ppsspp/GPU/Directx9/VertexShaderGeneratorDX9.cpp
Unknown W. Brackets 941988cde4 Correct prescale issues with render-to-texture.
Still need to apply the scaling of the texture coordinates here (or
somewhere, maybe we prescale that as well?  Except it's figured later on
in the process...)
2015-12-20 21:13:43 -08:00

576 lines
21 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <stdio.h>
#include <locale.h>
#if defined(_WIN32) && defined(_DEBUG)
#include "Common/CommonWindows.h"
#endif
#include "base/stringutil.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "Core/Config.h"
#include "GPU/Directx9/VertexShaderGeneratorDX9.h"
#include "GPU/Common/VertexDecoderCommon.h"
#undef WRITE
#define WRITE p+=sprintf
namespace DX9 {
static const char * const boneWeightAttrDecl[9] = {
"#ERROR#",
"float a_w1:TEXCOORD1;\n",
"float2 a_w1:TEXCOORD1;\n",
"float3 a_w1:TEXCOORD1;\n",
"float4 a_w1:TEXCOORD1;\n",
"float4 a_w1:TEXCOORD1;\n float a_w2:TEXCOORD2;\n",
"float4 a_w1:TEXCOORD1;\n float2 a_w2:TEXCOORD2;\n",
"float4 a_w1:TEXCOORD1;\n float3 a_w2:TEXCOORD2;\n",
"float4 a_w1:TEXCOORD1;\n float4 a_w2:TEXCOORD2;\n",
};
enum DoLightComputation {
LIGHT_OFF,
LIGHT_SHADE,
LIGHT_FULL,
};
void GenerateVertexShaderDX9(const ShaderID &id, char *buffer) {
char *p = buffer;
const u32 vertType = gstate.vertType;
bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH);
bool lmode = id.Bit(VS_BIT_LMODE) && !isModeThrough; // TODO: Different expression than in shaderIDgen
bool doTexture = id.Bit(VS_BIT_DO_TEXTURE);
bool doTextureProjection = id.Bit(VS_BIT_DO_TEXTURE_PROJ);
GETexMapMode uvGenMode = static_cast<GETexMapMode>(id.Bits(VS_BIT_UVGEN_MODE, 2));
// this is only valid for some settings of uvGenMode
GETexProjMapMode uvProjMode = static_cast<GETexProjMapMode>(id.Bits(VS_BIT_UVPROJ_MODE, 2));
bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP;
bool doFlatShading = id.Bit(VS_BIT_FLATSHADE);
bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM);
bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform;
bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform;
bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform;
bool enableFog = id.Bit(VS_BIT_ENABLE_FOG);
bool throughmode = id.Bit(VS_BIT_IS_THROUGH);
bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE);
int ls0 = id.Bits(VS_BIT_LS0, 2);
int ls1 = id.Bits(VS_BIT_LS1, 2);
bool enableBones = id.Bit(VS_BIT_ENABLE_BONES);
bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE);
int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3);
bool prescale = g_Config.bPrescaleUV && !throughmode && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN);
DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF };
if (useHWTransform) {
int shadeLight0 = doShadeMapping ? ls0 : -1;
int shadeLight1 = doShadeMapping ? ls1 : -1;
for (int i = 0; i < 4; i++) {
if (i == shadeLight0 || i == shadeLight1)
doLight[i] = LIGHT_SHADE;
if (id.Bit(VS_BIT_LIGHTING_ENABLE) && id.Bit(VS_BIT_LIGHT0_ENABLE + i))
doLight[i] = LIGHT_FULL;
}
}
int numBoneWeights = 0;
int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2);
if (enableBones) {
numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3);
}
int texFmtScale = id.Bits(VS_BIT_TEXCOORD_FMTSCALE, 2);
WRITE(p, "#pragma warning( disable : 3571 )\n");
if (isModeThrough) {
WRITE(p, "float4x4 u_proj_through : register(c%i);\n", CONST_VS_PROJ_THROUGH);
} else {
WRITE(p, "float4x4 u_proj : register(c%i);\n", CONST_VS_PROJ);
// Add all the uniforms we'll need to transform properly.
