ppsspp/Core/FileLoaders/DiskCachingFileLoader.cpp
Unknown W. Brackets a7b7bf7826 Global: Set many read-only params as const.
This makes what they do and which args to use clearer, if nothing else.
2022-12-10 21:13:36 -08:00

856 lines
22 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <algorithm>
#include <cstddef>
#include <set>
#include <mutex>
#include <cstring>
#include "Common/Data/Encoding/Utf8.h"
#include "Common/File/DiskFree.h"
#include "Common/File/DirListing.h"
#include "Common/File/FileUtil.h"
#include "Common/File/Path.h"
#include "Common/Log.h"
#include "Common/CommonWindows.h"
#include "Core/FileLoaders/DiskCachingFileLoader.h"
#include "Core/System.h"
#if PPSSPP_PLATFORM(UWP)
#include <fileapifromapp.h>
#endif
#if PPSSPP_PLATFORM(SWITCH)
// Far from optimal, but I guess it works...
#define fseeko fseek
#endif
static const char *CACHEFILE_MAGIC = "ppssppDC";
static const s64 SAFETY_FREE_DISK_SPACE = 768 * 1024 * 1024; // 768 MB
// Aim to allow this many files cached at once.
static const u32 CACHE_SPACE_FLEX = 4;
Path DiskCachingFileLoaderCache::cacheDir_;
std::map<Path, DiskCachingFileLoaderCache *> DiskCachingFileLoader::caches_;
std::mutex DiskCachingFileLoader::cachesMutex_;
// Takes ownership of backend.
DiskCachingFileLoader::DiskCachingFileLoader(FileLoader *backend)
: ProxiedFileLoader(backend) {
}
void DiskCachingFileLoader::Prepare() {
std::call_once(preparedFlag_, [this]() {
filesize_ = ProxiedFileLoader::FileSize();
if (filesize_ > 0) {
InitCache();
}
});
}
DiskCachingFileLoader::~DiskCachingFileLoader() {
if (filesize_ > 0) {
ShutdownCache();
}
}
bool DiskCachingFileLoader::Exists() {
Prepare();
return ProxiedFileLoader::Exists();
}
bool DiskCachingFileLoader::ExistsFast() {
// It may require a slow operation to check - if we have data, let's say yes.
// This helps initial load, since we check each recent file for existence.
return true;
}
s64 DiskCachingFileLoader::FileSize() {
Prepare();
return filesize_;
}
size_t DiskCachingFileLoader::ReadAt(s64 absolutePos, size_t bytes, void *data, Flags flags) {
Prepare();
size_t readSize;
if (absolutePos >= filesize_) {
bytes = 0;
} else if (absolutePos + (s64)bytes >= filesize_) {
bytes = (size_t)(filesize_ - absolutePos);
}
if (cache_ && cache_->IsValid() && (flags & Flags::HINT_UNCACHED) == 0) {
readSize = cache_->ReadFromCache(absolutePos, bytes, data);
// While in case the cache size is too small for the entire read.
while (readSize < bytes) {
readSize += cache_->SaveIntoCache(backend_, absolutePos + readSize, bytes - readSize, (u8 *)data + readSize, flags);
// We're done, nothing more to read.
if (readSize == bytes) {
break;
}
// If there are already-cached blocks afterward, we have to read them.
size_t bytesFromCache = cache_->ReadFromCache(absolutePos + readSize, bytes - readSize, (u8 *)data + readSize);
readSize += bytesFromCache;
if (bytesFromCache == 0) {
// We can't read any more.
break;
}
}
} else {
readSize = backend_->ReadAt(absolutePos, bytes, data, flags);
}
return readSize;
}
std::vector<Path> DiskCachingFileLoader::GetCachedPathsInUse() {
std::lock_guard<std::mutex> guard(cachesMutex_);
// This is on the file loader so that it can manage the caches_.
std::vector<Path> files;
for (auto it : caches_) {
files.push_back(it.first);
}
return files;
}
void DiskCachingFileLoader::InitCache() {
std::lock_guard<std::mutex> guard(cachesMutex_);
Path path = ProxiedFileLoader::GetPath();
auto &entry = caches_[path];
if (!entry) {
entry = new DiskCachingFileLoaderCache(path, filesize_);
}
cache_ = entry;
cache_->AddRef();
}
void DiskCachingFileLoader::ShutdownCache() {
std::lock_guard<std::mutex> guard(cachesMutex_);
if (cache_->Release()) {
// If it ran out of counts, delete it.
