mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-23 13:30:02 +00:00
773 lines
24 KiB
C++
773 lines
24 KiB
C++
// Copyright (c) 2022- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <atomic>
|
|
#include <condition_variable>
|
|
#include <mutex>
|
|
#include "Common/Profiler/Profiler.h"
|
|
#include "Common/Thread/ThreadManager.h"
|
|
#include "Common/TimeUtil.h"
|
|
#include "Core/System.h"
|
|
#include "GPU/Common/TextureDecoder.h"
|
|
#include "GPU/Software/BinManager.h"
|
|
#include "GPU/Software/Rasterizer.h"
|
|
#include "GPU/Software/RasterizerRectangle.h"
|
|
|
|
// Sometimes useful for debugging.
|
|
static constexpr bool FORCE_SINGLE_THREAD = false;
|
|
|
|
using namespace Rasterizer;
|
|
|
|
struct BinWaitable : public Waitable {
|
|
public:
|
|
BinWaitable() {
|
|
count_ = 0;
|
|
}
|
|
|
|
void Fill() {
|
|
count_++;
|
|
}
|
|
|
|
bool Empty() {
|
|
return count_ == 0;
|
|
}
|
|
|
|
void Drain() {
|
|
int result = --count_;
|
|
if (result == 0) {
|
|
// We were the last one to increment.
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cond_.notify_all();
|
|
}
|
|
}
|
|
|
|
void Wait() override {
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
while (count_ != 0) {
|
|
cond_.wait(lock);
|
|
}
|
|
}
|
|
|
|
std::atomic<int> count_;
|
|
std::mutex mutex_;
|
|
std::condition_variable cond_;
|
|
};
|
|
|
|
static inline void DrawBinItem(const BinItem &item, const RasterizerState &state) {
|
|
switch (item.type) {
|
|
case BinItemType::TRIANGLE:
|
|
DrawTriangle(item.v0, item.v1, item.v2, item.range, state);
|
|
break;
|
|
|
|
case BinItemType::CLEAR_RECT:
|
|
ClearRectangle(item.v0, item.v1, item.range, state);
|
|
break;
|
|
|
|
case BinItemType::RECT:
|
|
DrawRectangle(item.v0, item.v1, item.range, state);
|
|
break;
|
|
|
|
case BinItemType::SPRITE:
|
|
DrawSprite(item.v0, item.v1, item.range, state);
|
|
break;
|
|
|
|
case BinItemType::LINE:
|
|
DrawLine(item.v0, item.v1, item.range, state);
|
|
break;
|
|
|
|
case BinItemType::POINT:
|
|
DrawPoint(item.v0, item.range, state);
|
|
break;
|
|
}
|
|
}
|
|
|
|
class DrawBinItemsTask : public Task {
|
|
public:
|
|
DrawBinItemsTask(BinWaitable *notify, BinManager::BinItemQueue &items, std::atomic<bool> &status, const BinManager::BinStateQueue &states)
|
|
: notify_(notify), items_(items), status_(status), states_(states) {
|
|
}
|
|
|
|
TaskType Type() const override {
|
|
return TaskType::CPU_COMPUTE;
|
|
}
|
|
|
|
TaskPriority Priority() const override {
|
|
// Let priority emulation tasks win over this.
|
|
return TaskPriority::NORMAL;
|
|
}
|
|
|
|
void Run() override {
|
|
ProcessItems();
|
|
status_ = false;
|
|
// In case of any atomic issues, do another pass.
|
|
ProcessItems();
|
|
notify_->Drain();
|
|
}
|
|
|
|
void Release() override {
|
|
// Don't delete, this is statically allocated.