}
if (enableFog) {
WRITE(p, "float2 u_fogcoef : register(c%i);\n", CONST_VS_FOGCOEF);
}
if (useHWTransform || !hasColor)
WRITE(p, "float4 u_matambientalpha : register(c%i);\n", CONST_VS_MATAMBIENTALPHA); // matambient + matalpha
if (useHWTransform) {
// When transforming by hardware, we need a great deal more uniforms...
WRITE(p, "float4x3 u_world : register(c%i);\n", CONST_VS_WORLD);
WRITE(p, "float4x3 u_view : register(c%i);\n", CONST_VS_VIEW);
if (doTextureProjection)
WRITE(p, "float4x3 u_texmtx : register(c%i);\n", CONST_VS_TEXMTX);
if (enableBones) {
#ifdef USE_BONE_ARRAY
WRITE(p, "float4x3 u_bone[%i] : register(c%i);\n", numBones, CONST_VS_BONE0);
#else
for (int i = 0; i < numBoneWeights; i++) {
WRITE(p, "float4x3 u_bone%i : register(c%i);\n", i, CONST_VS_BONE0 + i * 3);
}
#endif
}
if (doTexture) {
WRITE(p, "float4 u_uvscaleoffset : register(c%i);\n", CONST_VS_UVSCALEOFFSET);
}
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "float3 u_lightpos%i : register(c%i);\n", i, CONST_VS_LIGHTPOS + i);
}
if (doLight[i] == LIGHT_FULL) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "float3 u_lightatt%i : register(c%i);\n", i, CONST_VS_LIGHTATT + i);
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) {
WRITE(p, "float3 u_lightdir%i : register(c%i);\n", i, CONST_VS_LIGHTDIR + i);
WRITE(p, "float u_lightangle%i : register(c%i);\n", i, CONST_VS_LIGHTANGLE + i);
WRITE(p, "float u_lightspotCoef%i : register(c%i);\n", i, CONST_VS_LIGHTSPOTCOEF + i);
}
WRITE(p, "float3 u_lightambient%i : register(c%i);\n", i, CONST_VS_LIGHTAMBIENT + i);
WRITE(p, "float3 u_lightdiffuse%i : register(c%i);\n", i, CONST_VS_LIGHTDIFFUSE + i);
if (comp != GE_LIGHTCOMP_ONLYDIFFUSE) {
WRITE(p, "float3 u_lightspecular%i : register(c%i);\n", i, CONST_VS_LIGHTSPECULAR + i);
}
}
}
if (enableLighting) {
WRITE(p, "float4 u_ambient : register(c%i);\n", CONST_VS_AMBIENT);
if ((gstate.materialupdate & 2) == 0 || !hasColor)
WRITE(p, "float3 u_matdiffuse : register(c%i);\n", CONST_VS_MATDIFFUSE);
// if ((gstate.materialupdate & 4) == 0)
WRITE(p, "float4 u_matspecular : register(c%i);\n", CONST_VS_MATSPECULAR); // Specular coef is contained in alpha
WRITE(p, "float3 u_matemissive : register(c%i);\n", CONST_VS_MATEMISSIVE);
}
}
if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, "float4 u_depthRange : register(c%i);\n", CONST_VS_DEPTHRANGE);
}
// And the "varyings".