delete cache_;
caches_.erase(ProxiedFileLoader::GetPath());
}
cache_ = nullptr;
}
DiskCachingFileLoaderCache::DiskCachingFileLoaderCache(const Path &path, u64 filesize)
: filesize_(filesize), origPath_(path) {
InitCache(path);
}
DiskCachingFileLoaderCache::~DiskCachingFileLoaderCache() {
ShutdownCache();
}
void DiskCachingFileLoaderCache::InitCache(const Path &filename) {
cacheSize_ = 0;
indexCount_ = 0;
oldestGeneration_ = 0;
maxBlocks_ = MAX_BLOCKS_LOWER_BOUND;
flags_ = 0;
generation_ = 0;
const Path cacheFilePath = MakeCacheFilePath(filename);
bool fileLoaded = LoadCacheFile(cacheFilePath);
// We do some basic locking to protect against two things: crashes and concurrency.
// Concurrency will break the file. Crashes will probably leave it inconsistent.
if (fileLoaded && !LockCacheFile(true)) {
if (RemoveCacheFile(cacheFilePath)) {
// Create a new one.
fileLoaded = false;
} else {
// Couldn't remove, in use? Give up on caching.
CloseFileHandle();
}
}
if (!fileLoaded) {
CreateCacheFile(cacheFilePath);
if (!LockCacheFile(true)) {
CloseFileHandle();
}
}
}
void DiskCachingFileLoaderCache::ShutdownCache() {
if (f_) {
bool failed = false;
if (fseek(f_, sizeof(FileHeader), SEEK_SET) != 0) {
failed = true;
} else if (fwrite(&index_[0], sizeof(BlockInfo), indexCount_, f_) != indexCount_) {
failed = true;
} else if (fflush(f_) != 0) {
failed = true;
}
if (failed) {
// Leave it locked, it's broken.
ERROR_LOG(LOADER, "Unable to flush disk cache.");
} else {
LockCacheFile(false);
}
CloseFileHandle();
}
index_.clear();
blockIndexLookup_.clear();
cacheSize_ = 0;
}
size_t DiskCachingFileLoaderCache::ReadFromCache(s64 pos, size_t bytes, void *data) {
std::lock_guard<std::mutex> guard(lock_);
if (!f_) {
return 0;
}
size_t cacheStartPos = (size_t)(pos / blockSize_);
size_t cacheEndPos = (size_t)((pos + bytes - 1) / blockSize_);
size_t readSize = 0;
size_t offset = (size_t)(pos - (cacheStartPos * (u64)blockSize_));
u8 *p = (u8 *)data;
for (size_t i = cacheStartPos; i <= cacheEndPos; ++i) {
auto &info = index_[i];
if (info.block == INVALID_BLOCK) {
return readSize;
}
info.generation = generation_;
if (info.hits < std::numeric_limits<u16>::max()) {
++info.hits;
}
size_t toRead = std::min(bytes - readSize, (size_t)blockSize_ - offset);
if (!ReadBlockData(p + readSize, info, offset, toRead)) {
return readSize;
}
readSize += toRead;
// Don't need an offset after the first read.
offset = 0;
}
return readSize;
}
size_t DiskCachingFileLoaderCache::SaveIntoCache(FileLoader *backend, s64 pos, size_t bytes, void *data, FileLoader::Flags flags) {
std::lock_guard<std::mutex> guard(lock_);
if (!f_) {
// Just to keep things working.
return backend->ReadAt(pos, bytes, data, flags);
}
size_t cacheStartPos = (size_t)(pos / blockSize_);
size_t cacheEndPos = (size_t)((pos + bytes - 1) / blockSize_);
size_t readSize = 0;
size_t offset = (size_t)(pos - (cacheStartPos * (u64)blockSize_));
u8 *p = (u8 *)data;
size_t blocksToRead = 0;
for (size_t i = cacheStartPos; i <= cacheEndPos; ++i) {
auto &info = index_[i];
if (info.block != INVALID_BLOCK) {
break;
}
++blocksToRead;
if (blocksToRead >= MAX_BLOCKS_PER_READ) {
break;
}
}
if (!MakeCacheSpaceFor(blocksToRead) || blocksToRead == 0) {
return 0;
}
if (blocksToRead == 1) {
auto &info = index_[cacheStartPos];
u8 *buf = new u8[blockSize_];
size_t readBytes = backend->ReadAt(cacheStartPos * (u64)blockSize_, blockSize_, buf, flags);
// Check if it was written while we were busy. Might happen if we thread.
