ppsspp/GPU/GLES/TextureCache.cpp
Henrik Rydgard e42af096c8 Merge
2012-12-21 23:43:48 +01:00

976 lines
24 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <map>
#include "../../Core/MemMap.h"
#include "../ge_constants.h"
#include "../GPUState.h"
#include "TextureCache.h"
// If a texture hasn't been seen for 200 frames, get rid of it.
#define TEXTURE_KILL_AGE 200
// TODO: Speed up by switching to ReadUnchecked*.
struct TexCacheEntry
{
u32 addr;
u32 hash;
int frameCounter;
u32 numMips;
u32 format;
u32 clutaddr;
u32 clutformat;
u32 cluthash;
int dim;
GLuint texture;
};
typedef std::map<u64, TexCacheEntry> TexCache;
static TexCache cache;
u32 *tmpTexBuf32;
u16 *tmpTexBuf16;
u32 *tmpTexBufRearrange;
u32 *clutBuf32;
u16 *clutBuf16;
void TextureCache_Init()
{
// TODO: Switch to aligned allocations for alignment. AllocateMemoryPages would do the trick.
tmpTexBuf32 = new u32[1024 * 512];
tmpTexBuf16 = new u16[1024 * 512];
tmpTexBufRearrange = new u32[1024 * 512];
clutBuf32 = new u32[4096];
clutBuf16 = new u16[4096];
}
void TextureCache_Shutdown()
{
delete [] tmpTexBuf32;
tmpTexBuf32 = 0;
delete [] tmpTexBuf16;
tmpTexBuf16 = 0;
delete [] tmpTexBufRearrange;
tmpTexBufRearrange = 0;
delete [] clutBuf32;
delete [] clutBuf16;
}
void TextureCache_Clear(bool delete_them)
{
if (delete_them)
{
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter)
{
DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture);
glDeleteTextures(1, &iter->second.texture);
}
}
if (cache.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)cache.size());
cache.clear();
}
}
// Removes old textures.
void TextureCache_Decimate()
{
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); )
{
if (iter->second.frameCounter + TEXTURE_KILL_AGE < gpuStats.numFrames)
{
glDeleteTextures(1, &iter->second.texture);
cache.erase(iter++);
}
else
++iter;
}
}
void TextureCache_Invalidate(u32 addr, int size)
{
u32 addr_end = addr + size;
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); )
{
// Clear if either the addr or clutaddr is in the range.
bool invalidate = iter->second.addr >= addr && iter->second.addr < addr_end;
invalidate |= iter->second.clutaddr >= addr && iter->second.clutaddr < addr_end;
if (invalidate)
{
glDeleteTextures(1, &iter->second.texture);
cache.erase(iter++);
}
else
++iter;
}
}
int TextureCache_NumLoadedTextures()
{
return cache.size();
}
u32 GetClutAddr(u32 clutEntrySize)
{
return ((gstate.clutaddr & 0xFFFFFF) | ((gstate.clutaddrupper << 8) & 0x0F000000)) + ((gstate.clutformat >> 16) & 0x1f) * clutEntrySize;
}
u32 GetClutIndex(u32 index)
{
return ((((gstate.clutformat >> 16) & 0x1f) + index) >> ((gstate.clutformat >> 2) & 0x1f)) & ((gstate.clutformat >> 8) & 0xff);
}
u16 *ReadClut16()
{
u32 clutNumEntries = (gstate.loadclut & 0x3f) * 16;
u32 clutAddr = GetClutAddr(2);
for (u32 i = ((gstate.clutformat >> 16) & 0x1f); i < clutNumEntries; i++)
clutBuf16[i] = Memory::Read_U16(clutAddr + i * 2);
return clutBuf16;
}
u32 *ReadClut32()
{
u32 clutNumEntries = (gstate.loadclut & 0x3f) * 8;
u32 clutAddr = GetClutAddr(4);
for (u32 i = ((gstate.clutformat >> 16) & 0x1f); i < clutNumEntries; i++)
