mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-23 21:39:52 +00:00
b8342fb8ec
Makes more sense and less weird than ChunkFileDoMap, etc.
973 lines
25 KiB
C++
973 lines
25 KiB
C++
// Copyright (c) 2012- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <algorithm>
|
|
|
|
#include "base/basictypes.h"
|
|
#include "profiler/profiler.h"
|
|
|
|
#include "Common/Serialize/SerializeFuncs.h"
|
|
#include "Core/MemMapHelpers.h"
|
|
#include "Core/HLE/sceAtrac.h"
|
|
#include "Core/Config.h"
|
|
#include "Core/Reporting.h"
|
|
#include "Core/Util/AudioFormat.h"
|
|
#include "SasAudio.h"
|
|
|
|
// #define AUDIO_TO_FILE
|
|
|
|
static const u8 f[16][2] = {
|
|
{ 0, 0 },
|
|
{ 60, 0 },
|
|
{ 115, 52 },
|
|
{ 98, 55 },
|
|
{ 122, 60 },
|
|
// TODO: The below values could use more testing, but match initial tests.
|
|
// Not sure if they are used by games, found by tests.
|
|
{ 0, 0 },
|
|
{ 0, 0 },
|
|
{ 52, 0 },
|
|
{ 55, 2 },
|
|
{ 60, 125 },
|
|
{ 0, 0 },
|
|
{ 0, 91 },
|
|
{ 0, 0 },
|
|
{ 2, 216 },
|
|
{ 125, 6 },
|
|
{ 0, 151 },
|
|
};
|
|
|
|
void VagDecoder::Start(u32 data, u32 vagSize, bool loopEnabled) {
|
|
loopEnabled_ = loopEnabled;
|
|
loopAtNextBlock_ = false;
|
|
loopStartBlock_ = -1;
|
|
numBlocks_ = vagSize / 16;
|
|
end_ = false;
|
|
data_ = data;
|
|
read_ = data;
|
|
curSample = 28;
|
|
curBlock_ = -1;
|
|
s_1 = 0; // per block?
|
|
s_2 = 0;
|
|
}
|
|
|
|
void VagDecoder::DecodeBlock(u8 *&read_pointer) {
|
|
if (curBlock_ == numBlocks_ - 1) {
|
|
end_ = true;
|
|
return;
|
|
}
|
|
|
|
u8 *readp = read_pointer;
|
|
int predict_nr = *readp++;
|
|
int shift_factor = predict_nr & 0xf;
|
|
predict_nr >>= 4;
|
|
int flags = *readp++;
|
|
if (flags == 7) {
|
|
VERBOSE_LOG(SASMIX, "VAG ending block at %d", curBlock_);
|
|
end_ = true;
|
|
return;
|
|
}
|
|
else if (flags == 6) {
|
|
loopStartBlock_ = curBlock_;
|
|
}
|
|
else if (flags == 3) {
|
|
if (loopEnabled_) {
|
|
loopAtNextBlock_ = true;
|
|
}
|
|
}
|
|
|
|
// Keep state in locals to avoid bouncing to memory.
|
|
int s1 = s_1;
|
|
int s2 = s_2;
|
|
|
|
int coef1 = f[predict_nr][0];
|
|
int coef2 = -f[predict_nr][1];
|
|
|
|
// TODO: Unroll once more and interleave the unpacking with the decoding more?
|
|
for (int i = 0; i < 28; i += 2) {
|
|
u8 d = *readp++;
|
|
int sample1 = (short)((d & 0xf) << 12) >> shift_factor;
|
|
int sample2 = (short)((d & 0xf0) << 8) >> shift_factor;
|
|
s2 = clamp_s16(sample1 + ((s1 * coef1 + s2 * coef2) >> 6));
|
|
s1 = clamp_s16(sample2 + ((s2 * coef1 + s1 * coef2) >> 6));
|
|
samples[i] = s2;
|
|
samples[i + 1] = s1;
|
|
}
|
|
|
|
s_1 = s1;
|
|
s_2 = s2;
|
|
curSample = 0;
|
|
curBlock_++;
|
|
|
|
read_pointer = readp;
|
|
}
|
|
|
|
void VagDecoder::GetSamples(s16 *outSamples, int numSamples) {
|
|
if (end_) {
|
|
memset(outSamples, 0, numSamples * sizeof(s16));
|
|
return;
|
|
}
|
|
if (!Memory::IsValidAddress(read_)) {
|
|
WARN_LOG(SASMIX, "Bad VAG samples address?");
|
|
return;
|
|
}
|
|
u8 *readp = Memory::GetPointerUnchecked(read_);
|
|
u8 *origp = readp;
|
|
|
|
for (int i = 0; i < numSamples; i++) {
|
|
if (curSample == 28) {
|
|
if (loopAtNextBlock_) {
|
|
VERBOSE_LOG(SASMIX, "Looping VAG from block %d/%d to %d", curBlock_, numBlocks_, loopStartBlock_);
|
|
// data_ starts at curBlock = -1.
