ppsspp/Core/MIPS/ARM/ArmCompVFPUNEON.cpp
Florent Castelli 8c3552de74 cmake: Detect features at compile time
Instead of relying on manually passed down flags from CMake,
we now have ppsspp_config.h file to create the platform defines for us.
This improves support for multiplatform builds (such as iOS).
2016-10-19 12:31:19 +02:00

1458 lines
37 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// NEON VFPU
// This is where we will create an alternate implementation of the VFPU emulation
// that uses NEON Q registers to cache pairs/tris/quads, and so on.
// Will require major extensions to the reg cache and other things.
// ARM NEON can only do pairs and quads, not tris and scalars.
// We can do scalars, though, for many operations if all the operands
// are below Q8 (D16, S32) using regular VFP instructions but really not sure
// if it's worth it.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(ARM)
#include <cmath>
#include "base/logging.h"
#include "math/math_util.h"
#include "Common/CPUDetect.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "Core/MIPS/ARM/ArmJit.h"
#include "Core/MIPS/ARM/ArmRegCache.h"
#include "Core/MIPS/ARM/ArmRegCacheFPU.h"
#include "Core/MIPS/ARM/ArmCompVFPUNEONUtil.h"
// TODO: Somehow #ifdef away on ARMv5eabi, without breaking the linker.
// All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly.
// Currently known non working ones should have DISABLE.
// #define CONDITIONAL_DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
#define CONDITIONAL_DISABLE ;
#define DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
#define DISABLE_UNKNOWN_PREFIX { WLOG("DISABLE: Unknown Prefix in %s", __FUNCTION__); fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
#define _RS MIPS_GET_RS(op)
#define _RT MIPS_GET_RT(op)
#define _RD MIPS_GET_RD(op)
#define _FS MIPS_GET_FS(op)
#define _FT MIPS_GET_FT(op)
#define _FD MIPS_GET_FD(op)
#define _SA MIPS_GET_SA(op)
#define _POS ((op>> 6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
#define _IMM16 (signed short)(op & 0xFFFF)
#define _IMM26 (op & 0x03FFFFFF)
namespace MIPSComp {
using namespace ArmGen;
using namespace ArmJitConstants;
static const float minus_one = -1.0f;
static const float one = 1.0f;
static const float zero = 0.0f;
void ArmJit::CompNEON_VecDo3(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
MappedRegs r = NEONMapDirtyInIn(op, sz, sz, sz);
ARMReg temp = MatchSize(Q0, r.vs);
// TODO: Special case for scalar
switch (op >> 26) {
case 24: //VFPU0
switch ((op >> 23) & 7) {
case 0: VADD(F_32, r.vd, r.vs, r.vt); break; // vadd
case 1: VSUB(F_32, r.vd, r.vs, r.vt); break; // vsub
case 7: // vdiv // vdiv THERE IS NO NEON SIMD VDIV :( There's a fast reciprocal iterator thing though.
{
// Implement by falling back to VFP
VMOV(D0, D_0(r.vs));
VMOV(D1, D_0(r.vt));
VDIV(S0, S0, S2);
if (sz >= V_Pair)
VDIV(S1, S1, S3);
VMOV(D_0(r.vd), D0);
if (sz >= V_Triple) {
VMOV(D0, D_1(r.vs));
VMOV(D1, D_1(r.vt));
VDIV(S0, S0, S2);
if (sz == V_Quad)
VDIV(S1, S1, S3);
VMOV(D_1(r.vd), D0);
}
}
break;
default:
DISABLE;
}
break;
case 25: //VFPU1
switch ((op >> 23) & 7) {
case 0: VMUL(F_32, r.vd, r.vs, r.vt); break; // vmul
default:
DISABLE;
}
break;
case 27: //VFPU3
switch ((op >> 23) & 7) {
case 2: VMIN(F_32, r.vd, r.vs, r.vt); break; // vmin
case 3: VMAX(F_32, r.vd, r.vs, r.vt); break; // vmax
case 6: // vsge
VMOV_immf(temp, 1.0f);
VCGE(F_32, r.vd, r.vs, r.vt);
VAND(r.vd, r.vd, temp);
break;
case 7: // vslt
VMOV_immf(temp, 1.0f);
VCLT(F_32, r.vd, r.vs, r.vt);
VAND(r.vd, r.vd, temp);
break;
}
break;
default:
DISABLE;
}
NEONApplyPrefixD(r.vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
// #define CONDITIONAL_DISABLE { fpr.ReleaseSpillLocksAndDiscardTemps(); Comp_Generic(op); return; }
void ArmJit::CompNEON_SV(MIPSOpcode op) {
CONDITIONAL_DISABLE;
// Remember to use single lane stores here and not VLDR/VSTR - switching usage
// between NEON and VFPU can be expensive on some chips.