clutBuf32[i] = Memory::Read_U32(clutAddr + i * 4);
return clutBuf32;
}
void *UnswizzleFromMem(u32 texaddr, u32 bytesPerPixel, u32 level)
{
u32 addr = texaddr;
u32 rowWidth = (bytesPerPixel > 0) ? ((gstate.texbufwidth[level] & 0x3FF) * bytesPerPixel) : ((gstate.texbufwidth[level] & 0x3FF) / 2);
u32 pitch = rowWidth / 4;
u32 bxc = rowWidth / 16;
u32 byc = ((1 << ((gstate.texsize[level] >> 8) & 0xf)) + 7) / 8;
if (byc == 0)
byc = 1;
u32 ydest = 0;
u32 by;
for (by = 0; by < byc; by++)
{
if (rowWidth >= 16)
{
u32 xdest = ydest;
u32 bx;
for (bx = 0; bx < bxc; bx++)
{
u32 dest = xdest;
u8 n;
for (n = 0; n < 8; n++)
{
u32 k;
for (k = 0; k < 4; k++) {
tmpTexBuf32[dest + k] = Memory::Read_U32(addr);
addr += 4;
}
dest += pitch;
}
xdest += 4;
}
ydest += (rowWidth * 8) / 4;
}
else if (rowWidth == 8)
{
u32 n;
for (n = 0; n < 8; n++, ydest += 2)
{
tmpTexBuf32[ydest + 0] = Memory::Read_U32(addr + 0);
tmpTexBuf32[ydest + 1] = Memory::Read_U32(addr + 4);
addr += 16; // skip two u32
}
}
else if (rowWidth == 4)
{
u32 n;
for (n = 0; n < 8; n++, ydest++) {
tmpTexBuf32[ydest] = Memory::Read_U32(addr);
addr += 16;
}
}
else if (rowWidth == 2)
{
u32 n;
for (n = 0; n < 4; n++, ydest++)
{
u16 n1 = Memory::Read_U32(addr + 0) & 0xffff;
u16 n2 = Memory::Read_U32(addr + 16) & 0xffff;
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16);
addr += 32;
}
}
else if (rowWidth == 1)
{
u32 n;
for (n = 0; n < 2; n++, ydest++)
{
u8 n1 = Memory::Read_U32(addr + 0) & 0xf;
u8 n2 = Memory::Read_U32(addr + 16) & 0xf;
u8 n3 = Memory::Read_U32(addr + 32) & 0xf;
u8 n4 = Memory::Read_U32(addr + 48) & 0xf;
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24);
}
}
}
return tmpTexBuf32;
}
void *readIndexedTex(u32 level, u32 texaddr, u32 bytesPerIndex)
{
u32 length = (gstate.texbufwidth[level] & 0x3FF) * (1 << ((gstate.texsize[level] >> 8) & 0xf));
void *buf = NULL;
switch ((gstate.clutformat & 3))
{
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
u16 *clut = ReadClut16();
if (!(gstate.texmode & 1))
{
u32 i;
switch (bytesPerIndex)
{
case 1:
for (i = 0; i < length; i++) {
u8 index = Memory::Read_U8(texaddr + i);
tmpTexBuf16[i] = clut[GetClutIndex(index)];
}
break;
case 2:
for (i = 0; i < length; i++) {
u16 index = Memory::Read_U16(texaddr + i * 2);
tmpTexBuf16[i] = clut[GetClutIndex(index)];
}
break;
case 4:
for (i = 0; i < length; i++) {
u32 index = Memory::Read_U32(texaddr + i * 4);
tmpTexBuf16[i] = clut[GetClutIndex(index)];
}
break;
}
}
else
{
u32 i, j;
UnswizzleFromMem(texaddr, bytesPerIndex, level);
switch (bytesPerIndex)
{
case 1:
for (i = 0, j = 0; i < length; i += 4, j++)
{
u32 n = tmpTexBuf32[j];
u32 k;
for (k = 0; k < 4; k++) {
u8 index = (n >> (k * 8)) & 0xff;
tmpTexBuf16[i + k] = clut[GetClutIndex(index)];
}
}
break;
case 2:
for (i = 0, j = 0; i < length; i += 2, j++)
{
u32 n = tmpTexBuf32[j];
tmpTexBuf16[i + 0] = clut[GetClutIndex(n & 0xffff)];
tmpTexBuf16[i + 1] = clut[GetClutIndex(n >> 16)];
}
break;
case 4:
for (i = 0; i < length; i++) {
u32 n = tmpTexBuf32[i];
tmpTexBuf16[i] = clut[GetClutIndex(n)];
}
break;
}
}