|
|
read_ = data_ + 16 * loopStartBlock_ + 16;
|
|
readp = Memory::GetPointerUnchecked(read_);
|
|
origp = readp;
|
|
curBlock_ = loopStartBlock_;
|
|
loopAtNextBlock_ = false;
|
|
}
|
|
DecodeBlock(readp);
|
|
if (end_) {
|
|
// Clear the rest of the buffer and return.
|
|
memset(&outSamples[i], 0, (numSamples - i) * sizeof(s16));
|
|
return;
|
|
}
|
|
}
|
|
outSamples[i] = samples[curSample++];
|
|
}
|
|
|
|
if (readp > origp) {
|
|
read_ += readp - origp;
|
|
}
|
|
}
|
|
|
|
void VagDecoder::DoState(PointerWrap &p) {
|
|
auto s = p.Section("VagDecoder", 1, 2);
|
|
if (!s)
|
|
return;
|
|
|
|
if (s >= 2) {
|
|
DoArray(p, samples, ARRAY_SIZE(samples));
|
|
} else {
|
|
int samplesOld[ARRAY_SIZE(samples)];
|
|
DoArray(p, samplesOld, ARRAY_SIZE(samples));
|
|
for (size_t i = 0; i < ARRAY_SIZE(samples); ++i) {
|
|
samples[i] = samplesOld[i];
|
|
}
|
|
}
|
|
Do(p, curSample);
|
|
|
|
Do(p, data_);
|
|
Do(p, read_);
|
|
Do(p, curBlock_);
|
|
Do(p, loopStartBlock_);
|
|
Do(p, numBlocks_);
|
|
|
|
Do(p, s_1);
|
|
Do(p, s_2);
|
|
|
|
Do(p, loopEnabled_);
|
|
Do(p, loopAtNextBlock_);
|
|
Do(p, end_);
|
|
}
|
|
|
|
int SasAtrac3::setContext(u32 context) {
|
|
contextAddr_ = context;
|
|
atracID_ = _AtracGetIDByContext(context);
|
|
if (!sampleQueue_)
|
|
sampleQueue_ = new BufferQueue();
|
|
sampleQueue_->clear();
|
|
end_ = false;
|
|
return 0;
|
|
}
|
|
|
|
void SasAtrac3::getNextSamples(s16 *outbuf, int wantedSamples) {
|
|
if (atracID_ < 0) {
|
|
end_ = true;
|
|
return;
|
|
}
|
|
u32 finish = 0;
|
|
int wantedbytes = wantedSamples * sizeof(s16);
|
|
while (!finish && sampleQueue_->getQueueSize() < wantedbytes) {
|
|
u32 numSamples = 0;
|
|
int remains = 0;
|
|
static s16 buf[0x800];
|
|
_AtracDecodeData(atracID_, (u8*)buf, 0, &numSamples, &finish, &remains);
|
|
if (numSamples > 0)
|
|
sampleQueue_->push((u8*)buf, numSamples * sizeof(s16));
|
|
else
|
|
finish = 1;
|
|
}
|
|
sampleQueue_->pop_front((u8*)outbuf, wantedbytes);
|
|
end_ = finish == 1;
|
|
}
|
|
|
|
int SasAtrac3::addStreamData(u32 bufPtr, u32 addbytes) {
|
|
if (atracID_ > 0) {
|
|
_AtracAddStreamData(atracID_, bufPtr, addbytes);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void SasAtrac3::DoState(PointerWrap &p) {
|
|
auto s = p.Section("SasAtrac3", 1, 2);
|
|
if (!s)
|
|
return;
|
|
|
|
Do(p, contextAddr_);
|
|
Do(p, atracID_);
|
|
if (p.mode == p.MODE_READ && atracID_ >= 0 && !sampleQueue_) {
|
|
sampleQueue_ = new BufferQueue();
|
|
}
|
|
if (s >= 2) {
|
|
Do(p, end_);
|
|
}
|
|
}
|
|
|
|
// http://code.google.com/p/jpcsp/source/browse/trunk/src/jpcsp/HLE/modules150/sceSasCore.java
|
|
|
|
static int simpleRate(int n) {
|
|
n &= 0x7F;
|
|
if (n == 0x7F) {
|
|
return 0;
|
|
}
|
|
int rate = ((7 - (n & 0x3)) << 26) >> (n >> 2);
|
|
if (rate == 0) {
|
|
return 1;
|
|
}
|
|
return rate;
|
|
}
|
|
|
|
static int exponentRate(int n) {
|
|
n &= 0x7F;
|
|
if (n == 0x7F) {
|
|
return 0;
|
|
}
|
|
int rate = ((7 - (n & 0x3)) << 24) >> (n >> 2);
|
|
if (rate == 0) {
|
|
return 1;
|
|
}
|
|
return rate;
|
|
}
|
|
|
|
static int getAttackRate(int bitfield1) {
|
|
return simpleRate(bitfield1 >> 8);
|
|
}
|
|
|
|
static int getAttackType(int bitfield1) {
|
|
return (bitfield1 & 0x8000) == 0 ? PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE : PSP_SAS_ADSR_CURVE_MODE_LINEAR_BENT;
|
|
}
|
|
|
|
static int getDecayRate(int bitfield1) {
|
|
int n = (bitfield1 >> 4) & 0x000F;
|
|
if (n == 0)
|
|
return 0x7FFFFFFF;
|
|
return 0x80000000 >> n;
|
|
}
|
|
|
|
static int getSustainType(int bitfield2) {
|
|
return (bitfield2 >> 14) & 3;
|
|
}
|
|
|
|
static int getSustainRate(int bitfield2) {
|
|