if (info.block == INVALID_BLOCK && readBytes != 0) {
info.block = AllocateBlock((u32)cacheStartPos);
WriteBlockData(info, buf);
WriteIndexData((u32)cacheStartPos, info);
}
size_t toRead = std::min(bytes - readSize, (size_t)blockSize_ - offset);
memcpy(p + readSize, buf + offset, toRead);
readSize += toRead;
delete [] buf;
} else {
u8 *wholeRead = new u8[blocksToRead * blockSize_];
size_t readBytes = backend->ReadAt(cacheStartPos * (u64)blockSize_, blocksToRead * blockSize_, wholeRead, flags);
for (size_t i = 0; i < blocksToRead; ++i) {
auto &info = index_[cacheStartPos + i];
// Check if it was written while we were busy. Might happen if we thread.
if (info.block == INVALID_BLOCK && readBytes != 0) {
info.block = AllocateBlock((u32)cacheStartPos + (u32)i);
WriteBlockData(info, wholeRead + (i * blockSize_));
// TODO: Doing each index together would probably be better.
WriteIndexData((u32)cacheStartPos + (u32)i, info);
}
size_t toRead = std::min(bytes - readSize, (size_t)blockSize_ - offset);
memcpy(p + readSize, wholeRead + (i * blockSize_) + offset, toRead);
readSize += toRead;
}
delete[] wholeRead;
}
cacheSize_ += blocksToRead;
++generation_;
if (generation_ == std::numeric_limits<u16>::max()) {
RebalanceGenerations();
}
return readSize;
}
bool DiskCachingFileLoaderCache::MakeCacheSpaceFor(size_t blocks) {
size_t goal = (size_t)maxBlocks_ - blocks;
while (cacheSize_ > goal) {
u16 minGeneration = generation_;
// We increment the iterator inside because we delete things inside.
for (size_t i = 0; i < blockIndexLookup_.size(); ++i) {
if (blockIndexLookup_[i] == INVALID_INDEX) {
continue;
}
auto &info = index_[blockIndexLookup_[i]];
// Check for the minimum seen generation.
// TODO: Do this smarter?
if (info.generation != 0 && info.generation < minGeneration) {
minGeneration = info.generation;
}
// 0 means it was never used yet or was the first read (e.g. block descriptor.)
if (info.generation == oldestGeneration_ || info.generation == 0) {
info.block = INVALID_BLOCK;
info.generation = 0;
info.hits = 0;
--cacheSize_;
// TODO: Doing this in chunks might be a lot better.
WriteIndexData(blockIndexLookup_[i], info);
blockIndexLookup_[i] = INVALID_INDEX;
// Keep going?
if (cacheSize_ <= goal) {
break;
}
}
}
// If we didn't find any, update to the lowest we did find.
oldestGeneration_ = minGeneration;
}
return true;
}
void DiskCachingFileLoaderCache::RebalanceGenerations() {
// To make things easy, we will subtract oldestGeneration_ and cut in half.
// That should give us more space but not break anything.
for (size_t i = 0; i < index_.size(); ++i) {
auto &info = index_[i];
if (info.block == INVALID_BLOCK) {
continue;
}
if (info.generation > oldestGeneration_) {
info.generation = (info.generation - oldestGeneration_) / 2;
// TODO: Doing this all at once would be much better.
WriteIndexData((u32)i, info);
}
}
oldestGeneration_ = 0;
}
u32 DiskCachingFileLoaderCache::AllocateBlock(u32 indexPos) {
for (size_t i = 0; i < blockIndexLookup_.size(); ++i) {
if (blockIndexLookup_[i] == INVALID_INDEX) {
blockIndexLookup_[i] = indexPos;
return (u32)i;
}
}
_dbg_assert_msg_(false, "Not enough free blocks");
return INVALID_BLOCK;
}
std::string DiskCachingFileLoaderCache::MakeCacheFilename(const Path &path) {
static const char *const invalidChars = "?*:/\\^|<>\"'";
std::string filename = path.ToString();
for (size_t i = 0; i < filename.size(); ++i) {
int c = filename[i];
if (strchr(invalidChars, c) != nullptr) {
filename[i] = '_';
}
}
return filename + ".ppdc";
}
::Path DiskCachingFileLoaderCache::MakeCacheFilePath(const Path &filename) {
Path dir = cacheDir_;
if (dir.empty()) {
dir = GetSysDirectory(DIRECTORY_CACHE);
}
if (!File::Exists(dir)) {
File::CreateFullPath(dir);
}
return dir / MakeCacheFilename(filename);
}
s64 DiskCachingFileLoaderCache::GetBlockOffset(u32 block) {
// This is where the blocks start.