|
|
}
|
|
|
|
private:
|
|
void ProcessItems() {
|
|
while (!items_.Empty()) {
|
|
const BinItem &item = items_.PeekNext();
|
|
DrawBinItem(item, states_[item.stateIndex]);
|
|
items_.SkipNext();
|
|
}
|
|
}
|
|
|
|
BinWaitable *notify_;
|
|
BinManager::BinItemQueue &items_;
|
|
std::atomic<bool> &status_;
|
|
const BinManager::BinStateQueue &states_;
|
|
};
|
|
|
|
constexpr int BinManager::MAX_POSSIBLE_TASKS;
|
|
|
|
BinManager::BinManager() {
|
|
queueRange_.x1 = 0x7FFFFFFF;
|
|
queueRange_.y1 = 0x7FFFFFFF;
|
|
queueRange_.x2 = 0;
|
|
queueRange_.y2 = 0;
|
|
|
|
waitable_ = new BinWaitable();
|
|
for (auto &s : taskStatus_)
|
|
s = false;
|
|
|
|
int maxInitTasks = std::min(g_threadManager.GetNumLooperThreads(), MAX_POSSIBLE_TASKS);
|
|
for (int i = 0; i < maxInitTasks; ++i) {
|
|
taskQueues_[i].Setup();
|
|
for (DrawBinItemsTask *&task : taskLists_[i].tasks)
|
|
task = new DrawBinItemsTask(waitable_, taskQueues_[i], taskStatus_[i], states_);
|
|
}
|
|
states_.Setup();
|
|
cluts_.Setup();
|
|
queue_.Setup();
|
|
}
|
|
|
|
BinManager::~BinManager() {
|
|
delete waitable_;
|
|
|
|
for (int i = 0; i < MAX_POSSIBLE_TASKS; ++i) {
|
|
for (DrawBinItemsTask *task : taskLists_[i].tasks)
|
|
delete task;
|
|
}
|
|
}
|
|
|
|
void BinManager::UpdateState() {
|
|
PROFILE_THIS_SCOPE("bin_state");
|
|
if (HasDirty(SoftDirty::PIXEL_ALL | SoftDirty::SAMPLER_ALL | SoftDirty::RAST_ALL)) {
|
|
if (states_.Full())
|
|
Flush("states");
|
|
creatingState_ = true;
|
|
stateIndex_ = (uint16_t)states_.Push(RasterizerState());
|
|
// When new funcs are compiled, we need to flush if WX exclusive.
|
|
ComputeRasterizerState(&states_[stateIndex_], this);
|
|
states_[stateIndex_].samplerID.cached.clut = cluts_[clutIndex_].readable;
|
|
creatingState_ = false;
|
|
|
|
ClearDirty(SoftDirty::PIXEL_ALL | SoftDirty::SAMPLER_ALL | SoftDirty::RAST_ALL);
|
|
}
|
|
|
|
if (lastFlipstats_ != gpuStats.numFlips) {
|
|
lastFlipstats_ = gpuStats.numFlips;
|
|
ResetStats();
|
|
}
|
|
|
|
const auto &state = State();
|
|
const bool hadDepth = pendingWrites_[1].base != 0;
|
|
|
|
if (HasDirty(SoftDirty::BINNER_RANGE)) {
|
|
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1());
|
|
DrawingCoords scissorBR(std::min(gstate.getScissorX2(), gstate.getRegionX2()), std::min(gstate.getScissorY2(), gstate.getRegionY2()));
|
|
ScreenCoords screenScissorTL = TransformUnit::DrawingToScreen(scissorTL, 0);
|
|
ScreenCoords screenScissorBR = TransformUnit::DrawingToScreen(scissorBR, 0);
|
|
|
|
scissor_.x1 = screenScissorTL.x;
|
|
scissor_.y1 = screenScissorTL.y;
|
|
scissor_.x2 = screenScissorBR.x + SCREEN_SCALE_FACTOR - 1;
|
|
scissor_.y2 = screenScissorBR.y + SCREEN_SCALE_FACTOR - 1;
|
|
|
|
// If we're about to texture from something still pending (i.e. depth), flush.
|
|
if (HasTextureWrite(state))
|
|
Flush("tex");
|
|
|
|
// Okay, now update what's pending.
|
|
MarkPendingWrites(state);
|
|
|
|
ClearDirty(SoftDirty::BINNER_RANGE);
|
|
} else if (pendingOverlap_) {
|
|
if (HasTextureWrite(state)) {
|
|
Flush("tex");
|
|
|
|
// We need the pending writes set, which flushing cleared. Set them again.
|
|
MarkPendingWrites(state);
|
|
}
|
|
}
|
|
|
|
if (HasDirty(SoftDirty::BINNER_OVERLAP)) {
|
|
// This is a good place to record any dependencies for block transfer overlap.
|
|
MarkPendingReads(state);
|
|
|
|
// Disallow threads when rendering to the target, even offset.
|
|
bool selfRender = HasTextureWrite(state);
|
|
int newMaxTasks = selfRender || FORCE_SINGLE_THREAD ? 1 : g_threadManager.GetNumLooperThreads();
|
|
if (newMaxTasks > MAX_POSSIBLE_TASKS)
|
|
newMaxTasks = MAX_POSSIBLE_TASKS;
|
|
// We don't want to overlap wrong, so flush any pending.