// Here's a common idiom we should optimize:
// lv.s S200, 0(s4)
// lv.s S201, 4(s4)
// lv.s S202, 8(s4)
// vone.s S203
// vtfm4.q C000, E600, C200
// Would be great if we could somehow combine the lv.s into one vector instead of mapping three
// separate quads.
s32 offset = (signed short)(op & 0xFFFC);
int vt = ((op >> 16) & 0x1f) | ((op & 3) << 5);
MIPSGPReg rs = _RS;
bool doCheck = false;
switch (op >> 26)
{
case 50: //lv.s // VI(vt) = Memory::Read_U32(addr);
{
if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset < 0x400 && offset > -0x400) {
INFO_LOG(HLE, "LV.S fastmode!");
// TODO: Also look forward and combine multiple loads.
gpr.MapRegAsPointer(rs);
ARMReg ar = fpr.QMapReg(vt, V_Single, MAP_NOINIT | MAP_DIRTY);
if (offset) {
ADDI2R(R0, gpr.RPtr(rs), offset, R1);
VLD1_lane(F_32, ar, R0, 0, true);
} else {
VLD1_lane(F_32, ar, gpr.RPtr(rs), 0, true);
}
break;
}
INFO_LOG(HLE, "LV.S slowmode!");
// CC might be set by slow path below, so load regs first.
ARMReg ar = fpr.QMapReg(vt, V_Single, MAP_DIRTY | MAP_NOINIT);
if (gpr.IsImm(rs)) {
u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF;
gpr.SetRegImm(R0, addr + (u32)Memory::base);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetR0ToEffectiveAddress(rs, offset);
} else {
SetCCAndR0ForSafeAddress(rs, offset, R1);
doCheck = true;
}
ADD(R0, R0, MEMBASEREG);
}
FixupBranch skip;
if (doCheck) {
skip = B_CC(CC_EQ);
}
VLD1_lane(F_32, ar, R0, 0, true);
if (doCheck) {
SetJumpTarget(skip);
SetCC(CC_AL);
}
}
break;
case 58: //sv.s // Memory::Write_U32(VI(vt), addr);
{
if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && (offset & 3) == 0 && offset < 0x400 && offset > -0x400) {
INFO_LOG(HLE, "SV.S fastmode!");
// TODO: Also look forward and combine multiple stores.
gpr.MapRegAsPointer(rs);
ARMReg ar = fpr.QMapReg(vt, V_Single, 0);
if (offset) {
ADDI2R(R0, gpr.RPtr(rs), offset, R1);
VST1_lane(F_32, ar, R0, 0, true);
} else {
VST1_lane(F_32, ar, gpr.RPtr(rs), 0, true);
}
break;
}
INFO_LOG(HLE, "SV.S slowmode!");
// CC might be set by slow path below, so load regs first.
ARMReg ar = fpr.QMapReg(vt, V_Single, 0);
if (gpr.IsImm(rs)) {
u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF;
gpr.SetRegImm(R0, addr + (u32)Memory::base);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetR0ToEffectiveAddress(rs, offset);
} else {
SetCCAndR0ForSafeAddress(rs, offset, R1);
doCheck = true;
}
ADD(R0, R0, MEMBASEREG);
}
FixupBranch skip;
if (doCheck) {
skip = B_CC(CC_EQ);
}
VST1_lane(F_32, ar, R0, 0, true);
if (doCheck) {
SetJumpTarget(skip);
SetCC(CC_AL);
}
}
break;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
inline int MIPS_GET_VQVT(u32 op) {
return (((op >> 16) & 0x1f)) | ((op & 1) << 5);
}
void ArmJit::CompNEON_SVQ(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int offset = (signed short)(op & 0xFFFC);
int vt = MIPS_GET_VQVT(op.encoding);
MIPSGPReg rs = _RS;
bool doCheck = false;
switch (op >> 26)
{
case 54: //lv.q
{
// Check for four-in-a-row
const u32 ops[4] = {
op.encoding,
GetOffsetInstruction(1).encoding,
GetOffsetInstruction(2).encoding,
GetOffsetInstruction(3).encoding,
};
if (g_Config.bFastMemory && (ops[1] >> 26) == 54 && (ops[2] >> 26) == 54 && (ops[3] >> 26) == 54) {
int offsets[4] = {offset, (s16)(ops[1] & 0xFFFC), (s16)(ops[2] & 0xFFFC), (s16)(ops[3] & 0xFFFC)};
int rss[4] = {MIPS_GET_RS(op), MIPS_GET_RS(ops[1]), MIPS_GET_RS(ops[2]), MIPS_GET_RS(ops[3])};
if (offsets[1] == offset + 16 && offsets[2] == offsets[1] + 16 && offsets[3] == offsets[2] + 16 &&
rss[0] == rss[1] && rss[1] == rss[2] && rss[2] == rss[3]) {
int vts[4] = {MIPS_GET_VQVT(op.encoding), MIPS_GET_VQVT(ops[1]), MIPS_GET_VQVT(ops[2]), MIPS_GET_VQVT(ops[3])};
// TODO: Also check the destination registers!
// Detected four consecutive ones!
// gpr.MapRegAsPointer(rs);
// fpr.QLoad4x4(vts[4], rs, offset);
INFO_LOG(JIT, "Matrix load detected! TODO: optimize");
// break;
}
}
if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && offset < 0x400-16 && offset > -0x400-16) {
gpr.MapRegAsPointer(rs);
ARMReg ar = fpr.QMapReg(vt, V_Quad, MAP_DIRTY | MAP_NOINIT);
if (offset) {
ADDI2R(R0, gpr.RPtr(rs), offset, R1);
VLD1(F_32, ar, R0, 2, ALIGN_128);
} else {
VLD1(F_32, ar, gpr.RPtr(rs), 2, ALIGN_128);
}
break;
}
// CC might be set by slow path below, so load regs first.