s64 blockOffset = (s64)sizeof(FileHeader) + (s64)indexCount_ * (s64)sizeof(BlockInfo);
// Now to the actual block.
return blockOffset + (s64)block * (s64)blockSize_;
}
bool DiskCachingFileLoaderCache::ReadBlockData(u8 *dest, BlockInfo &info, size_t offset, size_t size) {
if (!f_) {
return false;
}
if (size == 0) {
return true;
}
s64 blockOffset = GetBlockOffset(info.block);
// Before we read, make sure the buffers are flushed.
// We might be trying to read an area we've recently written.
fflush(f_);
bool failed = false;
#ifdef __ANDROID__
if (lseek64(fd_, blockOffset, SEEK_SET) != blockOffset) {
failed = true;
} else if (read(fd_, dest + offset, size) != (ssize_t)size) {
failed = true;
}
#else
if (fseeko(f_, blockOffset, SEEK_SET) != 0) {
failed = true;
} else if (fread(dest + offset, size, 1, f_) != 1) {
failed = true;
}
#endif
if (failed) {
ERROR_LOG(LOADER, "Unable to read disk cache data entry.");
CloseFileHandle();
}
return !failed;
}
void DiskCachingFileLoaderCache::WriteBlockData(BlockInfo &info, const u8 *src) {
if (!f_) {
return;
}
s64 blockOffset = GetBlockOffset(info.block);
bool failed = false;
#ifdef __ANDROID__
if (lseek64(fd_, blockOffset, SEEK_SET) != blockOffset) {
failed = true;
} else if (write(fd_, src, blockSize_) != (ssize_t)blockSize_) {
failed = true;
}
#else
if (fseeko(f_, blockOffset, SEEK_SET) != 0) {
failed = true;
} else if (fwrite(src, blockSize_, 1, f_) != 1) {
failed = true;
}
#endif
if (failed) {
ERROR_LOG(LOADER, "Unable to write disk cache data entry.");
CloseFileHandle();
}
}
void DiskCachingFileLoaderCache::WriteIndexData(u32 indexPos, BlockInfo &info) {
if (!f_) {
return;
}
u32 offset = (u32)sizeof(FileHeader) + indexPos * (u32)sizeof(BlockInfo);
bool failed = false;
if (fseek(f_, offset, SEEK_SET) != 0) {
failed = true;
} else if (fwrite(&info, sizeof(BlockInfo), 1, f_) != 1) {
failed = true;
}
if (failed) {
ERROR_LOG(LOADER, "Unable to write disk cache index entry.");
CloseFileHandle();
}
}
bool DiskCachingFileLoaderCache::LoadCacheFile(const Path &path) {
FILE *fp = File::OpenCFile(path, "rb+");
if (!fp) {
return false;
}
FileHeader header;
bool valid = true;
if (fread(&header, sizeof(FileHeader), 1, fp) != 1) {
valid = false;
} else if (memcmp(header.magic, CACHEFILE_MAGIC, sizeof(header.magic)) != 0) {
valid = false;
} else if (header.version != CACHE_VERSION) {
valid = false;
} else if (header.filesize != filesize_) {
valid = false;
} else if (header.maxBlocks < MAX_BLOCKS_LOWER_BOUND || header.maxBlocks > MAX_BLOCKS_UPPER_BOUND) {
// This means it's not in our safety bounds, reject.
valid = false;
}
// If it's valid, retain the file pointer.
if (valid) {
f_ = fp;
#ifdef __ANDROID__
// Android NDK does not support 64-bit file I/O using C streams
fd_ = fileno(f_);
#endif
// Now let's load the index.
blockSize_ = header.blockSize;
maxBlocks_ = header.maxBlocks;
flags_ = header.flags;
LoadCacheIndex();
} else {
ERROR_LOG(LOADER, "Disk cache file header did not match, recreating cache file");
fclose(fp);
}
return valid;
}
void DiskCachingFileLoaderCache::LoadCacheIndex() {
if (fseek(f_, sizeof(FileHeader), SEEK_SET) != 0) {
CloseFileHandle();
return;
}
indexCount_ = (size_t)((filesize_ + blockSize_ - 1) / blockSize_);
index_.resize(indexCount_);
blockIndexLookup_.resize(maxBlocks_);
memset(&blockIndexLookup_[0], INVALID_INDEX, maxBlocks_ * sizeof(blockIndexLookup_[0]));
if (fread(&index_[0], sizeof(BlockInfo), indexCount_, f_) != indexCount_) {
CloseFileHandle();
return;
}
// Now let's set some values we need.