|
|
if (maxTasks_ != newMaxTasks) {
|
|
maxTasks_ = newMaxTasks;
|
|
Flush("selfrender");
|
|
}
|
|
pendingOverlap_ = pendingOverlap_ || selfRender;
|
|
|
|
// Lastly, we have to check if we're newly writing depth we were texturing before.
|
|
// This happens in Call of Duty (depth clear after depth texture), for example.
|
|
if (!hadDepth && state.pixelID.depthWrite) {
|
|
for (size_t i = 0; i < states_.Size(); ++i) {
|
|
if (HasTextureWrite(states_.Peek(i))) {
|
|
Flush("selfdepth");
|
|
}
|
|
}
|
|
}
|
|
ClearDirty(SoftDirty::BINNER_OVERLAP);
|
|
}
|
|
}
|
|
|
|
bool BinManager::HasTextureWrite(const RasterizerState &state) {
|
|
if (!state.enableTextures)
|
|
return false;
|
|
|
|
const uint8_t textureBits = textureBitsPerPixel[state.samplerID.texfmt];
|
|
for (int i = 0; i <= state.maxTexLevel; ++i) {
|
|
int byteStride = (state.texbufw[i] * textureBits) / 8;
|
|
int byteWidth = (state.samplerID.cached.sizes[i].w * textureBits) / 8;
|
|
int h = state.samplerID.cached.sizes[i].h;
|
|
if (HasPendingWrite(state.texaddr[i], byteStride, byteWidth, h))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool BinManager::IsExactSelfRender(const Rasterizer::RasterizerState &state, const BinItem &item) {
|
|
if (item.type != BinItemType::SPRITE && item.type != BinItemType::RECT)
|
|
return false;
|
|
if (state.textureProj || state.maxTexLevel > 0)
|
|
return false;
|
|
|
|
// Only possible if the texture is 1:1.
|
|
if ((state.texaddr[0] & 0x0F1FFFFF) != (gstate.getFrameBufAddress() & 0x0F1FFFFF))
|
|
return false;
|
|
int bufferPixelWidth = BufferFormatBytesPerPixel(state.pixelID.FBFormat());
|
|
int texturePixelWidth = textureBitsPerPixel[state.samplerID.texfmt] / 8;
|
|
if (bufferPixelWidth != texturePixelWidth)
|
|
return false;
|
|
|
|
Vec4f tc = Vec4f(item.v0.texturecoords.x, item.v0.texturecoords.y, item.v1.texturecoords.x, item.v1.texturecoords.y);
|
|
if (state.throughMode) {
|
|
// Already at texels, convert to screen.
|
|
tc = tc * SCREEN_SCALE_FACTOR;
|
|
} else {
|
|
// Need to also multiply by width/height in transform mode.
|
|
int w = state.samplerID.cached.sizes[0].w * SCREEN_SCALE_FACTOR;
|
|
int h = state.samplerID.cached.sizes[0].h * SCREEN_SCALE_FACTOR;
|
|
tc = tc * Vec4f(w, h, w, h);
|
|
}
|
|
|
|
Vec4<int> tci = tc.Cast<int>();
|
|
if (tci.x != item.v0.screenpos.x || tci.y != item.v0.screenpos.y)
|
|
return false;
|
|
if (tci.z != item.v1.screenpos.x || tci.w != item.v1.screenpos.y)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void BinManager::MarkPendingReads(const Rasterizer::RasterizerState &state) {
|
|
if (!state.enableTextures)
|
|
return;
|
|
|
|
const uint8_t textureBits = textureBitsPerPixel[state.samplerID.texfmt];
|
|
for (int i = 0; i <= state.maxTexLevel; ++i) {
|
|
uint32_t byteStride = (state.texbufw[i] * textureBits) / 8;
|
|
uint32_t byteWidth = (state.samplerID.cached.sizes[i].w * textureBits) / 8;
|
|
uint32_t h = state.samplerID.cached.sizes[i].h;
|
|
auto it = pendingReads_.find(state.texaddr[i]);
|
|
if (it != pendingReads_.end()) {
|
|
uint32_t total = byteStride * (h - 1) + byteWidth;
|
|