ARMReg ar = fpr.QMapReg(vt, V_Quad, MAP_DIRTY | MAP_NOINIT);
if (gpr.IsImm(rs)) {
u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF;
gpr.SetRegImm(R0, addr + (u32)Memory::base);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetR0ToEffectiveAddress(rs, offset);
} else {
SetCCAndR0ForSafeAddress(rs, offset, R1);
doCheck = true;
}
ADD(R0, R0, MEMBASEREG);
}
FixupBranch skip;
if (doCheck) {
skip = B_CC(CC_EQ);
}
VLD1(F_32, ar, R0, 2, ALIGN_128);
if (doCheck) {
SetJumpTarget(skip);
SetCC(CC_AL);
}
}
break;
case 62: //sv.q
{
const u32 ops[4] = {
op.encoding,
GetOffsetInstruction(1).encoding,
GetOffsetInstruction(2).encoding,
GetOffsetInstruction(3).encoding,
};
if (g_Config.bFastMemory && (ops[1] >> 26) == 54 && (ops[2] >> 26) == 54 && (ops[3] >> 26) == 54) {
int offsets[4] = { offset, (s16)(ops[1] & 0xFFFC), (s16)(ops[2] & 0xFFFC), (s16)(ops[3] & 0xFFFC) };
int rss[4] = { MIPS_GET_RS(op), MIPS_GET_RS(ops[1]), MIPS_GET_RS(ops[2]), MIPS_GET_RS(ops[3]) };
if (offsets[1] == offset + 16 && offsets[2] == offsets[1] + 16 && offsets[3] == offsets[2] + 16 &&
rss[0] == rss[1] && rss[1] == rss[2] && rss[2] == rss[3]) {
int vts[4] = { MIPS_GET_VQVT(op.encoding), MIPS_GET_VQVT(ops[1]), MIPS_GET_VQVT(ops[2]), MIPS_GET_VQVT(ops[3]) };
// TODO: Also check the destination registers!
// Detected four consecutive ones!
// gpr.MapRegAsPointer(rs);
// fpr.QLoad4x4(vts[4], rs, offset);
INFO_LOG(JIT, "Matrix store detected! TODO: optimize");
// break;
}
}
if (!gpr.IsImm(rs) && jo.cachePointers && g_Config.bFastMemory && offset < 0x400-16 && offset > -0x400-16) {
gpr.MapRegAsPointer(rs);
ARMReg ar = fpr.QMapReg(vt, V_Quad, 0);
if (offset) {
ADDI2R(R0, gpr.RPtr(rs), offset, R1);
VST1(F_32, ar, R0, 2, ALIGN_128);
} else {
VST1(F_32, ar, gpr.RPtr(rs), 2, ALIGN_128);
}
break;
}
// CC might be set by slow path below, so load regs first.
ARMReg ar = fpr.QMapReg(vt, V_Quad, 0);
if (gpr.IsImm(rs)) {
u32 addr = (offset + gpr.GetImm(rs)) & 0x3FFFFFFF;
gpr.SetRegImm(R0, addr + (u32)Memory::base);
} else {
gpr.MapReg(rs);
if (g_Config.bFastMemory) {
SetR0ToEffectiveAddress(rs, offset);
} else {
SetCCAndR0ForSafeAddress(rs, offset, R1);
doCheck = true;
}
ADD(R0, R0, MEMBASEREG);
}
FixupBranch skip;
if (doCheck) {
skip = B_CC(CC_EQ);
}
VST1(F_32, ar, R0, 2, ALIGN_128);
if (doCheck) {
SetJumpTarget(skip);
SetCC(CC_AL);
}
}
break;
default:
DISABLE;
break;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VVectorInit(MIPSOpcode op) {
CONDITIONAL_DISABLE;
// WARNING: No prefix support!
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_NOINIT | MAP_DIRTY);
switch ((op >> 16) & 0xF) {
case 6: // vzero
VEOR(vd.rd, vd.rd, vd.rd);
break;
case 7: // vone
VMOV_immf(vd.rd, 1.0f);
break;
default:
DISABLE;
break;
}
NEONApplyPrefixD(vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VDot(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
MappedRegs r = NEONMapDirtyInIn(op, V_Single, sz, sz);
switch (sz) {
case V_Pair:
VMUL(F_32, r.vd, r.vs, r.vt);
VPADD(F_32, r.vd, r.vd, r.vd);
break;
case V_Triple:
VMUL(F_32, Q0, r.vs, r.vt);
VPADD(F_32, D0, D0, D0);
VADD(F_32, r.vd, D0, D1);
break;
case V_Quad:
VMUL(F_32, D0, D_0(r.vs), D_0(r.vt));
VMLA(F_32, D0, D_1(r.vs), D_1(r.vt));
VPADD(F_32, r.vd, D0, D0);
break;
case V_Single:
case V_Invalid:
;
}
NEONApplyPrefixD(r.vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VHdp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
DISABLE;
// Similar to VDot but the last component is only s instead of s * t.
