm64RegCache::MapDirtyInIn(MIPSGPReg rd, MIPSGPReg rs, MIPSGPReg rt, bool avoidLoad) {
SpillLock(rd, rs, rt);
bool load = !avoidLoad || (rd == rs || rd == rt);
MapReg(rd, load ? MAP_DIRTY : MAP_NOINIT);
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd, rs, rt);
}
void Arm64RegCache::MapDirtyDirtyIn(MIPSGPReg rd1, MIPSGPReg rd2, MIPSGPReg rs, bool avoidLoad) {
SpillLock(rd1, rd2, rs);
bool load1 = !avoidLoad || rd1 == rs;
bool load2 = !avoidLoad || rd2 == rs;
MapReg(rd1, load1 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rd2, load2 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rs);
ReleaseSpillLock(rd1, rd2, rs);
}
void Arm64RegCache::MapDirtyDirtyInIn(MIPSGPReg rd1, MIPSGPReg rd2, MIPSGPReg rs, MIPSGPReg rt, bool avoidLoad) {
SpillLock(rd1, rd2, rs, rt);
bool load1 = !avoidLoad || (rd1 == rs || rd1 == rt);
bool load2 = !avoidLoad || (rd2 == rs || rd2 == rt);
MapReg(rd1, load1 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rd2, load2 ? MAP_DIRTY : MAP_NOINIT);
MapReg(rt);
MapReg(rs);
ReleaseSpillLock(rd1, rd2, rs, rt);
}
void Arm64RegCache::FlushArmReg(ARM64Reg r) {
if (r == INVALID_REG) {
ELOG("FlushArmReg called on invalid register %d", r);
return;
}
if (ar[r].mipsReg == MIPS_REG_INVALID) {
// Nothing to do, reg not mapped.
if (ar[r].isDirty) {
ERROR_LOG_REPORT(JIT, "Dirty but no mipsreg?");
}
return;
}
if (mr[ar[r].mipsReg].isStatic) {
ELOG("Cannot FlushArmReg a statically mapped register");
return;
}
auto &mreg = mr[ar[r].mipsReg];
if (mreg.loc == ML_ARMREG_IMM || ar[r].mipsReg == MIPS_REG_ZERO) {
// We know its immediate value, no need to STR now.
mreg.loc = ML_IMM;
mreg.reg = INVALID_REG;
} else {
if (mreg.loc == ML_IMM || ar[r].isDirty) {
if (mreg.loc == ML_ARMREG_AS_PTR) {
// Unpointerify, in case dirty.
emit_->SUB(EncodeRegTo64(r), EncodeRegTo64(r), MEMBASEREG);
mreg.loc = ML_ARMREG;
}
// Note: may be a 64-bit reg.
ARM64Reg storeReg = ARM64RegForFlush(ar[r].mipsReg);
if (storeReg != INVALID_REG)
emit_->STR(INDEX_UNSIGNED, storeReg, CTXREG, GetMipsRegOffset(ar[r].mipsReg));
}
mreg.loc = ML_MEM;
mreg.reg = INVALID_REG;
mreg.imm = 0;
}
ar[r].isDirty = false;
ar[r].mipsReg = MIPS_REG_INVALID;
ar[r].pointerified = false;
}
void Arm64RegCache::DiscardR(MIPSGPReg mipsReg) {
if (mr[mipsReg].isStatic) {
// Simply do nothing unless it's an IMM/ARMREG_IMM/ARMREG_AS_PTR, in case we just switch it over to ARMREG, losing the value.
ARM64Reg armReg = mr[mipsReg].reg;
if (mr[mipsReg].loc == ML_ARMREG_IMM || mr[mipsReg].loc == ML_IMM || mr[mipsReg].loc == ML_ARMREG_AS_PTR) {
// Ignore the imm value, restore sanity
mr[mipsReg].loc = ML_ARMREG;
ar[armReg].pointerified = false;
ar[armReg].isDirty = false;
}
return;
}
const RegMIPSLoc prevLoc = mr[mipsReg].loc;
if (prevLoc == ML_ARMREG || prevLoc == ML_ARMREG_IMM || prevLoc == ML_ARMREG_AS_PTR) {
ARM64Reg armReg = mr[mipsReg].reg;
ar[armReg].isDirty = false;
ar[armReg].mipsReg = MIPS_REG_INVALID;
ar[armReg].pointerified = false;
mr[mipsReg].reg = INVALID_REG;
if (mipsReg == MIPS_REG_ZERO) {
mr[mipsReg].loc = ML_IMM;
} else {
mr[mipsReg].loc = ML_MEM;
}
mr[mipsReg].imm = 0;
}
if (prevLoc == ML_IMM && mipsReg != MIPS_REG_ZERO) {
mr[mipsReg].loc = ML_MEM;
mr[mipsReg].imm = 0;
}
}
ARM64Reg Arm64RegCache::ARM64RegForFlush(MIPSGPReg r) {
if (mr[r].isStatic)
return INVALID_REG; // No flushing needed
switch (mr[r].loc) {
case ML_IMM:
if (r == MIPS_REG_ZERO) {
return INVALID_REG;
}
// Zero is super easy.