uint32_t existing = it->second.strideBytes * (it->second.height - 1) + it->second.widthBytes;
|
|
if (existing < total) {
|
|
it->second.strideBytes = std::max(it->second.strideBytes, byteStride);
|
|
it->second.widthBytes = std::max(it->second.widthBytes, byteWidth);
|
|
it->second.height = std::max(it->second.height, h);
|
|
}
|
|
} else {
|
|
auto &range = pendingReads_[state.texaddr[i]];
|
|
range.base = state.texaddr[i];
|
|
range.strideBytes = byteStride;
|
|
range.widthBytes = byteWidth;
|
|
range.height = h;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinManager::MarkPendingWrites(const Rasterizer::RasterizerState &state) {
|
|
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1());
|
|
DrawingCoords scissorBR(std::min(gstate.getScissorX2(), gstate.getRegionX2()), std::min(gstate.getScissorY2(), gstate.getRegionY2()));
|
|
|
|
constexpr uint32_t mirrorMask = 0x041FFFFF;
|
|
const uint32_t bpp = state.pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
|
|
pendingWrites_[0].Expand(gstate.getFrameBufAddress() & mirrorMask, bpp, gstate.FrameBufStride(), scissorTL, scissorBR);
|
|
if (state.pixelID.depthWrite)
|
|
pendingWrites_[1].Expand(gstate.getDepthBufAddress() & mirrorMask, 2, gstate.DepthBufStride(), scissorTL, scissorBR);
|
|
}
|
|
|
|
inline void BinDirtyRange::Expand(uint32_t newBase, uint32_t bpp, uint32_t stride, const DrawingCoords &tl, const DrawingCoords &br) {
|
|
const uint32_t w = br.x - tl.x + 1;
|
|
const uint32_t h = br.y - tl.y + 1;
|
|
|
|
newBase += tl.y * stride * bpp + tl.x * bpp;
|
|
if (base == 0) {
|
|
base = newBase;
|
|
strideBytes = stride * bpp;
|
|
widthBytes = w * bpp;
|
|
height = h;
|
|
return;
|
|
}
|
|
|
|
height = std::max(height, h);
|
|
if (base == newBase && strideBytes == stride * bpp) {
|
|
widthBytes = std::max(widthBytes, w * bpp);
|
|
return;
|
|
}
|
|
|
|
if (stride != 0)
|
|
height += ((int)base - (int)newBase) / (stride * bpp);
|
|
base = std::min(base, newBase);
|
|
strideBytes = std::max(strideBytes, stride * bpp);
|
|
widthBytes = strideBytes;
|
|
}
|
|
|
|
void BinManager::UpdateClut(const void *src) {
|
|
PROFILE_THIS_SCOPE("bin_clut");
|
|
if (cluts_.Full())
|
|
Flush("cluts");
|
|
BinClut &clut = cluts_.PeekPush();
|
|
memcpy(clut.readable, src, sizeof(BinClut));
|
|
clutIndex_ = (uint16_t)cluts_.PushPeeked();
|
|
}
|
|
|
|
void BinManager::AddTriangle(const VertexData &v0, const VertexData &v1, const VertexData &v2) {
|
|
Vec2<int> d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y);
|
|
Vec2<int> d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y);
|
|
Vec2<int> d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y);
|
|
|
|
// Drop primitives which are not in CCW order by checking the cross product.
|
|
static_assert(SCREEN_SCALE_FACTOR <= 16, "Fails if scale factor is too high");
|
|
if (d01.x * d02.y - d01.y * d02.x < 0)
|
|
return;
|
|
// If all points have identical coords, we'll have 0 weights and not skip properly, so skip here.
|
|
if ((d01.x == 0 && d02.x == 0) || (d01.y == 0 && d02.y == 0))
|
|
return;
|
|
|
|
// Was it fully outside the scissor?