if (getSustainType(bitfield2) == PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE) {
|
|
return exponentRate(bitfield2 >> 6);
|
|
} else {
|
|
return simpleRate(bitfield2 >> 6);
|
|
}
|
|
}
|
|
|
|
static int getReleaseType(int bitfield2) {
|
|
return (bitfield2 & 0x0020) == 0 ? PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE : PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE;
|
|
}
|
|
|
|
static int getReleaseRate(int bitfield2) {
|
|
int n = bitfield2 & 0x001F;
|
|
if (n == 31) {
|
|
return 0;
|
|
}
|
|
if (getReleaseType(bitfield2) == PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE) {
|
|
if (n == 30) {
|
|
return 0x40000000;
|
|
} else if (n == 29) {
|
|
return 1;
|
|
}
|
|
return 0x10000000 >> n;
|
|
}
|
|
if (n == 0)
|
|
return 0x7FFFFFFF;
|
|
return 0x80000000 >> n;
|
|
}
|
|
|
|
static int getSustainLevel(int bitfield1) {
|
|
return ((bitfield1 & 0x000F) + 1) << 26;
|
|
}
|
|
|
|
void ADSREnvelope::SetSimpleEnvelope(u32 ADSREnv1, u32 ADSREnv2) {
|
|
attackRate = getAttackRate(ADSREnv1);
|
|
attackType = getAttackType(ADSREnv1);
|
|
decayRate = getDecayRate(ADSREnv1);
|
|
decayType = PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE;
|
|
sustainRate = getSustainRate(ADSREnv2);
|
|
sustainType = getSustainType(ADSREnv2);
|
|
releaseRate = getReleaseRate(ADSREnv2);
|
|
releaseType = getReleaseType(ADSREnv2);
|
|
sustainLevel = getSustainLevel(ADSREnv1);
|
|
|
|
if (attackRate < 0 || decayRate < 0 || sustainRate < 0 || releaseRate < 0) {
|
|
ERROR_LOG_REPORT(SASMIX, "Simple ADSR resulted in invalid rates: %04x, %04x", ADSREnv1, ADSREnv2);
|
|
}
|
|
}
|
|
|
|
SasInstance::SasInstance()
|
|
: maxVoices(PSP_SAS_VOICES_MAX),
|
|
sampleRate(44100),
|
|
outputMode(PSP_SAS_OUTPUTMODE_MIXED),
|
|
mixBuffer(0),
|
|
sendBuffer(0),
|
|
sendBufferDownsampled(0),
|
|
sendBufferProcessed(0),
|
|
grainSize(0) {
|
|
#ifdef AUDIO_TO_FILE
|
|
audioDump = fopen("D:\\audio.raw", "wb");
|
|
#endif
|
|
memset(&waveformEffect, 0, sizeof(waveformEffect));
|
|
waveformEffect.type = PSP_SAS_EFFECT_TYPE_OFF;
|
|
waveformEffect.isDryOn = 1;
|
|
}
|
|
|
|
SasInstance::~SasInstance() {
|
|
ClearGrainSize();
|
|
}
|
|
|
|
void SasInstance::GetDebugText(char *text, size_t bufsize) {
|
|
char voiceBuf[4096];
|
|
voiceBuf[0] = '\0';
|
|
char *p = voiceBuf;
|
|
for (int i = 0; i < maxVoices; i++) {
|
|
if (voices[i].playing) {
|
|
p += snprintf(p, sizeof(voiceBuf) - (p - voiceBuf), " %d: Pitch %d L/R,FX: %d,%d|%d,%d VAG: %08x:%d:%08x Height:%d%%\n", i, voices[i].pitch, voices[i].volumeLeft, voices[i].volumeRight, voices[i].effectLeft, voices[i].effectRight, voices[i].vagAddr, voices[i].vagSize, voices[i].vag.GetReadPtr(), (int)((int64_t)voices[i].envelope.GetHeight() * 100 / PSP_SAS_ENVELOPE_HEIGHT_MAX));
|
|
}
|
|
}
|
|
|
|
snprintf(text, bufsize,
|
|
"SR: %d Mode: %s Grain: %d\n"
|
|
"Effect: Type: %d Dry: %d Wet: %d L: %d R: %d Delay: %d Feedback: %d\n"
|
|
"\n%s\n",
|
|
sampleRate, outputMode == PSP_SAS_OUTPUTMODE_RAW ? "Raw" : "Mixed", grainSize,
|
|
waveformEffect.type, waveformEffect.isDryOn, waveformEffect.isWetOn, waveformEffect.leftVol, waveformEffect.rightVol, waveformEffect.delay, waveformEffect.feedback,
|
|
voiceBuf);
|
|
|
|
}
|
|
|
|
void SasInstance::ClearGrainSize() {
|
|
delete[] mixBuffer;
|
|
delete[] sendBuffer;
|
|
delete[] sendBufferDownsampled;
|
|
delete[] sendBufferProcessed;
|
|
mixBuffer = nullptr;
|
|
sendBuffer = nullptr;
|
|
sendBufferDownsampled = nullptr;
|
|
sendBufferProcessed = nullptr;
|
|
}
|
|
|
|
void SasInstance::SetGrainSize(int newGrainSize) {
|
|
grainSize = newGrainSize;
|
|
|
|
// If you change the sizes here, don't forget DoState().
