ppsspp/Core/MIPS/IR/IRJit.cpp
Unknown W. Brackets 46649a218e Core: Add flags to disable jit features.
Not actually disabling yet, just setup.
2019-02-03 13:58:24 -08:00

498 lines
13 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/logging.h"
#include "ext/xxhash.h"
#include "profiler/profiler.h"
#include "Common/ChunkFile.h"
#include "Common/StringUtils.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSInt.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/MIPS/IR/IRRegCache.h"
#include "Core/MIPS/IR/IRJit.h"
#include "Core/MIPS/IR/IRPassSimplify.h"
#include "Core/MIPS/IR/IRInterpreter.h"
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "Core/Reporting.h"
namespace MIPSComp {
IRJit::IRJit(MIPSState *mips) : frontend_(mips->HasDefaultPrefix()), mips_(mips) {
u32 size = 128 * 1024;
// blTrampolines_ = kernelMemory.Alloc(size, true, "trampoline");
InitIR();
IROptions opts{};
opts.disableFlags = g_Config.uJitDisableFlags;
opts.unalignedLoadStore = opts.disableFlags & (uint32_t)JitDisable::LSU_UNALIGNED;
frontend_.SetOptions(opts);
}
IRJit::~IRJit() {
}
void IRJit::DoState(PointerWrap &p) {
frontend_.DoState(p);
}
void IRJit::UpdateFCR31() {
}
void IRJit::ClearCache() {
ILOG("IRJit: Clearing the cache!");
blocks_.Clear();
}
void IRJit::InvalidateCacheAt(u32 em_address, int length) {
blocks_.InvalidateICache(em_address, length);
}
void IRJit::Compile(u32 em_address) {
PROFILE_THIS_SCOPE("jitc");
if (g_Config.bPreloadFunctions) {
// Look to see if we've preloaded this block.
int block_num = blocks_.FindPreloadBlock(em_address);
if (block_num != -1) {
IRBlock *b = blocks_.GetBlock(block_num);
// Okay, let's link and finalize the block now.
b->Finalize(block_num);
if (b->IsValid()) {
// Success, we're done.
return;
}
}
}
std::vector<IRInst> instructions;
u32 mipsBytes;
if (!CompileBlock(em_address, instructions, mipsBytes, false)) {
// Ran out of block numbers - need to reset.
ERROR_LOG(JIT, "Ran out of block numbers, clearing cache");
ClearCache();
CompileBlock(em_address, instructions, mipsBytes, false);
}
if (frontend_.CheckRounding(em_address)) {
// Our assumptions are all wrong so it's clean-slate time.
ClearCache();
CompileBlock(em_address, instructions, mipsBytes, false);
}
}
bool IRJit::CompileBlock(u32 em_address, std::vector<IRInst> &instructions, u32 &mipsBytes, bool preload) {
frontend_.DoJit(em_address, instructions, mipsBytes, preload);
if (instructions.empty()) {
_dbg_assert_(JIT, preload);
// We return true when preloading so it doesn't abort.
return preload;
}
int block_num = blocks_.AllocateBlock(em_address);
if ((block_num & ~MIPS_EMUHACK_VALUE_MASK) != 0) {
// Out of block numbers. Caller will handle.
return false;
}
IRBlock *b = blocks_.GetBlock(block_num);
b->SetInstructions(instructions);
b->SetOriginalSize(mipsBytes);
if (preload) {
// Hash, then only update page stats, don't link yet.
b->UpdateHash();
blocks_.FinalizeBlock(block_num, true);
} else {
// Overwrites the first instruction, and also updates stats.
// TODO: Should we always hash? Then we can reuse blocks.
blocks_.FinalizeBlock(block_num);
}
return true;
}
void IRJit::CompileFunction(u32 start_address, u32 length) {
PROFILE_THIS_SCOPE("jitc");
// Note: we don't actually write emuhacks yet, so we can validate hashes.
// This way, if the game changes the code afterward, we'll catch even without icache invalidation.
// We may go up and down from branches, so track all block starts done here.
std::set<u32> doneAddresses;
std::vector<u32> pendingAddresses;
pendingAddresses.push_back(start_address);
while (!pendingAddresses.empty()) {
u32 em_address = pendingAddresses.back();
pendingAddresses.pop_back();
// To be safe, also check if a real block is there. This can be a runtime module load.
u32 inst = Memory::ReadUnchecked_U32(em_address);
if (MIPS_IS_RUNBLOCK(inst) || doneAddresses.find(em_address) != doneAddresses.end()) {
// Already compiled this address.
continue;
}
std::vector<IRInst> instructions;
u32 mipsBytes;
if (!CompileBlock(em_address, instructions, mipsBytes, true)) {
// Ran out of block numbers - let's hope there's no more code it needs to run.
// Will flush when actually compiling.