|
|
const BinCoords range = Range(v0, v1, v2);
|
|
if (range.Invalid())
|
|
return;
|
|
|
|
if (queue_.Full())
|
|
Drain();
|
|
queue_.Push(BinItem{ BinItemType::TRIANGLE, stateIndex_, range, v0, v1, v2 });
|
|
CalculateRasterStateFlags(&states_[stateIndex_], v0, v1, v2);
|
|
Expand(range);
|
|
}
|
|
|
|
void BinManager::AddClearRect(const VertexData &v0, const VertexData &v1) {
|
|
const BinCoords range = Range(v0, v1);
|
|
if (range.Invalid())
|
|
return;
|
|
|
|
if (queue_.Full())
|
|
Drain();
|
|
queue_.Push(BinItem{ BinItemType::CLEAR_RECT, stateIndex_, range, v0, v1 });
|
|
CalculateRasterStateFlags(&states_[stateIndex_], v0, v1, true);
|
|
Expand(range);
|
|
}
|
|
|
|
void BinManager::AddRect(const VertexData &v0, const VertexData &v1) {
|
|
const BinCoords range = Range(v0, v1);
|
|
if (range.Invalid())
|
|
return;
|
|
|
|
if (queue_.Full())
|
|
Drain();
|
|
queue_.Push(BinItem{ BinItemType::RECT, stateIndex_, range, v0, v1 });
|
|
CalculateRasterStateFlags(&states_[stateIndex_], v0, v1, true);
|
|
Expand(range);
|
|
}
|
|
|
|
void BinManager::AddSprite(const VertexData &v0, const VertexData &v1) {
|
|
const BinCoords range = Range(v0, v1);
|
|
if (range.Invalid())
|
|
return;
|
|
|
|
if (queue_.Full())
|
|
Drain();
|
|
queue_.Push(BinItem{ BinItemType::SPRITE, stateIndex_, range, v0, v1 });
|
|
CalculateRasterStateFlags(&states_[stateIndex_], v0, v1, true);
|
|
Expand(range);
|
|
}
|
|
|
|
void BinManager::AddLine(const VertexData &v0, const VertexData &v1) {
|
|
const BinCoords range = Range(v0, v1);
|
|
if (range.Invalid())
|
|
return;
|
|
|
|
if (queue_.Full())
|
|
Drain();
|
|
queue_.Push(BinItem{ BinItemType::LINE, stateIndex_, range, v0, v1 });
|
|
CalculateRasterStateFlags(&states_[stateIndex_], v0, v1, false);
|
|
Expand(range);
|
|
}
|
|
|
|
void BinManager::AddPoint(const VertexData &v0) {
|
|
const BinCoords range = Range(v0);
|
|
if (range.Invalid())
|
|
return;
|
|
|
|
if (queue_.Full())
|
|
Drain();
|
|
queue_.Push(BinItem{ BinItemType::POINT, stateIndex_, range, v0 });
|
|
CalculateRasterStateFlags(&states_[stateIndex_], v0);
|
|
Expand(range);
|
|
}
|
|
|
|
void BinManager::Drain(bool flushing) {
|
|
PROFILE_THIS_SCOPE("bin_drain");
|
|
|
|
// If the waitable has fully drained, we can update our binning decisions.
|
|
if (!tasksSplit_ || waitable_->Empty()) {
|
|
int w2 = (queueRange_.x2 - queueRange_.x1 + (SCREEN_SCALE_FACTOR * 2 - 1)) / (SCREEN_SCALE_FACTOR * 2);
|
|
int h2 = (queueRange_.y2 - queueRange_.y1 + (SCREEN_SCALE_FACTOR * 2 - 1)) / (SCREEN_SCALE_FACTOR * 2);
|
|
|
|
// Always bin the entire possible range, but focus on the drawn area.
|
|
ScreenCoords tl(0, 0, 0);
|
|
ScreenCoords br(1024 * SCREEN_SCALE_FACTOR, 1024 * SCREEN_SCALE_FACTOR, 0);
|
|
|
|
if (pendingOverlap_ && maxTasks_ == 1 && flushing && queue_.Size() == 1 && !FORCE_SINGLE_THREAD) {
|
|
// If the drawing is 1:1, we can potentially use threads. It's worth checking.