|
|
delete[] mixBuffer;
|
|
delete[] sendBuffer;
|
|
delete[] sendBufferDownsampled;
|
|
delete[] sendBufferProcessed;
|
|
|
|
mixBuffer = new s32[grainSize * 2];
|
|
sendBuffer = new s32[grainSize * 2];
|
|
sendBufferDownsampled = new s16[grainSize];
|
|
sendBufferProcessed = new s16[grainSize * 2];
|
|
memset(mixBuffer, 0, sizeof(int) * grainSize * 2);
|
|
memset(sendBuffer, 0, sizeof(int) * grainSize * 2);
|
|
memset(sendBufferDownsampled, 0, sizeof(s16) * grainSize);
|
|
memset(sendBufferProcessed, 0, sizeof(s16) * grainSize * 2);
|
|
}
|
|
|
|
int SasInstance::EstimateMixUs() {
|
|
int voicesPlayingCount = 0;
|
|
|
|
for (int v = 0; v < PSP_SAS_VOICES_MAX; v++) {
|
|
SasVoice &voice = voices[v];
|
|
if (!voice.playing || voice.paused)
|
|
continue;
|
|
voicesPlayingCount++;
|
|
}
|
|
|
|
// Each voice costs extra time, and each byte of grain costs extra time.
|
|
int cycles = 20 + voicesPlayingCount * 68 + (grainSize * 60) / 100;
|
|
// Cap to 1200 to fix FFT, see issue #9956.
|
|
return std::min(cycles, 1200);
|
|
}
|
|
|
|
void SasVoice::ReadSamples(s16 *output, int numSamples) {
|
|
// Read N samples into the resample buffer. Could do either PCM or VAG here.
|
|
switch (type) {
|
|
case VOICETYPE_VAG:
|
|
vag.GetSamples(output, numSamples);
|
|
break;
|
|
case VOICETYPE_PCM:
|
|
{
|
|
int needed = numSamples;
|
|
s16 *out = output;
|
|
while (needed > 0) {
|
|
u32 size = std::min(pcmSize - pcmIndex, needed);
|
|
if (!on) {
|
|
pcmIndex = 0;
|
|
break;
|
|
}
|
|
Memory::Memcpy(out, pcmAddr + pcmIndex * sizeof(s16), size * sizeof(s16));
|
|
pcmIndex += size;
|
|
needed -= size;
|
|
out += size;
|
|
if (pcmIndex >= pcmSize) {
|
|
if (!loop) {
|
|
// All out, quit. We'll end in HaveSamplesEnded().
|
|
break;
|
|
}
|
|
pcmIndex = pcmLoopPos;
|
|
}
|
|
}
|
|
if (needed > 0) {
|
|
memset(out, 0, needed * sizeof(s16));
|
|
}
|
|
}
|
|
break;
|
|
case VOICETYPE_ATRAC3:
|
|
atrac3.getNextSamples(output, numSamples);
|
|
break;
|
|
default:
|
|
memset(output, 0, numSamples * sizeof(s16));
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool SasVoice::HaveSamplesEnded() const {
|
|
switch (type) {
|
|
case VOICETYPE_VAG:
|
|
return vag.End();
|
|
|
|
case VOICETYPE_PCM:
|
|
return pcmIndex >= pcmSize;
|
|
|
|
case VOICETYPE_ATRAC3:
|
|
return atrac3.End();
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void SasInstance::MixVoice(SasVoice &voice) {
|
|
switch (voice.type) {
|
|
case VOICETYPE_VAG:
|
|
if (voice.type == VOICETYPE_VAG && !voice.vagAddr)
|
|
break;
|
|
// else fallthrough! Don't change the check above.
|
|
case VOICETYPE_PCM:
|
|
if (voice.type == VOICETYPE_PCM && !voice.pcmAddr)
|
|
break;
|
|
// else fallthrough! Don't change the check above.
|
|
default:
|
|
// This feels a bit hacky. The first 32 samples after a keyon are 0s.
|
|
int delay = 0;
|
|
if (voice.envelope.NeedsKeyOn()) {
|
|
const bool ignorePitch = voice.type == VOICETYPE_PCM && voice.pitch > PSP_SAS_PITCH_BASE;
|
|
delay = ignorePitch ? 32 : (32 * (u32)voice.pitch) >> PSP_SAS_PITCH_BASE_SHIFT;
|
|
// VAG seems to have an extra sample delay (not shared by PCM.)
|
|
if (voice.type == VOICETYPE_VAG)
|
|
++delay;
|
|
}
|
|
|
|
// Resample to the correct pitch, writing exactly "grainSize" samples. We need a buffer that can
|
|
// fit 4x that, as the max pitch is 0x4000.