ERROR_LOG(JIT, "Ran out of block numbers while compiling function");
return;
}
doneAddresses.insert(em_address);
for (const IRInst &inst : instructions) {
u32 exit = 0;
switch (inst.op) {
case IROp::ExitToConst:
case IROp::ExitToConstIfEq:
case IROp::ExitToConstIfNeq:
case IROp::ExitToConstIfGtZ:
case IROp::ExitToConstIfGeZ:
case IROp::ExitToConstIfLtZ:
case IROp::ExitToConstIfLeZ:
case IROp::ExitToConstIfFpTrue:
case IROp::ExitToConstIfFpFalse:
exit = inst.constant;
break;
case IROp::ExitToPC:
case IROp::Break:
// Don't add any, we'll do block end anyway (for jal, etc.)
exit = 0;
break;
default:
exit = 0;
break;
}
// Only follow jumps internal to the function.
if (exit != 0 && exit >= start_address && exit < start_address + length) {
// Even if it's a duplicate, we check at loop start.
pendingAddresses.push_back(exit);
}
}
// Also include after the block for jal returns.
if (em_address + mipsBytes < start_address + length) {
pendingAddresses.push_back(em_address + mipsBytes);
}
}
}
void IRJit::RunLoopUntil(u64 globalticks) {
PROFILE_THIS_SCOPE("jit");
// ApplyRoundingMode(true);
// IR Dispatcher
while (true) {
// RestoreRoundingMode(true);
CoreTiming::Advance();
// ApplyRoundingMode(true);
if (coreState != 0) {
break;
}
while (mips_->downcount >= 0) {
u32 inst = Memory::ReadUnchecked_U32(mips_->pc);
u32 opcode = inst & 0xFF000000;
if (opcode == MIPS_EMUHACK_OPCODE) {
u32 data = inst & 0xFFFFFF;
IRBlock *block = blocks_.GetBlock(data);
mips_->pc = IRInterpret(mips_, block->GetInstructions(), block->GetNumInstructions());
} else {
// RestoreRoundingMode(true);
Compile(mips_->pc);
// ApplyRoundingMode(true);
}
}
}
// RestoreRoundingMode(true);
}
bool IRJit::DescribeCodePtr(const u8 *ptr, std::string &name) {
// Used in target disassembly viewer.
return false;
}
void IRJit::LinkBlock(u8 *exitPoint, const u8 *checkedEntry) {
Crash();
}
void IRJit::UnlinkBlock(u8 *checkedEntry, u32 originalAddress) {
Crash();
}
bool IRJit::ReplaceJalTo(u32 dest) {
Crash();
return false;
}
void IRBlockCache::Clear() {
for (int i = 0; i < (int)blocks_.size(); ++i) {
blocks_[i].Destroy(i);
}
blocks_.clear();
byPage_.clear();
}
void IRBlockCache::InvalidateICache(u32 address, u32 length) {
u32 startPage = AddressToPage(address);
u32 endPage = AddressToPage(address + length);
for (u32 page = startPage; page <= endPage; ++page) {
const auto iter = byPage_.find(page);
if (iter == byPage_.end())
continue;
const std::vector<int> &blocksInPage = iter->second;
for (int i : blocksInPage) {
if (blocks_[i].OverlapsRange(address, length)) {
// Not removing from the page, hopefully doesn't build up with small recompiles.
blocks_[i].Destroy(i);
}
}
}
}
void IRBlockCache::FinalizeBlock(int i, bool preload) {
if (!preload) {
blocks_[i].Finalize(i);
}
u32 startAddr, size;
blocks_[i].GetRange(startAddr, size);
u32 startPage = AddressToPage(startAddr);
u32 endPage = AddressToPage(startAddr + size);
for (u32 page = startPage; page <= endPage; ++page) {
byPage_[page].push_back(i);
}
}
u32 IRBlockCache::AddressToPage(u32 addr) const {
// Use relatively small pages since basic blocks are typically small.
return (addr & 0x3FFFFFFF) >> 10;
}
int IRBlockCache::FindPreloadBlock(u32 em_address) {
u32 page = AddressToPage(em_address);
auto iter = byPage_.find(page);
if (iter == byPage_.end())
return -1;
const std::vector<int> &blocksInPage = iter->second;
for (int i : blocksInPage) {
u32 start, mipsBytes;
blocks_[i].GetRange(start, mipsBytes);
if (start == em_address) {
if (blocks_[i].HashMatches()) {
return i;
}
}
}
return -1;
}
std::vector<u32> IRBlockCache::SaveAndClearEmuHackOps() {
std::vector<u32> result;
result.resize(blocks_.size());
for (int number = 0; number < (int)blocks_.size(); ++number) {
IRBlock &b = blocks_[number];
if (b.IsValid() && b.RestoreOriginalFirstOp(number)) {
result[number] = number;
} else {
result[number] = 0;
}
}
return result;
}
void IRBlockCache::RestoreSavedEmuHackOps(std::vector<u32> saved) {
if ((int)blocks_.size() != (int)saved.size()) {
ERROR_LOG(JIT, "RestoreSavedEmuHackOps: Wrong saved block size.");
return;
}
for (int number = 0; number < (int)blocks_.size(); ++number) {
IRBlock &b = blocks_[number];
// Only if we restored it, write it back.