if (useHWTransform) {
WRITE(p, "struct VS_IN { \n");
if (enableBones) {
WRITE(p, "%s", boneWeightAttrDecl[numBoneWeights]);
}
if (doTexture && hasTexcoord) {
WRITE(p, " float2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " float4 color0 : COLOR0;\n");
}
if (hasNormal) {
WRITE(p, " float3 normal : NORMAL;\n");
}
WRITE(p, " float3 position : POSITION;\n");
WRITE(p, "};\n");
} else {
WRITE(p, "struct VS_IN {\n");
WRITE(p, " float4 position : POSITION;\n");
if (doTexture && hasTexcoord) {
if (doTextureProjection && !throughmode)
WRITE(p, " float3 texcoord : TEXCOORD0;\n");
else
WRITE(p, " float2 texcoord : TEXCOORD0;\n");
}
if (hasColor) {
WRITE(p, " float4 color0 : COLOR0;\n");
}
// only software transform supplies color1 as vertex data
if (lmode) {
WRITE(p, " float4 color1 : COLOR1;\n");
}
WRITE(p, "};\n");
}
WRITE(p, "struct VS_OUT {\n");
WRITE(p, " float4 gl_Position : POSITION;\n");
if (doTexture) {
if (doTextureProjection)
WRITE(p, " float3 v_texcoord: TEXCOORD0;\n");
else
WRITE(p, " float2 v_texcoord: TEXCOORD0;\n");
}
WRITE(p, " float4 v_color0 : COLOR0;\n");
if (lmode)
WRITE(p, " float3 v_color1 : COLOR1;\n");
if (enableFog) {
WRITE(p, " float2 v_fogdepth: TEXCOORD1;\n");
}
WRITE(p, "};\n");
// Confirmed: Through mode gets through exactly the same in GL and D3D in Phantasy Star: Text is 38023.0 in the test scene.
if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
// Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection.
// The Z range in D3D is different but we compensate for that using parameters.
WRITE(p, "\nfloat4 depthRoundZVP(float4 v) {\n");
WRITE(p, " float z = v.z / v.w;\n");
WRITE(p, " z = (z * u_depthRange.x + u_depthRange.y);\n");
WRITE(p, " z = floor(z);\n");
WRITE(p, " z = (z - u_depthRange.z) * u_depthRange.w;\n");
WRITE(p, " return float4(v.x, v.y, z * v.w, v.w);\n");
WRITE(p, "}\n\n");
}
WRITE(p, "VS_OUT main(VS_IN In) {\n");
WRITE(p, " VS_OUT Out = (VS_OUT)0; \n");
if (!useHWTransform) {
// Simple pass-through of vertex data to fragment shader
if (doTexture) {
if (doTextureProjection) {
if (throughmode) {
WRITE(p, " Out.v_texcoord = float3(In.texcoord.x, In.texcoord.y, 1.0);\n");
} else {
WRITE(p, " Out.v_texcoord = In.texcoord;\n");
}
} else {
WRITE(p, " Out.v_texcoord = In.texcoord.xy;\n");
}
}
if (hasColor) {
WRITE(p, " Out.v_color0 = In.color0;\n");
if (lmode)
WRITE(p, " Out.v_color1 = In.color1.rgb;\n");
} else {
WRITE(p, " Out.v_color0 = In.u_matambientalpha;\n");
if (lmode)
WRITE(p, " Out.v_color1 = float3(0.0);\n");
}
if (enableFog) {
WRITE(p, " Out.v_fogdepth.x = In.position.w;\n");
}
if (gstate.isModeThrough()) {
WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj_through);\n");
} else {
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " Out.gl_Position = depthRoundZVP(mul(float4(In.position.xyz, 1.0), u_proj));\n");
} else {
WRITE(p, " Out.gl_Position = mul(float4(In.position.xyz, 1.0), u_proj);\n");
}
}
} else {
// Step 1: World Transform / Skinning
if (!enableBones) {
// No skinning, just standard T&L.
WRITE(p, " float3 worldpos = mul(float4(In.position.xyz, 1.0), u_world);\n");
if (hasNormal)
WRITE(p, " float3 worldnormal = normalize( mul(float4(%sIn.normal, 0.0), u_world));\n", flipNormal ? "-" : "");
else
WRITE(p, " float3 worldnormal = float3(0.0, 0.0, 1.0);\n");
} else {
static const char * const boneWeightAttr[8] = {
"a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w",
"a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w",
};
#if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY)
// To loop through the weights, we unfortunately need to put them in a float array.