if (mr[r].imm == 0) {
return WZR;
}
// Could we get lucky? Check for an exact match in another armreg.
for (int i = 0; i < NUM_MIPSREG; ++i) {
if (mr[i].loc == ML_ARMREG_IMM && mr[i].imm == mr[r].imm) {
// Awesome, let's just store this reg.
return mr[i].reg;
}
}
return INVALID_REG;
case ML_ARMREG:
case ML_ARMREG_IMM:
if (mr[r].reg == INVALID_REG) {
ERROR_LOG_REPORT(JIT, "ARM64RegForFlush: MipsReg %d had bad ArmReg", r);
return INVALID_REG;
}
// No need to flush if it's zero or not dirty.
if (r == MIPS_REG_ZERO || !ar[mr[r].reg].isDirty) {
return INVALID_REG;
}
if (r == MIPS_REG_LO) {
return EncodeRegTo64(mr[r].reg);
}
return mr[r].reg;
case ML_ARMREG_AS_PTR:
return INVALID_REG;
case ML_MEM:
return INVALID_REG;
default:
ERROR_LOG_REPORT(JIT, "ARM64RegForFlush: MipsReg %d with invalid location %d", r, mr[r].loc);
return INVALID_REG;
}
}
void Arm64RegCache::FlushR(MIPSGPReg r) {
if (mr[r].isStatic) {
ELOG("Cannot flush static reg %d", r);
return;
}
switch (mr[r].loc) {
case ML_IMM:
// IMM is always "dirty".
if (r == MIPS_REG_LO) {
SetRegImm(SCRATCH1_64, mr[r].imm);
emit_->STR(INDEX_UNSIGNED, SCRATCH1_64, CTXREG, GetMipsRegOffset(r));
} else if (r != MIPS_REG_ZERO) {
// Try to optimize using a different reg.
ARM64Reg storeReg = ARM64RegForFlush(r);
if (storeReg == INVALID_REG) {
SetRegImm(SCRATCH1, mr[r].imm);
storeReg = SCRATCH1;
}
emit_->STR(INDEX_UNSIGNED, storeReg, CTXREG, GetMipsRegOffset(r));
}
break;
case ML_ARMREG:
case ML_ARMREG_IMM:
if (ar[mr[r].reg].isDirty) {
// Note: might be a 64-bit reg.
ARM64Reg storeReg = ARM64RegForFlush(r);
if (storeReg != INVALID_REG) {
emit_->STR(INDEX_UNSIGNED, storeReg, CTXREG, GetMipsRegOffset(r));
}
ar[mr[r].reg].isDirty = false;
}
ar[mr[r].reg].mipsReg = MIPS_REG_INVALID;
ar[mr[r].reg].pointerified = false;
break;
case ML_ARMREG_AS_PTR:
if (ar[mr[r].reg].isDirty) {
emit_->SUB(EncodeRegTo64(mr[r].reg), EncodeRegTo64(mr[r].reg), MEMBASEREG);
// We set this so ARM64RegForFlush knows it's no longer a pointer.
mr[r].loc = ML_ARMREG;
ARM64Reg storeReg = ARM64RegForFlush(r);
if (storeReg != INVALID_REG) {
emit_->STR(INDEX_UNSIGNED, storeReg, CTXREG, GetMipsRegOffset(r));
}
ar[mr[r].reg].isDirty = false;
}
ar[mr[r].reg].mipsReg = MIPS_REG_INVALID;
break;
case ML_MEM:
// Already there, nothing to do.
break;
default:
ERROR_LOG_REPORT(JIT, "FlushR: MipsReg %d with invalid location %d", r, mr[r].loc);
break;
}
if (r == MIPS_REG_ZERO) {
mr[r].loc = ML_IMM;
} else {
mr[r].loc = ML_MEM;
}
mr[r].reg = INVALID_REG;
mr[r].imm = 0;
}
void Arm64RegCache::FlushAll() {
// Note: make sure not to change the registers when flushing:
// Branching code expects the armreg to retain its value.
// LO can't be included in a 32-bit pair, since it's 64 bit.
// Flush it first so we don't get it confused.
FlushR(MIPS_REG_LO);
// Try to flush in pairs when possible.