buf = tmpTexBuf16;
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
u32 *clut = ReadClut32();
if (!(gstate.texmode & 1))
{
u32 i;
switch (bytesPerIndex)
{
case 1:
for (i = 0; i < length; i++) {
u8 index = Memory::Read_U8(texaddr + i);
tmpTexBuf32[i] = clut[GetClutIndex(index)];
}
break;
case 2:
for (i = 0; i < length; i++) {
u16 index = Memory::Read_U16(texaddr + i * 2);
tmpTexBuf32[i] = clut[GetClutIndex(index)];
}
break;
case 4:
for (i = 0; i < length; i++) {
u32 index = Memory::Read_U32(texaddr + i * 4);
tmpTexBuf32[i] = clut[GetClutIndex(index)];
}
break;
}
}
else
{
u32 j;
s32 i;
UnswizzleFromMem(texaddr, bytesPerIndex, level);
switch (bytesPerIndex)
{
case 1:
for (i = length - 4, j = (length / 4) - 1; i >= 0; i -= 4, j--)
{
u32 n = tmpTexBuf32[j];
u32 k;
for (k = 0; k < 4; k++) {
u32 index = (n >> (k * 8)) & 0xff;
tmpTexBuf32[i + k] = clut[GetClutIndex(index)];
}
}
break;
case 2:
for (i = length - 2, j = (length / 2) - 1; i >= 0; i -= 2, j--)
{
u32 n = tmpTexBuf32[j];
tmpTexBuf32[i + 0] = clut[GetClutIndex(n & 0xffff)];
tmpTexBuf32[i + 1] = clut[GetClutIndex(n >> 16)];
}
break;
case 4:
for (i = 0; (u32)i < length; i++) {
u32 n = tmpTexBuf32[i];
tmpTexBuf32[i] = clut[GetClutIndex(n)];
}
break;
}
}
buf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3));
break;
}
return buf;
}
GLenum getClutDestFormat(GEPaletteFormat format)
{
switch (format)
{
case GE_CMODE_16BIT_ABGR4444:
return GL_UNSIGNED_SHORT_4_4_4_4;
case GE_CMODE_16BIT_ABGR5551:
return GL_UNSIGNED_SHORT_5_5_5_1;
case GE_CMODE_16BIT_BGR5650:
return GL_UNSIGNED_SHORT_5_6_5;
case GE_CMODE_32BIT_ABGR8888:
return GL_UNSIGNED_BYTE;
}
return 0;
}
u32 texByteAlignMap[] = {2, 2, 2, 4};
// This should not have to be done per texture! OpenGL is silly yo
// TODO: Dirty-check this against the current texture.
void UpdateSamplingParams()
{
int minFilt = gstate.texfilter & 0x7;
int magFilt = (gstate.texfilter>>8)&1;
minFilt &= 1; //no mipmaps yet
int sClamp = gstate.texwrap & 1;
int tClamp = (gstate.texwrap>>8) & 1;
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilt ? GL_LINEAR : GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilt ? GL_LINEAR : GL_NEAREST);
}
// Convert from PSP bit order to GLES bit order
u16 convert565(u16 c) {
return (c >> 11) | (c & 0x07E0) | (c << 11);
}
// Convert from PSP bit order to GLES bit order
u16 convert4444(u16 c) {
return (c >> 12) | ((c >> 4) & 0xF0) | ((c << 4) & 0xF00) | (c << 12);
}
// Convert from PSP bit order to GLES bit order
u16 convert5551(u16 c) {
return ((c & 0x8000) >> 15) | (c << 1);
}
// All these DXT structs are in the reverse order, as compared to PC.
// On PC, alpha comes before color, and interpolants are before the tile data.
struct DXT1Block
{
u8 lines[4];
u16 color1;
u16 color2;
};
struct DXT3Block
{
DXT1Block color;
u16 alphaLines[4];
};
struct DXT5Block
{
DXT1Block color;
u32 alphadata2;
u16 alphadata1;
u8 alpha1; u8 alpha2;
};
inline u32 makecol(int r, int g, int b, int a)
{
return (a << 24)|(r << 16)|(g << 8)|b;
}
// This could probably be done faster by decoding two or four blocks at a time with SSE/NEON.
void decodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, bool ignore1bitAlpha = false)
{
// S3TC Decoder
// Needs more speed and debugging.
u16 c1 = (src->color1);
u16 c2 = (src->color2);
int red1 = Convert5To8(c1 & 0x1F);
int red2 = Convert5To8(c2 & 0x1F);
int green1 = Convert6To8((c1 >> 5) & 0x3F);
int green2 = Convert6To8((c2 >> 5) & 0x3F);
int blue1 = Convert5To8((c1 >> 11) & 0x1F);
int blue2 = Convert5To8((c2 >> 11) & 0x1F);
u32 colors[4];
colors[0] = makecol(red1, green1, blue1, 255);
colors[1] = makecol(red2, green2, blue2, 255);
if (c1 > c2 || ignore1bitAlpha)
{
int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3);
int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3);
int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3);
colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255);
colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255);
}
else
{
colors[2] = makecol((red1 + red2 + 1) / 2, // Average
(green1 + green2 + 1) / 2,
(blue1 + blue2 + 1) / 2, 255);
colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent
}
for (int y = 0; y < 4; y++)
{
int val = src->lines[y];
for (int x = 0; x < 4; x++)
{
dst[x] = colors[val & 3];
val >>= 2;
}
dst += pitch;
}
}
void decodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch)
{
decodeDXT1Block(dst, &src->color, pitch, true);
// Alpha: TODO
}
inline u8 lerp8(const DXT5Block *src, int n) {
float d = n / 7.0f;
return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d);
}
inline u8 lerp6(const DXT5Block *src, int n) {
float d = n / 5.0f;
return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d);
}
// The alpha channel is not 100% correct
void decodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch)
{
decodeDXT1Block(dst, &src->color, pitch, true);
u8 alpha[8];
alpha[0] = src->alpha1;
alpha[1] = src->alpha2;
if (alpha[0] > alpha[1]) {
alpha[2] = lerp8(src, 6);
alpha[3] = lerp8(src, 5);
alpha[4] = lerp8(src, 4);
alpha[5] = lerp8(src, 3);
alpha[6] = lerp8(src, 2);
alpha[7] = lerp8(src, 1);
} else {
alpha[2] = lerp6(src, 4);
alpha[3] = lerp6(src, 3);
alpha[4] = lerp6(src, 2);
alpha[5] = lerp6(src, 1);
alpha[6] = 0;
alpha[7] = 255;
}
u64 data = ((u64)src->alphadata1 << 32) | src->alphadata2;
for (int y = 0; y < 4; y++)
{
for (int x = 0; x < 4; x++)
{
dst[x] = (dst[x] & 0xFFFFFF) | (alpha[data & 7] << 24);
data >>= 3;
}
dst += pitch;
}
}
void convertColors(u8 *finalBuf, GLuint dstFmt, int numPixels)
{
// TODO: All these can be massively sped up with SSE, or even
// somewhat sped up using "manual simd" in 32 or 64-bit gprs.
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
{
u16 *p = (u16 *)finalBuf;
for (int i = 0; i < numPixels; i++) {
u16 c = p[i];
p[i] = (c >> 12) | ((c >> 4) & 0xF0) | ((c << 4) & 0xF00) | (c << 12);
}
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
{
u16 *p = (u16 *)finalBuf;
for (int i = 0; i < numPixels; i++) {
u16 c = p[i];
p[i] = ((c & 0x8000) >> 15) | ((c >> 9) & 0x3E) | ((c << 1) & 0x7C0) | ((c << 11) & 0xF800);
}
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
{
u16 *p = (u16 *)finalBuf;
for (int i = 0; i < numPixels; i++) {
u16 c = p[i];
p[i] = (c >> 11) | (c & 0x07E0) | (c << 11);
}
}
break;
default:
{
// No need to convert RGBA8888, right order already
}
break;
}
}
void PSPSetTexture()
{
static int lastBoundTexture = -1;
u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0xFF000000);
texaddr &= 0xFFFFFFF;
u8 level = 0;
u32 format = gstate.texformat & 0xF;
u32 clutformat = gstate.clutformat & 3;
u32 clutaddr = GetClutAddr(clutformat == GE_CMODE_32BIT_ABGR8888 ? 4 : 2);
u8 *texptr = Memory::GetPointer(texaddr);
u32 texhash = texptr ? *(u32*)texptr : 0;
u64 cachekey = texaddr ^ clutaddr;
cachekey |= (u64) texhash << 32;
TexCache::iterator iter = cache.find(cachekey);
if (iter != cache.end())
{
//Validate the texture here (width, height etc)
TexCacheEntry &entry = iter->second;
int dim = gstate.texsize[0] & 0xF0F;
bool match = true;
//TODO: Check more texture parameters, compute real texture hash
if (dim != entry.dim || entry.hash != texhash || entry.format != format)
match = false;
//TODO: Check more clut parameters, compute clut hash
if (match && (format >= GE_TFMT_CLUT4 && format <= GE_TFMT_CLUT32) &&
(entry.clutformat != clutformat ||
entry.clutaddr != clutaddr ||
entry.cluthash != Memory::Read_U32(entry.clutaddr)))
match = false;
if (match) {
//got one!