|
|
// TODO: Special case no-resample case (and 2x and 0.5x) for speed, it's not uncommon
|
|
|
|
// Two passes: First read, then resample.
|
|
mixTemp_[0] = voice.resampleHist[0];
|
|
mixTemp_[1] = voice.resampleHist[1];
|
|
|
|
int voicePitch = voice.pitch;
|
|
u32 sampleFrac = voice.sampleFrac;
|
|
int samplesToRead = (sampleFrac + voicePitch * std::max(0, grainSize - delay)) >> PSP_SAS_PITCH_BASE_SHIFT;
|
|
if (samplesToRead > ARRAY_SIZE(mixTemp_) - 2) {
|
|
ERROR_LOG(SCESAS, "Too many samples to read (%d)! This shouldn't happen.", samplesToRead);
|
|
samplesToRead = ARRAY_SIZE(mixTemp_) - 2;
|
|
}
|
|
int readPos = 2;
|
|
if (voice.envelope.NeedsKeyOn()) {
|
|
readPos = 0;
|
|
samplesToRead += 2;
|
|
}
|
|
voice.ReadSamples(&mixTemp_[readPos], samplesToRead);
|
|
int tempPos = readPos + samplesToRead;
|
|
|
|
for (int i = 0; i < delay; ++i) {
|
|
// Walk the curve. This means we'll reach ATTACK already, likely.
|
|
// This matches the results of tests (but maybe we can just remove the STATE_KEYON_STEP hack.)
|
|
voice.envelope.Step();
|
|
}
|
|
|
|
const bool needsInterp = voicePitch != PSP_SAS_PITCH_BASE || (sampleFrac & PSP_SAS_PITCH_MASK) != 0;
|
|
for (int i = delay; i < grainSize; i++) {
|
|
const int16_t *s = mixTemp_ + (sampleFrac >> PSP_SAS_PITCH_BASE_SHIFT);
|
|
|
|
// Linear interpolation. Good enough. Need to make resampleHist bigger if we want more.
|
|
int sample = s[0];
|
|
if (needsInterp) {
|
|
int f = sampleFrac & PSP_SAS_PITCH_MASK;
|
|
sample = (s[0] * (PSP_SAS_PITCH_MASK - f) + s[1] * f) >> PSP_SAS_PITCH_BASE_SHIFT;
|
|
}
|
|
sampleFrac += voicePitch;
|
|
|
|
// The maximum envelope height (PSP_SAS_ENVELOPE_HEIGHT_MAX) is (1 << 30) - 1.
|
|
// Reduce it to 14 bits, by shifting off 15. Round up by adding (1 << 14) first.
|
|
int envelopeValue = voice.envelope.GetHeight();
|
|
voice.envelope.Step();
|
|
envelopeValue = (envelopeValue + (1 << 14)) >> 15;
|
|
|
|
// We just scale by the envelope before we scale by volumes.
|
|
// Again, we round up by adding (1 << 14) first (*after* multiplying.)
|
|
sample = ((sample * envelopeValue) + (1 << 14)) >> 15;
|
|
|
|
// We mix into this 32-bit temp buffer and clip in a second loop
|
|
// Ideally, the shift right should be there too but for now I'm concerned about
|
|
// not overflowing.
|
|
mixBuffer[i * 2] += (sample * voice.volumeLeft) >> 12;
|
|
mixBuffer[i * 2 + 1] += (sample * voice.volumeRight) >> 12;
|
|
sendBuffer[i * 2] += sample * voice.effectLeft >> 12;
|
|
sendBuffer[i * 2 + 1] += sample * voice.effectRight >> 12;
|
|
}
|
|
|
|
voice.resampleHist[0] = mixTemp_[tempPos - 2];
|
|
voice.resampleHist[1] = mixTemp_[tempPos - 1];
|
|
|
|
voice.sampleFrac = sampleFrac - (tempPos - 2) * PSP_SAS_PITCH_BASE;
|
|
|
|
if (voice.HaveSamplesEnded())
|
|
voice.envelope.End();
|
|
if (voice.envelope.HasEnded()) {
|
|
// NOTICE_LOG(SASMIX, "Hit end of envelope");
|
|
voice.playing = false;
|
|
voice.on = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SasInstance::Mix(u32 outAddr, u32 inAddr, int leftVol, int rightVol) {
|
|
int voicesPlayingCount = 0;
|
|
|
|
for (int v = 0; v < PSP_SAS_VOICES_MAX; v++) {
|
|
SasVoice &voice = voices[v];
|
|
if (!voice.playing || voice.paused)
|
|
continue;
|
|
voicesPlayingCount++;
|
|
MixVoice(voice);
|
|
}
|
|
|
|
// Then mix the send buffer in with the rest.
|
|
|
|
// Alright, all voices mixed. Let's convert and clip, and at the same time, wipe mixBuffer for next time. Could also dither.