// A bit tricky on NEON...
}
void ArmJit::CompNEON_VScl(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
MappedRegs r = NEONMapDirtyInIn(op, sz, sz, V_Single);
ARMReg temp = MatchSize(Q0, r.vt);
// TODO: VMUL_scalar directly when possible
VMOV_neon(temp, r.vt);
VMUL_scalar(F_32, r.vd, r.vs, DScalar(Q0, 0));
NEONApplyPrefixD(r.vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VV2Op(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
// Pre-processing: Eliminate silly no-op VMOVs, common in Wipeout Pure
if (((op >> 16) & 0x1f) == 0 && _VS == _VD && js.HasNoPrefix()) {
return;
}
// Must bail before we start mapping registers.
switch ((op >> 16) & 0x1f) {
case 0: // d[i] = s[i]; break; //vmov
case 1: // d[i] = fabsf(s[i]); break; //vabs
case 2: // d[i] = -s[i]; break; //vneg
case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq
break;
default:
DISABLE;
break;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
MappedRegs r = NEONMapDirtyIn(op, sz, sz);
ARMReg temp = MatchSize(Q0, r.vs);
switch ((op >> 16) & 0x1f) {
case 0: // d[i] = s[i]; break; //vmov
// Probably for swizzle.
VMOV_neon(r.vd, r.vs);
break;
case 1: // d[i] = fabsf(s[i]); break; //vabs
VABS(F_32, r.vd, r.vs);
break;
case 2: // d[i] = -s[i]; break; //vneg
VNEG(F_32, r.vd, r.vs);
break;
case 4: // if (s[i] < 0) d[i] = 0; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat0
if (IsD(r.vd)) {
VMOV_immf(D0, 0.0f);
VMOV_immf(D1, 1.0f);
VMAX(F_32, r.vd, r.vs, D0);
VMIN(F_32, r.vd, r.vd, D1);
} else {
VMOV_immf(Q0, 1.0f);
VMIN(F_32, r.vd, r.vs, Q0);
VMOV_immf(Q0, 0.0f);
VMAX(F_32, r.vd, r.vd, Q0);
}
break;
case 5: // if (s[i] < -1.0f) d[i] = -1.0f; else {if(s[i] > 1.0f) d[i] = 1.0f; else d[i] = s[i];} break; // vsat1
if (IsD(r.vd)) {
VMOV_immf(D0, -1.0f);
VMOV_immf(D1, 1.0f);
VMAX(F_32, r.vd, r.vs, D0);
VMIN(F_32, r.vd, r.vd, D1);
} else {
VMOV_immf(Q0, 1.0f);
VMIN(F_32, r.vd, r.vs, Q0);
VMOV_immf(Q0, -1.0f);
VMAX(F_32, r.vd, r.vd, Q0);
}
break;
case 16: // d[i] = 1.0f / s[i]; break; //vrcp
// Can just fallback to VFP and use VDIV.
DISABLE;
{
ARMReg temp2 = fpr.QAllocTemp(sz);
// Needs iterations on NEON. And two temps - which is a problem if vs == vd! Argh!
VRECPE(F_32, temp, r.vs);
VRECPS(temp2, r.vs, temp);
VMUL(F_32, temp2, temp2, temp);
VRECPS(temp2, r.vs, temp);
VMUL(F_32, temp2, temp2, temp);
}
// http://stackoverflow.com/questions/6759897/how-to-divide-in-neon-intrinsics-by-a-float-number
// reciprocal = vrecpeq_f32(b);
// reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal);
// reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal);
DISABLE;
break;
case 17: // d[i] = 1.0f / sqrtf(s[i]); break; //vrsq
DISABLE;
// Needs iterations on NEON
{
if (true) {
// Not-very-accurate estimate
VRSQRTE(F_32, r.vd, r.vs);
} else {
ARMReg temp2 = fpr.QAllocTemp(sz);
// TODO: It's likely that some games will require one or two Newton-Raphson
// iterations to refine the estimate.
VRSQRTE(F_32, temp, r.vs);
VRSQRTS(temp2, r.vs, temp);
VMUL(F_32, r.vd, temp2, temp);
//VRSQRTS(temp2, r.vs, temp);
// VMUL(F_32, r.vd, temp2, temp);
}
}
break;
case 18: // d[i] = sinf((float)M_PI_2 * s[i]); break; //vsin
DISABLE;
break;
case 19: // d[i] = cosf((float)M_PI_2 * s[i]); break; //vcos
DISABLE;
break;
case 20: // d[i] = powf(2.0f, s[i]); break; //vexp2
DISABLE;
break;
case 21: // d[i] = logf(s[i])/log(2.0f); break; //vlog2
DISABLE;
break;
case 22: // d[i] = sqrtf(s[i]); break; //vsqrt
// Let's just defer to VFP for now. Better than calling the interpreter for sure.