|
|
const auto &item = queue_.PeekNext();
|
|
const auto &state = states_[item.stateIndex];
|
|
if (IsExactSelfRender(state, item))
|
|
maxTasks_ = std::min(g_threadManager.GetNumLooperThreads(), MAX_POSSIBLE_TASKS);
|
|
}
|
|
|
|
taskRanges_.clear();
|
|
if (h2 >= 18 && w2 >= h2 * 4) {
|
|
int bin_w = std::max(4, (w2 + maxTasks_ - 1) / maxTasks_) * SCREEN_SCALE_FACTOR * 2;
|
|
taskRanges_.push_back(BinCoords{ tl.x, tl.y, queueRange_.x1 + bin_w - 1, br.y - 1 });
|
|
for (int x = queueRange_.x1 + bin_w; x <= queueRange_.x2; x += bin_w) {
|
|
int x2 = x + bin_w > queueRange_.x2 ? br.x : x + bin_w;
|
|
taskRanges_.push_back(BinCoords{ x, tl.y, x2 - 1, br.y - 1 });
|
|
}
|
|
} else if (h2 >= 18 && w2 >= 18) {
|
|
int bin_h = std::max(4, (h2 + maxTasks_ - 1) / maxTasks_) * SCREEN_SCALE_FACTOR * 2;
|
|
taskRanges_.push_back(BinCoords{ tl.x, tl.y, br.x - 1, queueRange_.y1 + bin_h - 1 });
|
|
for (int y = queueRange_.y1 + bin_h; y <= queueRange_.y2; y += bin_h) {
|
|
int y2 = y + bin_h > queueRange_.y2 ? br.y : y + bin_h;
|
|
taskRanges_.push_back(BinCoords{ tl.x, y, br.x - 1, y2 - 1 });
|
|
}
|
|
}
|
|
|
|
tasksSplit_ = true;
|
|
}
|
|
|
|
// Let's try to optimize states, if we can.
|
|
OptimizePendingStates(pendingStateIndex_, stateIndex_);
|
|
pendingStateIndex_ = stateIndex_;
|
|
|
|
if (taskRanges_.size() <= 1) {
|
|
PROFILE_THIS_SCOPE("bin_drain_single");
|
|
while (!queue_.Empty()) {
|
|
const BinItem &item = queue_.PeekNext();
|
|
DrawBinItem(item, states_[item.stateIndex]);
|
|
queue_.SkipNext();
|
|
}
|
|
} else {
|
|
int max = flushing ? QUEUED_PRIMS : QUEUED_PRIMS / 2;
|
|
while (!queue_.Empty()) {
|
|
const BinItem &item = queue_.PeekNext();
|
|
for (int i = 0; i < (int)taskRanges_.size(); ++i) {
|
|
const BinCoords range = taskRanges_[i].Intersect(item.range);
|
|
if (range.Invalid())
|
|
continue;
|
|
|
|
if (taskQueues_[i].NearFull()) {
|
|
// This shouldn't often happen, but if it does, wait for space.
|
|
if (taskQueues_[i].Full())
|
|
waitable_->Wait();
|
|
// If we're not flushing and not near full, let's just continue later.
|
|
// Near full means we'd drain on next prim, so better to finish it now.
|
|
else if (!flushing && !queue_.NearFull())
|
|
max = 0;
|
|
}
|
|
|
|
BinItem &taskItem = taskQueues_[i].PeekPush();
|
|
taskItem = item;
|
|
taskItem.range = range;
|
|
taskQueues_[i].PushPeeked();
|
|
}
|
|
queue_.SkipNext();
|
|
if (--max <= 0)
|
|
break;
|
|
}
|
|
|
|
int threads = 0;
|
|
for (int i = 0; i < (int)taskRanges_.size(); ++i) {
|
|
if (taskQueues_[i].Empty())
|
|
continue;
|
|
threads++;
|
|
if (taskStatus_[i])
|
|
continue;
|
|
|
|
waitable_->Fill();
|
|
taskStatus_[i] = true;
|
|
g_threadManager.EnqueueTaskOnThread(i, taskLists_[i].Next());
|
|
enqueues_++;
|
|
}
|
|
|
|
mostThreads_ = std::max(mostThreads_, threads);
|
|
}
|
|
}
|
|
|
|
void BinManager::Flush(const char *reason) {
|
|
if (queueRange_.x1 == 0x7FFFFFFF)
|
|
return;
|
|
|
|
double st;
|
|
if (coreCollectDebugStats)
|
|
st = time_now_d();
|
|
Drain(true);
|
|
waitable_->Wait();
|
|
taskRanges_.clear();
|
|
tasksSplit_ = false;
|
|
|
|
queue_.Reset();
|
|
while (states_.Size() > 1)
|
|
states_.SkipNext();
|
|
while (cluts_.Size() > 1)
|
|
cluts_.SkipNext();
|
|
|
|
Rasterizer::FlushJit();
|
|
Sampler::FlushJit();
|
|
|
|
queueRange_.x1 = 0x7FFFFFFF;
|
|
queueRange_.y1 = 0x7FFFFFFF;
|
|
queueRange_.x2 = 0;
|
|
queueRange_.y2 = 0;
|
|
|
|
for (auto &pending : pendingWrites_)
|
|
pending.base = 0;
|
|
pendingOverlap_ = false;
|
|
pendingReads_.clear();
|
|
|
|
// We'll need to set the pending writes and reads again, since we just flushed it.