entry.frameCounter = gpuStats.numFrames;
if (true || entry.texture != lastBoundTexture) {
glBindTexture(GL_TEXTURE_2D, entry.texture);
UpdateSamplingParams();
lastBoundTexture = entry.texture;
}
DEBUG_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr);
return; //Done!
} else {
INFO_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr);
glDeleteTextures(1, &entry.texture);
cache.erase(iter);
}
}
else
{
INFO_LOG(G3D,"No texture in cache, decoding...");
}
//we have to decode it
TexCacheEntry entry = {0};
entry.addr = texaddr;
entry.hash = texhash;
entry.format = format;
entry.frameCounter = gpuStats.numFrames;
if(format >= GE_TFMT_CLUT4 && format <= GE_TFMT_CLUT32)
{
entry.clutformat = clutformat;
entry.clutaddr = GetClutAddr(clutformat == GE_CMODE_32BIT_ABGR8888 ? 4 : 2);
entry.cluthash = Memory::Read_U32(entry.clutaddr);
}
else
{
entry.clutaddr = 0;
}
int bufw = gstate.texbufwidth[0] & 0x3ff;
entry.dim = gstate.texsize[0] & 0xF0F;
int w = 1 << (gstate.texsize[0] & 0xf);
int h = 1 << ((gstate.texsize[0]>>8) & 0xf);
gstate_c.curTextureWidth=w;
gstate_c.curTextureHeight=h;
GLenum dstFmt = 0;
u32 texByteAlign = 1;
void *finalBuf = NULL;
// TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips.
// TODO: Actually decode the mipmaps.
switch (format)
{
case GE_TFMT_CLUT4:
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
switch (clutformat)
{
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
u16 *clut = ReadClut16();
u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16;
texByteAlign = 2;
if (!(gstate.texmode & 1))
{
u32 addr = texaddr;
for (int i = 0; i < bufw * h; i += 2)
{
u8 index = Memory::Read_U8(addr);
tmpTexBuf16[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff];
tmpTexBuf16[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff];
addr++;
}
}
else
{
UnswizzleFromMem(texaddr, 0, level);
for (int i = 0, j = 0; i < bufw * h; i += 8, j++)
{
u32 n = tmpTexBuf32[j];
u32 k, index;
for (k = 0; k < 8; k++) {
index = (n >> (k * 4)) & 0xf;
tmpTexBuf16[i + k] = clut[GetClutIndex(index) + clutSharingOff];
}
}
}
finalBuf = tmpTexBuf16;
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
u32 *clut = ReadClut32();
u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16;
if (!(gstate.texmode & 1))
{
u32 addr = texaddr;
for (int i = 0; i < bufw * h; i += 2)
{
u8 index = Memory::Read_U8(addr);
tmpTexBuf32[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff];
tmpTexBuf32[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff];
addr++;
}
}
else
{
u32 pixels = bufw * h;
UnswizzleFromMem(texaddr, 0, level);
for (int i = pixels - 8, j = (pixels / 8) - 1; i >= 0; i -= 8, j--)
{
u32 n = tmpTexBuf32[j];
for (int k = 0; k < 8; k++) {
u32 index = (n >> (k * 4)) & 0xf;
tmpTexBuf32[i + k] = clut[GetClutIndex(index) + clutSharingOff];
}
}
}
finalBuf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", (gstate.clutformat & 3));
return;
}
break;
case GE_TFMT_CLUT8:
finalBuf = readIndexedTex(level, texaddr, 1);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_CLUT16:
finalBuf = readIndexedTex(level, texaddr, 2);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_CLUT32:
finalBuf = readIndexedTex(level, texaddr, 4);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (format == GE_TFMT_4444)
dstFmt = GL_UNSIGNED_SHORT_4_4_4_4;