|
|
s16 *outp = (s16 *)Memory::GetPointer(outAddr);
|
|
const s16 *inp = inAddr ? (s16*)Memory::GetPointer(inAddr) : 0;
|
|
if (outputMode == PSP_SAS_OUTPUTMODE_MIXED) {
|
|
// Okay, apply effects processing to the Send buffer.
|
|
WriteMixedOutput(outp, inp, leftVol, rightVol);
|
|
} else {
|
|
s16 *outpL = outp + grainSize * 0;
|
|
s16 *outpR = outp + grainSize * 1;
|
|
s16 *outpSendL = outp + grainSize * 2;
|
|
s16 *outpSendR = outp + grainSize * 3;
|
|
WARN_LOG_REPORT_ONCE(sasraw, SASMIX, "sceSasCore: raw outputMode");
|
|
for (int i = 0; i < grainSize * 2; i += 2) {
|
|
*outpL++ = clamp_s16(mixBuffer[i + 0]);
|
|
*outpR++ = clamp_s16(mixBuffer[i + 1]);
|
|
*outpSendL++ = clamp_s16(sendBuffer[i + 0]);
|
|
*outpSendR++ = clamp_s16(sendBuffer[i + 1]);
|
|
}
|
|
}
|
|
memset(mixBuffer, 0, grainSize * sizeof(int) * 2);
|
|
memset(sendBuffer, 0, grainSize * sizeof(int) * 2);
|
|
|
|
#ifdef AUDIO_TO_FILE
|
|
fwrite(Memory::GetPointer(outAddr), 1, grainSize * 2 * 2, audioDump);
|
|
#endif
|
|
}
|
|
|
|
void SasInstance::WriteMixedOutput(s16 *outp, const s16 *inp, int leftVol, int rightVol) {
|
|
const bool dry = waveformEffect.isDryOn != 0;
|
|
const bool wet = waveformEffect.isWetOn != 0;
|
|
if (wet) {
|
|
ApplyWaveformEffect();
|
|
}
|
|
|
|
if (inp) {
|
|
for (int i = 0; i < grainSize * 2; i += 2) {
|
|
int sampleL = ((*inp++) * leftVol >> 12);
|
|
int sampleR = ((*inp++) * rightVol >> 12);
|
|
if (dry) {
|
|
sampleL += mixBuffer[i + 0];
|
|
sampleR += mixBuffer[i + 1];
|
|
}
|
|
if (wet) {
|
|
sampleL += sendBufferProcessed[i + 0];
|
|
sampleR += sendBufferProcessed[i + 1];
|
|
}
|
|
*outp++ = clamp_s16(sampleL);
|
|
*outp++ = clamp_s16(sampleR);
|
|
}
|
|
} else {
|
|
// These are the optimal cases.
|
|
if (dry && wet) {
|
|
for (int i = 0; i < grainSize * 2; i += 2) {
|
|
*outp++ = clamp_s16(mixBuffer[i + 0] + sendBufferProcessed[i + 0]);
|
|
*outp++ = clamp_s16(mixBuffer[i + 1] + sendBufferProcessed[i + 1]);
|
|
}
|
|
} else if (dry) {
|
|
for (int i = 0; i < grainSize * 2; i += 2) {
|
|
*outp++ = clamp_s16(mixBuffer[i + 0]);
|
|
*outp++ = clamp_s16(mixBuffer[i + 1]);
|
|
}
|
|
} else {
|
|
// This is another uncommon case, dry must be off but let's keep it for clarity.
|
|
for (int i = 0; i < grainSize * 2; i += 2) {
|
|
int sampleL = 0;
|
|
int sampleR = 0;
|
|
if (dry) {
|
|
sampleL += mixBuffer[i + 0];
|
|
sampleR += mixBuffer[i + 1];
|
|
}
|
|
if (wet) {
|
|
sampleL += sendBufferProcessed[i + 0];
|
|
sampleR += sendBufferProcessed[i + 1];
|
|
}
|
|
*outp++ = clamp_s16(sampleL);
|
|
*outp++ = clamp_s16(sampleR);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SasInstance::SetWaveformEffectType(int type) {
|
|
if (type != waveformEffect.type) {
|
|
waveformEffect.type = type;
|
|
reverb_.SetPreset(type);
|
|
}
|
|
}
|
|
|
|
// http://psx.rules.org/spu.txt has some information about setting up the delay time by modifying the delay preset.
|
|
// See http://report.ppsspp.org/logs/kind/772 for a list of games that use different types. Maybe can help us figure out
|
|
// which is which.
|
|
void SasInstance::ApplyWaveformEffect() {
|
|
// First, downsample the send buffer to 22khz. We do this naively for now.
|
|
for (int i = 0; i < grainSize / 2; i++) {
|
|
sendBufferDownsampled[i * 2] = clamp_s16(sendBuffer[i * 4]);
|
|
sendBufferDownsampled[i * 2 + 1] = clamp_s16(sendBuffer[i * 4 + 1]);
|
|
}
|
|
|
|
// Volume max is 0x1000, while our factor is up to 0x8000. Shifting right by 3 fixes that.