if (b.IsValid() && saved[number] != 0 && b.HasOriginalFirstOp()) {
b.Finalize(number);
}
}
}
JitBlockDebugInfo IRBlockCache::GetBlockDebugInfo(int blockNum) const {
const IRBlock &ir = blocks_[blockNum];
JitBlockDebugInfo debugInfo{};
uint32_t start, size;
ir.GetRange(start, size);
debugInfo.originalAddress = start; // TODO
for (u32 addr = start; addr < start + size; addr += 4) {
char temp[256];
MIPSDisAsm(Memory::Read_Instruction(addr), addr, temp, true);
std::string mipsDis = temp;
debugInfo.origDisasm.push_back(mipsDis);
}
for (int i = 0; i < ir.GetNumInstructions(); i++) {
IRInst inst = ir.GetInstructions()[i];
char buffer[256];
DisassembleIR(buffer, sizeof(buffer), inst);
debugInfo.irDisasm.push_back(buffer);
}
return debugInfo;
}
void IRBlockCache::ComputeStats(BlockCacheStats &bcStats) const {
double totalBloat = 0.0;
double maxBloat = 0.0;
double minBloat = 1000000000.0;
for (const auto &b : blocks_) {
double codeSize = (double)b.GetNumInstructions() * sizeof(IRInst);
if (codeSize == 0)
continue;
u32 origAddr, mipsBytes;
b.GetRange(origAddr, mipsBytes);
double origSize = (double)mipsBytes;
double bloat = codeSize / origSize;
if (bloat < minBloat) {
minBloat = bloat;
bcStats.minBloatBlock = origAddr;
}
if (bloat > maxBloat) {
maxBloat = bloat;
bcStats.maxBloatBlock = origAddr;
}
totalBloat += bloat;
bcStats.bloatMap[bloat] = origAddr;
}
bcStats.numBlocks = (int)blocks_.size();
bcStats.minBloat = minBloat;
bcStats.maxBloat = maxBloat;
bcStats.avgBloat = totalBloat / (double)blocks_.size();
}
int IRBlockCache::GetBlockNumberFromStartAddress(u32 em_address, bool realBlocksOnly) const {
u32 page = AddressToPage(em_address);
const auto iter = byPage_.find(page);
if (iter == byPage_.end())
return -1;
const std::vector<int> &blocksInPage = iter->second;
int best = -1;
for (int i : blocksInPage) {
uint32_t start, size;
blocks_[i].GetRange(start, size);
if (start == em_address) {
best = i;
if (blocks_[i].IsValid()) {
return i;
}
}
}
return best;
}
bool IRBlock::HasOriginalFirstOp() const {
return Memory::ReadUnchecked_U32(origAddr_) == origFirstOpcode_.encoding;
}
bool IRBlock::RestoreOriginalFirstOp(int number) {
const u32 emuhack = MIPS_EMUHACK_OPCODE | number;
if (Memory::ReadUnchecked_U32(origAddr_) == emuhack) {
Memory::Write_Opcode_JIT(origAddr_, origFirstOpcode_);
return true;
}
return false;
}
void IRBlock::Finalize(int number) {
// Check it wasn't invalidated, in case this is after preload.
// TODO: Allow reusing blocks when the code matches hash_ again, instead.
if (origAddr_) {
origFirstOpcode_ = Memory::Read_Opcode_JIT(origAddr_);
MIPSOpcode opcode = MIPSOpcode(MIPS_EMUHACK_OPCODE | number);
Memory::Write_Opcode_JIT(origAddr_, opcode);
}
}
void IRBlock::Destroy(int number) {
if (origAddr_) {
MIPSOpcode opcode = MIPSOpcode(MIPS_EMUHACK_OPCODE | number);
if (Memory::ReadUnchecked_U32(origAddr_) == opcode.encoding)
Memory::Write_Opcode_JIT(origAddr_, origFirstOpcode_);
// Let's mark this invalid so we don't try to clear it again.
origAddr_ = 0;
}
}
u64 IRBlock::CalculateHash() const {
if (origAddr_) {
// This is unfortunate. In case of emuhacks, we have to make a copy.
std::vector<u32> buffer;
buffer.resize(origSize_ / 4);
size_t pos = 0;
for (u32 off = 0; off < origSize_; off += 4) {
// Let's actually hash the replacement, if any.
MIPSOpcode instr = Memory::ReadUnchecked_Instruction(origAddr_ + off, false);
buffer[pos++] = instr.encoding;
}
return XXH64(&buffer[0], origSize_, 0x9A5C33B8);
}
return 0;
}
bool IRBlock::OverlapsRange(u32 addr, u32 size) const {
addr &= 0x3FFFFFFF;
u32 origAddr = origAddr_ & 0x3FFFFFFF;
return addr + size > origAddr && addr < origAddr + origSize_;
}
MIPSOpcode IRJit::GetOriginalOp(MIPSOpcode op) {
IRBlock *b = blocks_.GetBlock(op.encoding & 0xFFFFFF);
if (b) {
return b->GetOriginalFirstOp();
}
return op;
}
} // namespace MIPSComp