|
|
dirty_ |= SoftDirty::BINNER_RANGE | SoftDirty::BINNER_OVERLAP;
|
|
|
|
if (coreCollectDebugStats) {
|
|
double et = time_now_d();
|
|
flushReasonTimes_[reason] += et - st;
|
|
if (et - st > slowestFlushTime_) {
|
|
slowestFlushTime_ = et - st;
|
|
slowestFlushReason_ = reason;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinManager::OptimizePendingStates(uint16_t first, uint16_t last) {
|
|
// We can sometimes hit this when compiling new funcs while creating a state.
|
|
// At that point, the state isn't loaded fully yet, so don't touch it.
|
|
if (creatingState_ && last == stateIndex_) {
|
|
if (first == last)
|
|
return;
|
|
last--;
|
|
}
|
|
|
|
int count = (QUEUED_STATES + last - first) % QUEUED_STATES + 1;
|
|
for (int i = 0; i < count; ++i) {
|
|
size_t pos = (first + i) % QUEUED_STATES;
|
|
OptimizeRasterState(&states_[pos]);
|
|
}
|
|
}
|
|
|
|
bool BinManager::HasPendingWrite(uint32_t start, uint32_t stride, uint32_t w, uint32_t h) {
|
|
// We can only write to VRAM.
|
|
if (!Memory::IsVRAMAddress(start))
|
|
return false;
|
|
// Ignore mirrors for overlap detection.
|
|
start &= 0x041FFFFF;
|
|
|
|
uint32_t size = stride * (h - 1) + w;
|
|
for (const auto &range : pendingWrites_) {
|
|
if (range.base == 0 || range.strideBytes == 0)
|
|
continue;
|
|
if (start >= range.base + range.height * range.strideBytes || start + size <= range.base)
|
|
continue;
|
|
|
|
// Let's simply go through each line. Might be in the stride gap.
|
|
uint32_t row = start;
|
|
for (uint32_t y = 0; y < h; ++y) {
|
|
int32_t offset = row - range.base;
|
|
int32_t rangeY = offset / (int32_t)range.strideBytes;
|
|
uint32_t rangeX = offset % (int32_t)range.strideBytes;
|
|
if (rangeY >= 0 && (uint32_t)rangeY < range.height) {
|
|
// If this row is either within width, or extends beyond stride, overlap.
|
|
if (rangeX < range.widthBytes || rangeX + w >= range.strideBytes)
|
|
return true;
|
|
}
|
|
|
|
row += stride;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool BinManager::HasPendingRead(uint32_t start, uint32_t stride, uint32_t w, uint32_t h) {
|
|
if (Memory::IsVRAMAddress(start)) {
|
|
// Ignore VRAM mirrors.
|
|
start &= 0x041FFFFF;
|
|
} else {
|
|
// Ignore only regular RAM mirrors.
|
|
start &= 0x3FFFFFFF;
|
|
}
|
|
|
|
uint32_t size = stride * (h - 1) + w;
|
|
for (const auto &pair : pendingReads_) {
|
|
const auto &range = pair.second;
|
|
if (start >= range.base + range.height * range.strideBytes || start + size <= range.base)
|
|
continue;
|
|
|
|
// Stride gaps are uncommon with reads, so don't bother.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void BinManager::GetStats(char *buffer, size_t bufsize) {
|
|
double allTotal = 0.0;
|
|
double slowestTotalTime = 0.0;
|
|
const char *slowestTotalReason = nullptr;
|
|
for (auto &it : flushReasonTimes_) {
|
|
if (it.second > slowestTotalTime) {
|
|
slowestTotalTime = it.second;
|
|
slowestTotalReason = it.first;
|
|
}
|
|
allTotal += it.second;
|
|
}
|
|
|
|
// Many games are 30 FPS, so check last frame too for better stats.