oldestGeneration_ = std::numeric_limits<u16>::max();
generation_ = 0;
cacheSize_ = 0;
for (size_t i = 0; i < index_.size(); ++i) {
if (index_[i].block > maxBlocks_) {
index_[i].block = INVALID_BLOCK;
}
if (index_[i].block == INVALID_BLOCK) {
continue;
}
if (index_[i].generation < oldestGeneration_) {
oldestGeneration_ = index_[i].generation;
}
if (index_[i].generation > generation_) {
generation_ = index_[i].generation;
}
++cacheSize_;
blockIndexLookup_[index_[i].block] = (u32)i;
}
}
void DiskCachingFileLoaderCache::CreateCacheFile(const Path &path) {
maxBlocks_ = DetermineMaxBlocks();
if (maxBlocks_ < MAX_BLOCKS_LOWER_BOUND) {
GarbageCollectCacheFiles(MAX_BLOCKS_LOWER_BOUND * DEFAULT_BLOCK_SIZE);
maxBlocks_ = DetermineMaxBlocks();
}
if (maxBlocks_ < MAX_BLOCKS_LOWER_BOUND) {
// There's not enough free space to cache, disable.
f_ = nullptr;
ERROR_LOG(LOADER, "Not enough free space; disabling disk cache");
return;
}
flags_ = 0;
f_ = File::OpenCFile(path, "wb+");
if (!f_) {
ERROR_LOG(LOADER, "Could not create disk cache file");
return;
}
#ifdef __ANDROID__
// Android NDK does not support 64-bit file I/O using C streams
fd_ = fileno(f_);
#endif
blockSize_ = DEFAULT_BLOCK_SIZE;
FileHeader header;
memcpy(header.magic, CACHEFILE_MAGIC, sizeof(header.magic));
header.version = CACHE_VERSION;
header.blockSize = blockSize_;
header.filesize = filesize_;
header.maxBlocks = maxBlocks_;
header.flags = flags_;
if (fwrite(&header, sizeof(header), 1, f_) != 1) {
CloseFileHandle();
return;
}
indexCount_ = (size_t)((filesize_ + blockSize_ - 1) / blockSize_);
index_.clear();
index_.resize(indexCount_);
blockIndexLookup_.resize(maxBlocks_);
memset(&blockIndexLookup_[0], INVALID_INDEX, maxBlocks_ * sizeof(blockIndexLookup_[0]));
if (fwrite(&index_[0], sizeof(BlockInfo), indexCount_, f_) != indexCount_) {
CloseFileHandle();
return;
}
if (fflush(f_) != 0) {
CloseFileHandle();
return;
}
INFO_LOG(LOADER, "Created new disk cache file for %s", origPath_.c_str());
}
bool DiskCachingFileLoaderCache::LockCacheFile(bool lockStatus) {
if (!f_) {
return false;
}
u32 offset = (u32)offsetof(FileHeader, flags);
bool failed = false;
if (fseek(f_, offset, SEEK_SET) != 0) {
failed = true;
} else if (fread(&flags_, sizeof(u32), 1, f_) != 1) {
failed = true;
}
if (failed) {
ERROR_LOG(LOADER, "Unable to read current flags during disk cache locking");
CloseFileHandle();
return false;
}
// TODO: Also use flock where supported?
if (lockStatus) {
if ((flags_ & FLAG_LOCKED) != 0) {
ERROR_LOG(LOADER, "Could not lock disk cache file for %s", origPath_.c_str());
return false;
}
flags_ |= FLAG_LOCKED;
} else {
if ((flags_ & FLAG_LOCKED) == 0) {
ERROR_LOG(LOADER, "Could not unlock disk cache file for %s", origPath_.c_str());
return false;
}
flags_ &= ~FLAG_LOCKED;
}
if (fseek(f_, offset, SEEK_SET) != 0) {
failed = true;
} else if (fwrite(&flags_, sizeof(u32), 1, f_) != 1) {
failed = true;
} else if (fflush(f_) != 0) {
failed = true;
}
if (failed) {
ERROR_LOG(LOADER, "Unable to write updated flags during disk cache locking");
CloseFileHandle();
return false;
}
if (lockStatus) {
INFO_LOG(LOADER, "Locked disk cache file for %s", origPath_.c_str());
} else {
INFO_LOG(LOADER, "Unlocked disk cache file for %s", origPath_.c_str());
}
return true;
}
bool DiskCachingFileLoaderCache::RemoveCacheFile(const Path &path) {
// Note that some platforms, you can't delete open files. So we check.