else if (format == GE_TFMT_5551)
dstFmt = GL_UNSIGNED_SHORT_5_5_5_1;
else if (format == GE_TFMT_5650)
dstFmt = GL_UNSIGNED_SHORT_5_6_5;
texByteAlign = 2;
if (!(gstate.texmode & 1))
{
int len = std::max(bufw, w) * h;
for (int i = 0; i < len; i++)
tmpTexBuf16[i] = Memory::Read_U16(texaddr + i * 2);
finalBuf = tmpTexBuf16;
}
else
finalBuf = UnswizzleFromMem(texaddr, 2, level);
break;
case GE_TFMT_8888:
dstFmt = GL_UNSIGNED_BYTE;
if (!(gstate.texmode & 1))
{
int len = bufw * h;
for (int i = 0; i < len; i++)
tmpTexBuf32[i] = Memory::Read_U32(texaddr + i * 4);
finalBuf = tmpTexBuf32;
}
else
finalBuf = UnswizzleFromMem(texaddr, 4, level);
break;
case GE_TFMT_DXT1:
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4)
{
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4)
{
decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
finalBuf = tmpTexBuf32;
w = (w + 3) & ~3;
}
break;
case GE_TFMT_DXT3:
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT3Block *src = (DXT3Block*)texptr;
// Alpha is off
for (int y = 0; y < h; y += 4)
{
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4)
{
decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32;
}
break;
case GE_TFMT_DXT5:
ERROR_LOG(G3D, "Unhandled compressed texture, format %i! swizzle=%i", format, gstate.texmode & 1);
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT5Block *src = (DXT5Block*)texptr;
// Alpha is almost right
for (int y = 0; y < h; y += 4)
{
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4)
{
decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unknown Texture Format %d!!!", format);
finalBuf = tmpTexBuf32;
return;
}
if (!finalBuf) {
ERROR_LOG(G3D, "NO finalbuf! Will crash!");
}
convertColors((u8*)finalBuf, dstFmt, bufw * h);
if (w != bufw) {
int pixelSize;
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_5_6_5:
pixelSize = 2;
break;
default:
pixelSize = 4;
break;
}
// Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc.
int inRowBytes = bufw * pixelSize;
int outRowBytes = w * pixelSize;
const u8 *read = (const u8 *)finalBuf;
u8 *write = 0;
if (w > bufw) {
write = (u8 *)tmpTexBufRearrange;
finalBuf = tmpTexBufRearrange;
} else {
write = (u8 *)finalBuf;
}
for (int y = 0; y < h; y++) {
memmove(write, read, outRowBytes);
read += inRowBytes;
write += outRowBytes;
}
}
gpuStats.numTexturesDecoded++;
// Can restore these and remove the above fixup on some platforms.
//glPixelStorei(GL_UNPACK_ROW_LENGTH, bufw);
//glPixelStorei(GL_UNPACK_ALIGNMENT, texByteAlign);
//glPixelStorei(GL_PACK_ROW_LENGTH, bufw);
//glPixelStorei(GL_PACK_ALIGNMENT, texByteAlign);
INFO_LOG(G3D, "Creating texture %i from %08x: %i x %i (stride: %i). fmt: %i", entry.texture, entry.addr, w, h, bufw, entry.format);
glGenTextures(1, &entry.texture);
glBindTexture(GL_TEXTURE_2D, entry.texture);
lastBoundTexture = entry.texture;
GLuint components = dstFmt == GL_UNSIGNED_SHORT_5_6_5 ? GL_RGB : GL_RGBA;
glTexImage2D(GL_TEXTURE_2D, 0, components, w, h, 0, components, dstFmt, finalBuf);
// glGenerateMipmap(GL_TEXTURE_2D);
UpdateSamplingParams();
//glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
//glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
//glPixelStorei(GL_PACK_ROW_LENGTH, 0);
//glPixelStorei(GL_PACK_ALIGNMENT, 1);
cache[cachekey] = entry;
}