// GLSL ES sucks - no way to directly initialize an array!
switch (numBoneWeights) {
case 1: WRITE(p, " float w[1]; w[0] = a_w1;\n"); break;
case 2: WRITE(p, " float w[2]; w[0] = a_w1.x; w[1] = a_w1.y;\n"); break;
case 3: WRITE(p, " float w[3]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z;\n"); break;
case 4: WRITE(p, " float w[4]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w;\n"); break;
case 5: WRITE(p, " float w[5]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2;\n"); break;
case 6: WRITE(p, " float w[6]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y;\n"); break;
case 7: WRITE(p, " float w[7]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z;\n"); break;
case 8: WRITE(p, " float w[8]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z; w[7] = a_w2.w;\n"); break;
}
WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n");
if (numBoneWeights > 1) {
WRITE(p, " for (int i = 1; i < %i; i++) {\n", numBoneWeights);
WRITE(p, " skinMatrix += w[i] * u_bone[i];\n");
WRITE(p, " }\n");
}
#else
#ifdef USE_BONE_ARRAY
if (numBoneWeights == 1)
WRITE(p, " float4x3 skinMatrix = a_w1 * u_bone[0]");
else
WRITE(p, " float4x3 skinMatrix = a_w1.x * u_bone[0]");
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + %s * u_bone[%i]", weightAttr, i);
}
#else
// Uncomment this to screw up bone shaders to check the vertex shader software fallback
// WRITE(p, "THIS SHOULD ERROR! #error");
if (numBoneWeights == 1)
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1, u_bone0)");
else
WRITE(p, " float4x3 skinMatrix = mul(In.a_w1.x, u_bone0)");
for (int i = 1; i < numBoneWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numBoneWeights == 1 && i == 0) weightAttr = "a_w1";
if (numBoneWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + mul(In.%s, u_bone%i)", weightAttr, i);
}
#endif
#endif
WRITE(p, ";\n");
// Trying to simplify this results in bugs in LBP...
WRITE(p, " float3 skinnedpos = mul(float4(In.position.xyz, 1.0), skinMatrix);\n");
WRITE(p, " float3 worldpos = mul(float4(skinnedpos, 1.0), u_world);\n");
if (hasNormal) {
WRITE(p, " float3 skinnednormal = mul(float4(%sIn.normal, 0.0), skinMatrix);\n", flipNormal ? "-" : "");
} else {
WRITE(p, " float3 skinnednormal = mul(float4(0.0, 0.0, %s1.0, 0.0), skinMatrix);\n", flipNormal ? "-" : "");
}
WRITE(p, " float3 worldnormal = normalize(mul(float4(skinnednormal, 0.0), u_world));\n");
}
WRITE(p, " float4 viewPos = float4(mul(float4(worldpos, 1.0), u_view), 1.0);\n");
// Final view and projection transforms.
if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) {
WRITE(p, " Out.gl_Position = depthRoundZVP(mul(viewPos, u_proj));\n");
} else {
WRITE(p, " Out.gl_Position = mul(viewPos, u_proj);\n");
}
// TODO: Declare variables for dots for shade mapping if needed.
const char *ambientStr = (gstate.materialupdate & 1) && hasColor ? "In.color0" : "u_matambientalpha";
const char *diffuseStr = (gstate.materialupdate & 2) && hasColor ? "In.color0.rgb" : "u_matdiffuse";
const char *specularStr = (gstate.materialupdate & 4) && hasColor ? "In.color0.rgb" : "u_matspecular.rgb";
bool diffuseIsZero = true;
bool specularIsZero = true;
bool distanceNeeded = false;
if (enableLighting) {
WRITE(p, " float4 lightSum0 = u_ambient * %s + float4(u_matemissive, 0.0);\n", ambientStr);
for (int i = 0; i < 4; i++) {
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (doLight[i] != LIGHT_FULL)
continue;
diffuseIsZero = false;
if (comp != GE_LIGHTCOMP_ONLYDIFFUSE)
specularIsZero = false;
if (type != GE_LIGHTTYPE_DIRECTIONAL)
distanceNeeded = true;
}
if (!specularIsZero) {
WRITE(p, " float3 lightSum1 = 0;\n");
}
if (!diffuseIsZero) {
WRITE(p, " float3 toLight;\n");
WRITE(p, " float3 diffuse;\n");
}
if (distanceNeeded) {
WRITE(p, " float distance;\n");
WRITE(p, " float lightScale;\n");
}
}
// Calculate lights if needed. If shade mapping is enabled, lights may need to be
// at least partially calculated.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2));
GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2));
if (type == GE_LIGHTTYPE_DIRECTIONAL) {
// We prenormalize light positions for directional lights.