|
|
double recentTotal = allTotal;
|
|
double slowestRecentTime = slowestTotalTime;
|
|
const char *slowestRecentReason = slowestTotalReason;
|
|
for (auto &it : lastFlushReasonTimes_) {
|
|
if (it.second > slowestRecentTime) {
|
|
slowestRecentTime = it.second;
|
|
slowestRecentReason = it.first;
|
|
}
|
|
recentTotal += it.second;
|
|
}
|
|
|
|
snprintf(buffer, bufsize,
|
|
"Slowest individual flush: %s (%0.4f)\n"
|
|
"Slowest frame flush: %s (%0.4f)\n"
|
|
"Slowest recent flush: %s (%0.4f)\n"
|
|
"Total flush time: %0.4f (%05.2f%%, last 2: %05.2f%%)\n"
|
|
"Thread enqueues: %d, count %d",
|
|
slowestFlushReason_, slowestFlushTime_,
|
|
slowestTotalReason, slowestTotalTime,
|
|
slowestRecentReason, slowestRecentTime,
|
|
allTotal, allTotal * (6000.0 / 1.001), recentTotal * (3000.0 / 1.001),
|
|
enqueues_, mostThreads_);
|
|
}
|
|
|
|
void BinManager::ResetStats() {
|
|
lastFlushReasonTimes_ = std::move(flushReasonTimes_);
|
|
flushReasonTimes_.clear();
|
|
slowestFlushReason_ = nullptr;
|
|
slowestFlushTime_ = 0.0;
|
|
enqueues_ = 0;
|
|
mostThreads_ = 0;
|
|
}
|
|
|
|
inline BinCoords BinCoords::Intersect(const BinCoords &range) const {
|
|
BinCoords sub;
|
|
sub.x1 = std::max(x1, range.x1);
|
|
sub.y1 = std::max(y1, range.y1);
|
|
sub.x2 = std::min(x2, range.x2);
|
|
sub.y2 = std::min(y2, range.y2);
|
|
return sub;
|
|
}
|
|
|
|
BinCoords BinManager::Scissor(BinCoords range) {
|
|
return range.Intersect(scissor_);
|
|
}
|
|
|
|
BinCoords BinManager::Range(const VertexData &v0, const VertexData &v1, const VertexData &v2) {
|
|
BinCoords range;
|
|
range.x1 = std::min(std::min(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~(SCREEN_SCALE_FACTOR - 1);
|
|
range.y1 = std::min(std::min(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~(SCREEN_SCALE_FACTOR - 1);
|
|
range.x2 = std::max(std::max(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) | (SCREEN_SCALE_FACTOR - 1);
|
|
range.y2 = std::max(std::max(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) | (SCREEN_SCALE_FACTOR - 1);
|
|
return Scissor(range);
|
|
}
|
|
|
|
BinCoords BinManager::Range(const VertexData &v0, const VertexData &v1) {
|
|
BinCoords range;
|
|
range.x1 = std::min(v0.screenpos.x, v1.screenpos.x) & ~(SCREEN_SCALE_FACTOR - 1);
|
|
range.y1 = std::min(v0.screenpos.y, v1.screenpos.y) & ~(SCREEN_SCALE_FACTOR - 1);
|
|
range.x2 = std::max(v0.screenpos.x, v1.screenpos.x) | (SCREEN_SCALE_FACTOR - 1);
|
|
range.y2 = std::max(v0.screenpos.y, v1.screenpos.y) | (SCREEN_SCALE_FACTOR - 1);
|
|
return Scissor(range);
|
|
}
|
|
|
|
BinCoords BinManager::Range(const VertexData &v0) {
|
|
BinCoords range;
|
|
range.x1 = v0.screenpos.x & ~(SCREEN_SCALE_FACTOR - 1);
|
|
range.y1 = v0.screenpos.y & ~(SCREEN_SCALE_FACTOR - 1);
|
|
range.x2 = v0.screenpos.x | (SCREEN_SCALE_FACTOR - 1);
|
|
range.y2 = v0.screenpos.y | (SCREEN_SCALE_FACTOR - 1);
|
|
return Scissor(range);
|
|
}
|
|
|
|
void BinManager::Expand(const BinCoords &range) {
|
|
queueRange_.x1 = std::min(queueRange_.x1, range.x1);
|
|
queueRange_.y1 = std::min(queueRange_.y1, range.y1);
|
|
queueRange_.x2 = std::max(queueRange_.x2, range.x2);
|
|
queueRange_.y2 = std::max(queueRange_.y2, range.y2);
|
|
|
|
if (maxTasks_ == 1 || (queueRange_.y2 - queueRange_.y1 >= 224 * SCREEN_SCALE_FACTOR && enqueues_ < 36 * maxTasks_)) {
|
|
if (pendingOverlap_)
|
|
Flush("expand");
|
|
else
|
|
Drain();
|
|
}
|
|
}
|