VMOV_neon(MatchSize(Q0, r.vs), r.vs);
for (int i = 0; i < n; i++) {
VSQRT((ARMReg)(S0 + i), (ARMReg)(S0 + i));
}
VMOV_neon(MatchSize(Q0, r.vd), r.vd);
break;
case 23: // d[i] = asinf(s[i] * (float)M_2_PI); break; //vasin
DISABLE;
break;
case 24: // d[i] = -1.0f / s[i]; break; // vnrcp
// Needs iterations on NEON. Just do the same as vrcp and negate.
DISABLE;
break;
case 26: // d[i] = -sinf((float)M_PI_2 * s[i]); break; // vnsin
DISABLE;
break;
case 28: // d[i] = 1.0f / expf(s[i] * (float)M_LOG2E); break; // vrexp2
DISABLE;
break;
default:
DISABLE;
break;
}
NEONApplyPrefixD(r.vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Mftv(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int imm = op & 0xFF;
MIPSGPReg rt = _RT;
switch ((op >> 21) & 0x1f) {
case 3: //mfv / mfvc
// rt = 0, imm = 255 appears to be used as a CPU interlock by some games.
if (rt != 0) {
if (imm < 128) { //R(rt) = VI(imm);
ARMReg r = fpr.QMapReg(imm, V_Single, MAP_READ);
gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY);
// TODO: Gotta be a faster way
VMOV_neon(MatchSize(Q0, r), r);
VMOV(gpr.R(rt), S0);
} else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc
// In case we have a saved prefix.
FlushPrefixV();
if (imm - 128 == VFPU_CTRL_CC) {
gpr.MapDirtyIn(rt, MIPS_REG_VFPUCC);
MOV(gpr.R(rt), gpr.R(MIPS_REG_VFPUCC));
} else {
gpr.MapReg(rt, MAP_NOINIT | MAP_DIRTY);
LDR(gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128));
}
} else {
//ERROR - maybe need to make this value too an "interlock" value?
ERROR_LOG(CPU, "mfv - invalid register %i", imm);
}
}
break;
case 7: // mtv
if (imm < 128) {
// TODO: It's pretty common that this is preceded by mfc1, that is, a value is being
// moved from the regular floating point registers. It would probably be faster to do
// the copy directly in the FPRs instead of going through the GPRs.
ARMReg r = fpr.QMapReg(imm, V_Single, MAP_DIRTY | MAP_NOINIT);
if (gpr.IsMapped(rt)) {
VMOV(S0, gpr.R(rt));
VMOV_neon(r, MatchSize(Q0, r));
} else {
ADDI2R(R0, CTXREG, gpr.GetMipsRegOffset(rt), R1);
VLD1_lane(F_32, r, R0, 0, true);
}
} else if (imm < 128 + VFPU_CTRL_MAX) { //mtvc //currentMIPS->vfpuCtrl[imm - 128] = R(rt);
if (imm - 128 == VFPU_CTRL_CC) {
gpr.MapDirtyIn(MIPS_REG_VFPUCC, rt);
MOV(gpr.R(MIPS_REG_VFPUCC), rt);
} else {
gpr.MapReg(rt);
STR(gpr.R(rt), CTXREG, offsetof(MIPSState, vfpuCtrl) + 4 * (imm - 128));
}
//gpr.BindToRegister(rt, true, false);
//MOV(32, M(&currentMIPS->vfpuCtrl[imm - 128]), gpr.R(rt));
// TODO: Optimization if rt is Imm?
// Set these BEFORE disable!
if (imm - 128 == VFPU_CTRL_SPREFIX) {
js.prefixSFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_TPREFIX) {
js.prefixTFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_DPREFIX) {
js.prefixDFlag = JitState::PREFIX_UNKNOWN;
}
} else {
//ERROR
_dbg_assert_msg_(CPU,0,"mtv - invalid register");
}
break;
default:
DISABLE;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vmfvc(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_Vmtvc(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int vs = _VS;
int imm = op & 0xFF;
if (imm >= 128 && imm < 128 + VFPU_CTRL_MAX) {
ARMReg r = fpr.QMapReg(vs, V_Single, 0);
ADDI2R(R0, CTXREG, offsetof(MIPSState, vfpuCtrl[0]) + (imm - 128) * 4, R1);
VST1_lane(F_32, r, R0, 0, true);
fpr.ReleaseSpillLocksAndDiscardTemps();
if (imm - 128 == VFPU_CTRL_SPREFIX) {
js.prefixSFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_TPREFIX) {
js.prefixTFlag = JitState::PREFIX_UNKNOWN;
} else if (imm - 128 == VFPU_CTRL_DPREFIX) {
js.prefixDFlag = JitState::PREFIX_UNKNOWN;
}
}
}
void ArmJit::CompNEON_VMatrixInit(MIPSOpcode op) {
CONDITIONAL_DISABLE;
MatrixSize msz = GetMtxSize(op);
int n = GetMatrixSide(msz);
ARMReg cols[4];
fpr.QMapMatrix(cols, _VD, msz, MAP_NOINIT | MAP_DIRTY);
switch ((op >> 16) & 0xF) {
case 3: // vmidt
// There has to be a better way to synthesize: 1.0, 0.0, 0.0, 1.0 in a quad
VEOR(D0, D0, D0);
VMOV_immf(D1, 1.0f);
VTRN(F_32, D0, D1);
VREV64(I_32, D0, D0);
switch (msz) {
case M_2x2:
VMOV_neon(cols[0], D0);
VMOV_neon(cols[1], D1);
break;
case M_3x3:
VMOV_neon(D_0(cols[0]), D0);
VMOV_imm(I_8, D_1(cols[0]), VIMMxxxxxxxx, 0);
VMOV_neon(D_0(cols[1]), D1);
VMOV_imm(I_8, D_1(cols[1]), VIMMxxxxxxxx, 0);
VMOV_imm(I_8, D_0(cols[2]), VIMMxxxxxxxx, 0);
VMOV_neon(D_1(cols[2]), D0);
break;
case M_4x4:
VMOV_neon(D_0(cols[0]), D0);
VMOV_imm(I_8, D_1(cols[0]), VIMMxxxxxxxx, 0);
VMOV_neon(D_0(cols[1]), D1);
VMOV_imm(I_8, D_1(cols[1]), VIMMxxxxxxxx, 0);
VMOV_imm(I_8, D_0(cols[2]), VIMMxxxxxxxx, 0);
VMOV_neon(D_1(cols[2]), D0);
VMOV_imm(I_8, D_0(cols[3]), VIMMxxxxxxxx, 0);
VMOV_neon(D_1(cols[3]), D1);
// NEONTranspose4x4(cols);
break;
default:
_assert_msg_(JIT, 0, "Bad matrix size");
break;
}
break;
case 6: // vmzero
for (int i = 0; i < n; i++) {
VEOR(cols[i], cols[i], cols[i]);
}
break;
case 7: // vmone
for (int i = 0; i < n; i++) {
VMOV_immf(cols[i], 1.0f);
}
break;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vmmov(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (_VS == _VD) {
// A lot of these no-op matrix moves in Wipeout... Just drop the instruction entirely.
return;
}
MatrixSize msz = GetMtxSize(op);
MatrixOverlapType overlap = GetMatrixOverlap(_VD, _VS, msz);
if (overlap != OVERLAP_NONE) {
// Too complicated to bother handling in the JIT.
// TODO: Special case for in-place (and other) transpose, etc.
DISABLE;
}
ARMReg s_cols[4], d_cols[4];
fpr.QMapMatrix(s_cols, _VS, msz, 0);
fpr.QMapMatrix(d_cols, _VD, msz, MAP_DIRTY | MAP_NOINIT);
int n = GetMatrixSide(msz);
for (int i = 0; i < n; i++) {
VMOV_neon(d_cols[i], s_cols[i]);
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vmmul(MIPSOpcode op) {
CONDITIONAL_DISABLE;
MatrixSize msz = GetMtxSize(op);
int n = GetMatrixSide(msz);
bool overlap = GetMatrixOverlap(_VD, _VS, msz) || GetMatrixOverlap(_VD, _VT, msz);
if (overlap) {
// Later. Fortunately, the VFPU also seems to prohibit overlap for matrix mul.
ILOG("Matrix overlap, ignoring.");
DISABLE;
}
// Having problems with 2x2s for some reason.
if (msz == M_2x2) {
DISABLE;
}
ARMReg s_cols[4], t_cols[4], d_cols[4];
// For some reason, vmmul is encoded with the first matrix (S) transposed from the real meaning.
fpr.QMapMatrix(t_cols, _VT, msz, MAP_FORCE_LOW); // Need to see if we can avoid having to force it low in some sane way. Will need crazy prediction logic for loads otherwise.
fpr.QMapMatrix(s_cols, Xpose(_VS), msz, MAP_PREFER_HIGH);
fpr.QMapMatrix(d_cols, _VD, msz, MAP_PREFER_HIGH | MAP_NOINIT | MAP_DIRTY);
// TODO: Getting there but still getting wrong results.
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == 0) {
VMUL_scalar(F_32, d_cols[j], s_cols[i], XScalar(t_cols[j], i));
} else {
VMLA_scalar(F_32, d_cols[j], s_cols[i], XScalar(t_cols[j], i));
}
}
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vmscl(MIPSOpcode op) {
CONDITIONAL_DISABLE;
MatrixSize msz = GetMtxSize(op);
bool overlap = GetMatrixOverlap(_VD, _VS, msz);
if (overlap) {
DISABLE;
}
int n = GetMatrixSide(msz);
ARMReg s_cols[4], t, d_cols[4];
fpr.QMapMatrix(s_cols, _VS, msz, 0);
fpr.QMapMatrix(d_cols, _VD, msz, MAP_NOINIT | MAP_DIRTY);
t = fpr.QMapReg(_VT, V_Single, 0);
VMOV_neon(D0, t);
for (int i = 0; i < n; i++) {
VMUL_scalar(F_32, d_cols[i], s_cols[i], DScalar(D0, 0));
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vtfm(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
if (_VT == _VD) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
MatrixSize msz = GetMtxSize(op);
int n = GetNumVectorElements(sz);
int ins = (op >> 23) & 7;
bool homogenous = false;
if (n == ins) {
n++;
sz = (VectorSize)((int)(sz)+1);
msz = (MatrixSize)((int)(msz)+1);
homogenous = true;
}
// Otherwise, n should already be ins + 1.
else if (n != ins + 1) {
DISABLE;
}
ARMReg s_cols[4], t, d;
t = fpr.QMapReg(_VT, sz, MAP_FORCE_LOW);
fpr.QMapMatrix(s_cols, Xpose(_VS), msz, MAP_PREFER_HIGH);
d = fpr.QMapReg(_VD, sz, MAP_DIRTY | MAP_NOINIT | MAP_PREFER_HIGH);
VMUL_scalar(F_32, d, s_cols[0], XScalar(t, 0));
for (int i = 1; i < n; i++) {
if (homogenous && i == n - 1) {
VADD(F_32, d, d, s_cols[i]);
} else {
VMLA_scalar(F_32, d, s_cols[i], XScalar(t, i));
}
}
// VTFM does not have prefix support.