WRITE(p, " toLight = u_lightpos%i;\n", i);
} else {
WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i);
WRITE(p, " distance = length(toLight);\n");
WRITE(p, " toLight /= distance;\n");
}
bool doSpecular = comp != GE_LIGHTCOMP_ONLYDIFFUSE;
bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE;
if (poweredDiffuse) {
WRITE(p, " float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i);
// TODO: Somehow the NaN check from GLES seems unnecessary here?
// If it returned 0, it'd be wrong, so that's strange.
} else {
WRITE(p, " float dot%i = dot(toLight, worldnormal);\n", i);
}
const char *timesLightScale = " * lightScale";
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
timesLightScale = "";
break;
case GE_LIGHTTYPE_POINT:
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
WRITE(p, " float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i);
WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i);
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, float3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i);
WRITE(p, " } else {\n");
WRITE(p, " lightScale = 0.0;\n");
WRITE(p, " }\n");
break;
default:
// ILLEGAL
break;
}
WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i);
if (doSpecular) {
WRITE(p, " dot%i = dot(normalize(toLight + float3(0.0, 0.0, 1.0)), worldnormal);\n", i);
WRITE(p, " if (dot%i > 0.0)\n", i);
WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale);
}
WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale);
}
if (enableLighting) {
// Sum up ambient, emissive here.
if (lmode) {
WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
// v_color1 only exists when lmode = 1.
if (specularIsZero) {
WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n");
} else {
WRITE(p, " Out.v_color1 = clamp(lightSum1, 0.0, 1.0);\n");
}
} else {
if (specularIsZero) {
WRITE(p, " Out.v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
} else {
WRITE(p, " Out.v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + float4(lightSum1, 0.0), 0.0, 1.0);\n");
}
}
} else {
// Lighting doesn't affect color.
if (hasColor) {
WRITE(p, " Out.v_color0 = In.color0;\n");
} else {
WRITE(p, " Out.v_color0 = u_matambientalpha;\n");
}
if (lmode)
WRITE(p, " Out.v_color1 = float3(0, 0, 0);\n");
}
// Step 3: UV generation
if (doTexture) {
switch (uvGenMode) {
case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy.
case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works.
if (prescale) {
if (hasTexcoord) {
WRITE(p, " Out.v_texcoord = In.texcoord * u_uvscaleoffset.xy;\n");
} else {
WRITE(p, " Out.v_texcoord = float2(0.0, 0.0);\n");
}
} else {
if (hasTexcoord) {
WRITE(p, " Out.v_texcoord = In.texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n");
} else {
WRITE(p, " Out.v_texcoord = u_uvscaleoffset.zw;\n");
}
}
break;
case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping.
{
std::string temp_tc;
switch (uvProjMode) {
case GE_PROJMAP_POSITION: // Use model space XYZ as source
temp_tc = "float4(In.position.xyz, 1.0)";
break;
case GE_PROJMAP_UV: // Use unscaled UV as source
{
if (hasTexcoord) {
temp_tc = StringFromFormat("float4(In.texcoord.xy, 0.0, 1.0)");
} else {
temp_tc = "float4(0.0, 0.0, 0.0, 1.0)";
}
}
break;
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "float4(normalize(-In.normal), 1.0)" : "float4(normalize(In.normal), 1.0)";
else
temp_tc = "float4(0.0, 0.0, 1.0, 1.0)";
break;
case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "float4(-In.normal, 1.0)" : "float4(In.normal, 1.0)";
else
temp_tc = "float4(0.0, 0.0, 1.0, 1.0)";
break;
}
// Transform by texture matrix. XYZ as we are doing projection mapping.
WRITE(p, " Out.v_texcoord.xyz = mul(%s,u_texmtx) * float3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str());
}
break;
case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources.
WRITE(p, " Out.v_texcoord.xy = u_uvscaleoffset.xy * float2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 + dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1());
break;
default:
// ILLEGAL
break;
}
}
// Compute fogdepth
if (enableFog)
WRITE(p, " Out.v_fogdepth.x = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n");
}
WRITE(p, " return Out;\n");
WRITE(p, "}\n");
}
};