// 1 because MIPS_REG_ZERO isn't flushable anyway.
// 31 because 30 and 31 are the last possible pair - MIPS_REG_FPCOND, etc. are too far away.
for (int i = 1; i < 31; i++) {
MIPSGPReg mreg1 = MIPSGPReg(i);
MIPSGPReg mreg2 = MIPSGPReg(i + 1);
ARM64Reg areg1 = ARM64RegForFlush(mreg1);
ARM64Reg areg2 = ARM64RegForFlush(mreg2);
// If either one doesn't have a reg yet, try flushing imms to scratch regs.
if (areg1 == INVALID_REG && IsPureImm(mreg1) && !mr[i].isStatic) {
areg1 = SCRATCH1;
}
if (areg2 == INVALID_REG && IsPureImm(mreg2) && !mr[i + 1].isStatic) {
areg2 = SCRATCH2;
}
if (areg1 != INVALID_REG && areg2 != INVALID_REG) {
// Actually put the imms in place now that we know we can do the STP.
// We didn't do it before in case the other wouldn't work.
if (areg1 == SCRATCH1) {
SetRegImm(areg1, GetImm(mreg1));
}
if (areg2 == SCRATCH2) {
SetRegImm(areg2, GetImm(mreg2));
}
// We can use a paired store, awesome.
emit_->STP(INDEX_SIGNED, areg1, areg2, CTXREG, GetMipsRegOffset(mreg1));
// Now we mark them as stored by discarding.
DiscardR(mreg1);
DiscardR(mreg2);
}
}
// Final pass to grab any that were left behind.
for (int i = 0; i < NUM_MIPSREG; i++) {
MIPSGPReg mipsReg = MIPSGPReg(i);
if (mr[i].isStatic) {
Arm64Gen::ARM64Reg armReg = mr[i].reg;
// Cannot leave any IMMs in registers, not even ML_ARMREG_IMM, can confuse the regalloc later if this flush is mid-block
// due to an interpreter fallback that changes the register.
if (mr[i].loc == ML_IMM) {
SetRegImm(mr[i].reg, mr[i].imm);
mr[i].loc = ML_ARMREG;
ar[armReg].pointerified = false;
} else if (mr[i].loc == ML_ARMREG_IMM) {
// The register already contains the immediate.
if (ar[armReg].pointerified) {
ELOG("ML_ARMREG_IMM but pointerified. Wrong.");
ar[armReg].pointerified = false;
}
mr[i].loc = ML_ARMREG;
} else if (mr[i].loc == ML_ARMREG_AS_PTR) {
emit_->SUB(EncodeRegTo64(armReg), EncodeRegTo64(armReg), MEMBASEREG);
mr[i].loc = ML_ARMREG;
}
if (i != MIPS_REG_ZERO && mr[i].reg == INVALID_REG) {
ELOG("ARM reg of static %i is invalid", i);
continue;
}
} else {
FlushR(mipsReg);
}
}
int count = 0;
const StaticAllocation *allocs = GetStaticAllocations(count);
for (int i = 0; i < count; i++) {
if (allocs[i].pointerified && !ar[allocs[i].ar].pointerified && jo_->enablePointerify) {
// Re-pointerify
emit_->MOVK(EncodeRegTo64(allocs[i].ar), ((uint64_t)Memory::base) >> 32, SHIFT_32);
ar[allocs[i].ar].pointerified = true;
} else {
// If this register got pointerified on the way, mark it as not, so that after save/reload (like in an interpreter fallback), it won't be regarded as such, as it simply won't be.
ar[allocs[i].ar].pointerified = false;
}
}
// Sanity check
for (int i = 0; i < NUM_ARMREG; i++) {
if (ar[i].mipsReg != MIPS_REG_INVALID && mr[ar[i].mipsReg].isStatic == false) {
ERROR_LOG_REPORT(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
}
}
}
void Arm64RegCache::SetImm(MIPSGPReg r, u64 immVal) {
if (r == MIPS_REG_HI) {
ERROR_LOG_REPORT(JIT, "Cannot set HI imm in Arm64RegCache");
return;
}
if (r == MIPS_REG_ZERO && immVal != 0) {
ERROR_LOG_REPORT(JIT, "Trying to set immediate %08x to r0 at %08x", (u32)immVal, compilerPC_);
return;
}
if (mr[r].loc == ML_ARMREG_IMM && mr[r].imm == immVal) {
// Already have that value, let's keep it in the reg.
return;
}
if (r != MIPS_REG_LO) {
// All regs on the PSP are 32 bit, but LO we treat as HI:LO so is 64 full bits.
immVal = immVal & 0xFFFFFFFF;
}
if (mr[r].isStatic) {
mr[r].loc = ML_IMM;
mr[r].imm = immVal;
ar[mr[r].reg].pointerified = false;
// We do not change reg to INVALID_REG for obvious reasons..