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VCrs(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_VDet(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_Vi2x(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_Vx2i(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_Vf2i(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_Vi2f(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
DISABLE;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
int imm = (op >> 16) & 0x1f;
const float mult = 1.0f / (float)(1UL << imm);
MappedRegs regs = NEONMapDirtyIn(op, sz, sz);
MOVI2F_neon(MatchSize(Q0, regs.vd), mult, R0);
VCVT(F_32, regs.vd, regs.vs);
VMUL(F_32, regs.vd, regs.vd, Q0);
NEONApplyPrefixD(regs.vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vh2f(MIPSOpcode op) {
if (!cpu_info.bHalf) {
// No hardware support for half-to-float, fallback to interpreter
// TODO: Translate the fast SSE solution to standard integer/VFP stuff
// for the weaker CPUs.
DISABLE;
}
VectorSize sz = GetVecSize(op);
VectorSize outsize = V_Pair;
switch (sz) {
case V_Single:
outsize = V_Pair;
break;
case V_Pair:
outsize = V_Quad;
break;
default:
ERROR_LOG(JIT, "Vh2f: Must be pair or quad");
break;
}
ARMReg vs = NEONMapPrefixS(_VS, sz, 0);
// TODO: MAP_NOINIT if they're definitely not overlapping.
DestARMReg vd = NEONMapPrefixD(_VD, outsize, MAP_DIRTY);
VCVTF32F16(vd.rd, vs);
NEONApplyPrefixD(vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vcst(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
int conNum = (op >> 16) & 0x1f;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_DIRTY | MAP_NOINIT);
gpr.SetRegImm(R0, (u32)(void *)&cst_constants[conNum]);
VLD1_all_lanes(F_32, vd, R0, true);
NEONApplyPrefixD(vd); // TODO: Could bake this into the constant we load.
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vhoriz(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
// Do any games use these a noticeable amount?
switch ((op >> 16) & 31) {
case 6: // vfad
{
VMOV_neon(F_32, D1, 0.0f);
MappedRegs r = NEONMapDirtyIn(op, V_Single, sz);
switch (sz) {
case V_Pair:
VPADD(F_32, r.vd, r.vs, r.vs);
break;
case V_Triple:
VPADD(F_32, D0, D_0(r.vs), D_0(r.vs));
VADD(F_32, r.vd, D0, D_1(r.vs));
break;
case V_Quad:
VADD(F_32, D0, D_0(r.vs), D_1(r.vs));
VPADD(F_32, r.vd, D0, D0);
break;
default:
;
}
// This forces the sign of -0.000 to +0.000.
VADD(F_32, r.vd, r.vd, D1);
break;
}
case 7: // vavg
DISABLE;
break;
}
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VRot(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
DISABLE;
int vd = _VD;
int vs = _VS;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
// ...
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_VIdt(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_NOINIT | MAP_DIRTY);
switch (sz) {
case V_Pair:
VMOV_immf(vd, 1.0f);
if ((_VD & 1) == 0) {
// Load with 1.0, 0.0
VMOV_imm(I_64, D0, VIMMbits2bytes, 0x0F);
VAND(vd, vd, D0);
} else {
VMOV_imm(I_64, D0, VIMMbits2bytes, 0xF0);
VAND(vd, vd, D0);
}
break;
case V_Triple:
case V_Quad:
{
// TODO: This can be optimized.
VEOR(vd, vd, vd);
ARMReg dest = (_VD & 2) ? D_1(vd) : D_0(vd);
VMOV_immf(dest, 1.0f);
if ((_VD & 1) == 0) {
// Load with 1.0, 0.0
VMOV_imm(I_64, D0, VIMMbits2bytes, 0x0F);
VAND(dest, dest, D0);
} else {
VMOV_imm(I_64, D0, VIMMbits2bytes, 0xF0);
VAND(dest, dest, D0);
}
}
break;
default:
_dbg_assert_msg_(CPU,0,"Bad vidt instruction");
break;
}
NEONApplyPrefixD(vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vcmp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix())
DISABLE;
// Not a chance that this works on the first try :P
DISABLE;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
VCondition cond = (VCondition)(op & 0xF);
MappedRegs regs = NEONMapInIn(op, sz, sz);
ARMReg vs = regs.vs, vt = regs.vt;
ARMReg res = fpr.QAllocTemp(sz);
// Some, we just fall back to the interpreter.