|
|
reverb_.ProcessReverb(sendBufferProcessed, sendBufferDownsampled, grainSize / 2, waveformEffect.leftVol << 3, waveformEffect.rightVol << 3);
|
|
}
|
|
|
|
void SasInstance::DoState(PointerWrap &p) {
|
|
auto s = p.Section("SasInstance", 1);
|
|
if (!s)
|
|
return;
|
|
|
|
Do(p, grainSize);
|
|
if (p.mode == p.MODE_READ) {
|
|
if (grainSize > 0) {
|
|
SetGrainSize(grainSize);
|
|
} else {
|
|
ClearGrainSize();
|
|
}
|
|
}
|
|
|
|
Do(p, maxVoices);
|
|
Do(p, sampleRate);
|
|
Do(p, outputMode);
|
|
|
|
// SetGrainSize() / ClearGrainSize() should've made our buffers match.
|
|
if (mixBuffer != NULL && grainSize > 0) {
|
|
DoArray(p, mixBuffer, grainSize * 2);
|
|
}
|
|
if (sendBuffer != NULL && grainSize > 0) {
|
|
DoArray(p, sendBuffer, grainSize * 2);
|
|
}
|
|
if (sendBuffer != NULL && grainSize > 0) {
|
|
// Backwards compat
|
|
int16_t *resampleBuf = new int16_t[grainSize * 4 + 3]();
|
|
DoArray(p, resampleBuf, grainSize * 4 + 3);
|
|
delete[] resampleBuf;
|
|
}
|
|
|
|
int n = PSP_SAS_VOICES_MAX;
|
|
Do(p, n);
|
|
if (n != PSP_SAS_VOICES_MAX) {
|
|
ERROR_LOG(SAVESTATE, "Wrong number of SAS voices");
|
|
return;
|
|
}
|
|
DoArray(p, voices, ARRAY_SIZE(voices));
|
|
Do(p, waveformEffect);
|
|
if (p.mode == p.MODE_READ) {
|
|
reverb_.SetPreset(waveformEffect.type);
|
|
}
|
|
}
|
|
|
|
void SasVoice::Reset() {
|
|
resampleHist[0] = 0;
|
|
resampleHist[1] = 0;
|
|
}
|
|
|
|
void SasVoice::KeyOn() {
|
|
envelope.KeyOn();
|
|
switch (type) {
|
|
case VOICETYPE_VAG:
|
|
if (Memory::IsValidAddress(vagAddr)) {
|
|
vag.Start(vagAddr, vagSize, loop);
|
|
} else {
|
|
ERROR_LOG(SASMIX, "Invalid VAG address %08x", vagAddr);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
playing = true;
|
|
on = true;
|
|
paused = false;
|
|
sampleFrac = 0;
|
|
}
|
|
|
|
void SasVoice::KeyOff() {
|
|
on = false;
|
|
envelope.KeyOff();
|
|
}
|
|
|
|
void SasVoice::ChangedParams(bool changedVag) {
|
|
if (!playing && on) {
|
|
playing = true;
|
|
if (changedVag)
|
|
vag.Start(vagAddr, vagSize, loop);
|
|
}
|
|
// TODO: restart VAG somehow
|
|
}
|
|
|
|
void SasVoice::DoState(PointerWrap &p) {
|
|
auto s = p.Section("SasVoice", 1, 3);
|
|
if (!s)
|
|
return;
|
|
|
|
Do(p, playing);
|
|
Do(p, paused);
|
|
Do(p, on);
|
|
|
|
Do(p, type);
|
|
|
|
Do(p, vagAddr);
|
|
Do(p, vagSize);
|
|
Do(p, pcmAddr);
|
|
Do(p, pcmSize);
|
|
Do(p, pcmIndex);
|
|
if (s >= 2) {
|
|
Do(p, pcmLoopPos);
|
|
} else {
|
|
pcmLoopPos = 0;
|
|
}
|
|
Do(p, sampleRate);
|
|
|
|
Do(p, sampleFrac);
|
|
Do(p, pitch);
|
|
Do(p, loop);
|
|
if (s < 2 && type == VOICETYPE_PCM) {
|
|
// We set loop incorrectly before, and always looped.
|
|
// Let's keep always looping, since it's usually right.
|
|
loop = true;
|
|
}
|
|
|
|
Do(p, noiseFreq);
|
|
|
|
Do(p, volumeLeft);
|
|
Do(p, volumeRight);
|
|
if (s < 3) {
|
|
// There were extra variables here that were for the same purpose.