CloseFileHandle();
return File::Delete(path);
}
void DiskCachingFileLoaderCache::CloseFileHandle() {
if (f_) {
fclose(f_);
}
f_ = nullptr;
fd_ = 0;
}
bool DiskCachingFileLoaderCache::HasData() const {
if (!f_) {
return false;
}
for (size_t i = 0; i < blockIndexLookup_.size(); ++i) {
if (blockIndexLookup_[i] != INVALID_INDEX) {
return true;
}
}
return false;
}
u64 DiskCachingFileLoaderCache::FreeDiskSpace() {
Path dir = cacheDir_;
if (dir.empty()) {
dir = GetSysDirectory(DIRECTORY_CACHE);
}
int64_t result = 0;
if (free_disk_space(dir, result)) {
return (u64)result;
}
// We can't know for sure how much is free, so we have to assume none.
return 0;
}
u32 DiskCachingFileLoaderCache::DetermineMaxBlocks() {
const s64 freeBytes = FreeDiskSpace();
// We want to leave them some room for other stuff.
const u64 availBytes = std::max(0LL, freeBytes - SAFETY_FREE_DISK_SPACE);
const u64 freeBlocks = availBytes / (u64)DEFAULT_BLOCK_SIZE;
const u32 alreadyCachedCount = CountCachedFiles();
// This is how many more files of free space we will aim for.
const u32 flex = CACHE_SPACE_FLEX > alreadyCachedCount ? CACHE_SPACE_FLEX - alreadyCachedCount : 1;
const u64 freeBlocksWithFlex = freeBlocks / flex;
if (freeBlocksWithFlex > MAX_BLOCKS_LOWER_BOUND) {
if (freeBlocksWithFlex > MAX_BLOCKS_UPPER_BOUND) {
return MAX_BLOCKS_UPPER_BOUND;
}
// This might be smaller than what's free, but if they try to launch a second game,
// they'll be happier when it can be cached too.
return (u32)freeBlocksWithFlex;
}
// Might be lower than LOWER_BOUND, but that's okay. That means not enough space.
// We abandon the idea of flex since there's not enough space free anyway.
return (u32)freeBlocks;
}
u32 DiskCachingFileLoaderCache::CountCachedFiles() {
Path dir = cacheDir_;
if (dir.empty()) {
dir = GetSysDirectory(DIRECTORY_CACHE);
}
std::vector<File::FileInfo> files;
return (u32)GetFilesInDir(dir, &files, "ppdc:");
}
void DiskCachingFileLoaderCache::GarbageCollectCacheFiles(u64 goalBytes) {
// We attempt to free up at least enough files from the cache to get goalBytes more space.
const std::vector<Path> usedPaths = DiskCachingFileLoader::GetCachedPathsInUse();
std::set<std::string> used;
for (const Path &path : usedPaths) {
used.insert(MakeCacheFilename(path));
}
Path dir = cacheDir_;
if (dir.empty()) {
dir = GetSysDirectory(DIRECTORY_CACHE);
}
std::vector<File::FileInfo> files;
File::GetFilesInDir(dir, &files, "ppdc:");
u64 remaining = goalBytes;
// TODO: Could order by LRU or etc.
for (File::FileInfo &file : files) {
if (file.isDirectory) {
continue;
}
if (used.find(file.name) != used.end()) {
// In use, must leave alone.
continue;
}
#ifdef _WIN32
const std::wstring w32path = file.fullName.ToWString();
#if PPSSPP_PLATFORM(UWP)
bool success = DeleteFileFromAppW(w32path.c_str()) != 0;
#else
bool success = DeleteFileW(w32path.c_str()) != 0;
#endif
#else
bool success = unlink(file.fullName.c_str()) == 0;
#endif
if (success) {
if (file.size > remaining) {
// We're done, huzzah.
break;
}
// A little bit more.
remaining -= file.size;
}
}
// At this point, we've done all we can.
}