} else {
// Zap existing value if cached in a reg
if (mr[r].reg != INVALID_REG) {
ar[mr[r].reg].mipsReg = MIPS_REG_INVALID;
ar[mr[r].reg].isDirty = false;
ar[mr[r].reg].pointerified = false;
}
mr[r].loc = ML_IMM;
mr[r].imm = immVal;
mr[r].reg = INVALID_REG;
}
}
bool Arm64RegCache::IsImm(MIPSGPReg r) const {
if (r == MIPS_REG_ZERO)
return true;
else
return mr[r].loc == ML_IMM || mr[r].loc == ML_ARMREG_IMM;
}
bool Arm64RegCache::IsPureImm(MIPSGPReg r) const {
if (r == MIPS_REG_ZERO)
return true;
else
return mr[r].loc == ML_IMM;
}
u64 Arm64RegCache::GetImm(MIPSGPReg r) const {
if (r == MIPS_REG_ZERO)
return 0;
if (mr[r].loc != ML_IMM && mr[r].loc != ML_ARMREG_IMM) {
ERROR_LOG_REPORT(JIT, "Trying to get imm from non-imm register %i", r);
}
return mr[r].imm;
}
int Arm64RegCache::GetMipsRegOffset(MIPSGPReg r) {
if (r < 32)
return r * 4;
switch (r) {
case MIPS_REG_HI:
return offsetof(MIPSState, hi);
case MIPS_REG_LO:
return offsetof(MIPSState, lo);
case MIPS_REG_FPCOND:
return offsetof(MIPSState, fpcond);
case MIPS_REG_VFPUCC:
return offsetof(MIPSState, vfpuCtrl[VFPU_CTRL_CC]);
default:
ERROR_LOG_REPORT(JIT, "bad mips register %i", r);
return 0; // or what?
}
}
void Arm64RegCache::SpillLock(MIPSGPReg r1, MIPSGPReg r2, MIPSGPReg r3, MIPSGPReg r4) {
mr[r1].spillLock = true;
if (r2 != MIPS_REG_INVALID) mr[r2].spillLock = true;
if (r3 != MIPS_REG_INVALID) mr[r3].spillLock = true;
if (r4 != MIPS_REG_INVALID) mr[r4].spillLock = true;
}
void Arm64RegCache::ReleaseSpillLocksAndDiscardTemps() {
for (int i = 0; i < NUM_MIPSREG; i++) {
if (!mr[i].isStatic)
mr[i].spillLock = false;
}
for (int i = 0; i < NUM_ARMREG; i++) {
ar[i].tempLocked = false;
}
}
void Arm64RegCache::ReleaseSpillLock(MIPSGPReg r1, MIPSGPReg r2, MIPSGPReg r3, MIPSGPReg r4) {
if (!mr[r1].isStatic)
mr[r1].spillLock = false;
if (r2 != MIPS_REG_INVALID && !mr[r2].isStatic)
mr[r2].spillLock = false;
if (r3 != MIPS_REG_INVALID && !mr[r3].isStatic)
mr[r3].spillLock = false;
if (r4 != MIPS_REG_INVALID && !mr[r4].isStatic)
mr[r4].spillLock = false;
}
ARM64Reg Arm64RegCache::R(MIPSGPReg mipsReg) {
if (mr[mipsReg].loc == ML_ARMREG || mr[mipsReg].loc == ML_ARMREG_IMM) {
return mr[mipsReg].reg;
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in arm reg. compilerPC = %08x", mipsReg, compilerPC_);
return INVALID_REG; // BAAAD
}
}
ARM64Reg Arm64RegCache::RPtr(MIPSGPReg mipsReg) {
if (mr[mipsReg].loc == ML_ARMREG_AS_PTR) {
return (ARM64Reg)mr[mipsReg].reg;
} else if (mr[mipsReg].loc == ML_ARMREG || mr[mipsReg].loc == ML_ARMREG_IMM) {
int a = mr[mipsReg].reg;
if (ar[a].pointerified) {
return (ARM64Reg)mr[mipsReg].reg;
} else {
ERROR_LOG(JIT, "Tried to use a non-pointer register as a pointer");
return INVALID_REG;
}
} else {
ERROR_LOG_REPORT(JIT, "Reg %i not in arm reg. compilerPC = %08x", mipsReg, compilerPC_);
return INVALID_REG; // BAAAD
}
}
#endif // PPSSPP_ARCH(ARM64)