|
|
Do(p, effectLeft);
|
|
Do(p, effectRight);
|
|
}
|
|
Do(p, effectLeft);
|
|
Do(p, effectRight);
|
|
DoArray(p, resampleHist, ARRAY_SIZE(resampleHist));
|
|
|
|
envelope.DoState(p);
|
|
vag.DoState(p);
|
|
atrac3.DoState(p);
|
|
}
|
|
|
|
ADSREnvelope::ADSREnvelope()
|
|
: attackRate(0),
|
|
decayRate(0),
|
|
sustainRate(0),
|
|
releaseRate(0),
|
|
attackType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE),
|
|
decayType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE),
|
|
sustainType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE),
|
|
sustainLevel(0),
|
|
releaseType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE),
|
|
state_(STATE_OFF),
|
|
height_(0) {
|
|
}
|
|
|
|
void ADSREnvelope::WalkCurve(int type, int rate) {
|
|
s64 expDelta;
|
|
switch (type) {
|
|
case PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE:
|
|
height_ += rate;
|
|
break;
|
|
|
|
case PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE:
|
|
height_ -= rate;
|
|
break;
|
|
|
|
case PSP_SAS_ADSR_CURVE_MODE_LINEAR_BENT:
|
|
if (height_ <= (s64)PSP_SAS_ENVELOPE_HEIGHT_MAX * 3 / 4) {
|
|
height_ += rate;
|
|
} else {
|
|
height_ += rate / 4;
|
|
}
|
|
break;
|
|
|
|
case PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE:
|
|
expDelta = height_ - PSP_SAS_ENVELOPE_HEIGHT_MAX;
|
|
// Flipping the sign so that we can shift in the top bits.
|
|
expDelta += (-expDelta * rate) >> 32;
|
|
height_ = expDelta + PSP_SAS_ENVELOPE_HEIGHT_MAX - (rate + 3UL) / 4UL;
|
|
break;
|
|
|
|
case PSP_SAS_ADSR_CURVE_MODE_EXPONENT_INCREASE:
|
|
expDelta = height_ - PSP_SAS_ENVELOPE_HEIGHT_MAX;
|
|
// Flipping the sign so that we can shift in the top bits.
|
|
expDelta += (-expDelta * rate) >> 32;
|
|
height_ = expDelta + 0x4000 + PSP_SAS_ENVELOPE_HEIGHT_MAX;
|
|
break;
|
|
|
|
case PSP_SAS_ADSR_CURVE_MODE_DIRECT:
|
|
height_ = rate; // Simple :)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ADSREnvelope::SetState(ADSRState state) {
|
|
if (height_ > PSP_SAS_ENVELOPE_HEIGHT_MAX) {
|
|
height_ = PSP_SAS_ENVELOPE_HEIGHT_MAX;
|
|
}
|
|
// TODO: Also check for height_ < 0 and set to 0?
|
|
state_ = state;
|
|
}
|
|
|
|
inline void ADSREnvelope::Step() {
|
|
switch (state_) {
|
|
case STATE_ATTACK:
|
|
WalkCurve(attackType, attackRate);
|
|
if (height_ >= PSP_SAS_ENVELOPE_HEIGHT_MAX || height_ < 0)
|
|
SetState(STATE_DECAY);
|
|
break;
|
|
case STATE_DECAY:
|
|
WalkCurve(decayType, decayRate);
|
|
if (height_ < sustainLevel)
|
|
SetState(STATE_SUSTAIN);
|
|
break;
|
|
case STATE_SUSTAIN:
|
|
WalkCurve(sustainType, sustainRate);
|
|
if (height_ <= 0) {
|
|
height_ = 0;
|
|
SetState(STATE_RELEASE);
|
|
}
|
|
break;
|
|
case STATE_RELEASE:
|
|
WalkCurve(releaseType, releaseRate);
|
|
if (height_ <= 0) {
|
|
height_ = 0;
|
|
SetState(STATE_OFF);
|
|
}
|
|
break;
|
|
case STATE_OFF:
|
|
// Do nothing
|
|
break;
|
|
|
|
case STATE_KEYON:
|
|
height_ = 0;
|
|
SetState(STATE_KEYON_STEP);
|
|
break;
|
|
case STATE_KEYON_STEP:
|
|
// This entire state is pretty much a hack to reproduce PSP behavior.
|
|
// The STATE_KEYON state is a real state, but not sure how it switches.
|
|
// It takes 32 steps at 0 for keyon to "kick in", 31 should shift to 0 anyway.
|
|
height_++;
|
|
if (height_ >= 31) {
|
|
height_ = 0;
|
|
SetState(STATE_ATTACK);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ADSREnvelope::KeyOn() {
|
|
SetState(STATE_KEYON);
|
|
}
|
|
|
|
void ADSREnvelope::KeyOff() {
|
|
SetState(STATE_RELEASE);
|
|
}
|
|
|
|
void ADSREnvelope::End() {
|
|
SetState(STATE_OFF);
|
|
height_ = 0;
|
|
}
|
|
|
|
void ADSREnvelope::DoState(PointerWrap &p) {
|
|
auto s = p.Section("ADSREnvelope", 1, 2);
|
|
if (!s) {
|
|
return;
|
|
}
|
|
|
|
Do(p, attackRate);
|
|
Do(p, decayRate);
|
|
Do(p, sustainRate);
|
|
Do(p, releaseRate);
|
|
Do(p, attackType);
|
|
Do(p, decayType);
|
|
Do(p, sustainType);
|
|
Do(p, sustainLevel);
|
|
Do(p, releaseType);
|
|
if (s < 2) {
|
|
Do(p, state_);
|
|
if (state_ == 4) {
|
|
state_ = STATE_OFF;
|
|
}
|
|
int stepsLegacy;
|
|
Do(p, stepsLegacy);
|
|
} else {
|
|
Do(p, state_);
|
|
}
|
|
Do(p, height_);
|
|
}
|