// ES is just really equivalent to (value & 0x7F800000) == 0x7F800000.
switch (cond) {
case VC_EI: // c = my_isinf(s[i]); break;
case VC_NI: // c = !my_isinf(s[i]); break;
DISABLE;
case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection
case VC_NS: // c = !my_isnan(s[i]) && !my_isinf(s[i]); break;
case VC_EN: // c = my_isnan(s[i]); break;
case VC_NN: // c = !my_isnan(s[i]); break;
// if (_VS != _VT)
DISABLE;
break;
case VC_EZ:
case VC_NZ:
VMOV_immf(Q0, 0.0f);
break;
default:
;
}
int affected_bits = (1 << 4) | (1 << 5); // 4 and 5
for (int i = 0; i < n; i++) {
affected_bits |= 1 << i;
}
// Preload the pointer to our magic mask
static const u32 collectorBits[4] = { 1, 2, 4, 8 };
MOVP2R(R1, &collectorBits);
// Do the compare
MOVI2R(R0, 0);
CCFlags flag = CC_AL;
bool oneIsFalse = false;
switch (cond) {
case VC_FL: // c = 0;
break;
case VC_TR: // c = 1
MOVI2R(R0, affected_bits);
break;
case VC_ES: // c = my_isnan(s[i]) || my_isinf(s[i]); break; // Tekken Dark Resurrection
case VC_NS: // c = !(my_isnan(s[i]) || my_isinf(s[i])); break;
DISABLE; // TODO: these shouldn't be that hard
break;
case VC_EN: // c = my_isnan(s[i]); break; // Tekken 6
case VC_NN: // c = !my_isnan(s[i]); break;
DISABLE; // TODO: these shouldn't be that hard
break;
case VC_EQ: // c = s[i] == t[i]
VCEQ(F_32, res, vs, vt);
break;
case VC_LT: // c = s[i] < t[i]
VCLT(F_32, res, vs, vt);
break;
case VC_LE: // c = s[i] <= t[i];
VCLE(F_32, res, vs, vt);
break;
case VC_NE: // c = s[i] != t[i]
VCEQ(F_32, res, vs, vt);
oneIsFalse = true;
break;
case VC_GE: // c = s[i] >= t[i]
VCGE(F_32, res, vs, vt);
break;
case VC_GT: // c = s[i] > t[i]
VCGT(F_32, res, vs, vt);
break;
case VC_EZ: // c = s[i] == 0.0f || s[i] == -0.0f
VCEQ(F_32, res, vs);
break;
case VC_NZ: // c = s[i] != 0
VCEQ(F_32, res, vs);
oneIsFalse = true;
break;
default:
DISABLE;
}
if (oneIsFalse) {
VMVN(res, res);
}
// Somehow collect the bits into a mask.
// Collect the bits. Where's my PMOVMSKB? :(
VLD1(I_32, Q0, R1, n < 2 ? 1 : 2);
VAND(Q0, Q0, res);
VPADD(I_32, Q0, Q0, Q0);
VPADD(I_32, D0, D0, D0);
// OK, bits now in S0.
VMOV(R0, S0);
// Zap irrelevant bits (V_Single, V_Triple)
AND(R0, R0, affected_bits);
// TODO: Now, how in the world do we generate the component OR and AND bits without burning tens of ALU instructions?? Lookup-table?
gpr.MapReg(MIPS_REG_VFPUCC, MAP_DIRTY);
BIC(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), affected_bits);
ORR(gpr.R(MIPS_REG_VFPUCC), gpr.R(MIPS_REG_VFPUCC), R0);
}
void ArmJit::CompNEON_Vcmov(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
DISABLE;
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
ARMReg vs = NEONMapPrefixS(_VS, sz, 0);
DestARMReg vd = NEONMapPrefixD(_VD, sz, MAP_DIRTY);
int tf = (op >> 19) & 1;
int imm3 = (op >> 16) & 7;
if (imm3 < 6) {
// Test one bit of CC. This bit decides whether none or all subregisters are copied.
gpr.MapReg(MIPS_REG_VFPUCC);
TST(gpr.R(MIPS_REG_VFPUCC), 1 << imm3);
FixupBranch skip = B_CC(CC_NEQ);
VMOV_neon(vd, vs);
SetJumpTarget(skip);
} else {
// Look at the bottom four bits of CC to individually decide if the subregisters should be copied.
// This is the nasty one! Need to expand those bits into a full NEON register somehow.
DISABLE;
/*
gpr.MapReg(MIPS_REG_VFPUCC);
for (int i = 0; i < n; i++) {
TST(gpr.R(MIPS_REG_VFPUCC), 1 << i);
SetCC(tf ? CC_EQ : CC_NEQ);
VMOV(fpr.V(dregs[i]), fpr.V(sregs[i]));
SetCC(CC_AL);
}
*/
}
NEONApplyPrefixD(vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Viim(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
DestARMReg vt = NEONMapPrefixD(_VT, V_Single, MAP_NOINIT | MAP_DIRTY);
s32 imm = (s32)(s16)(u16)(op & 0xFFFF);
// TODO: Optimize for low registers.
MOVI2F(S0, (float)imm, R0);
VMOV_neon(vt.rd, D0);
NEONApplyPrefixD(vt);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vfim(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
DestARMReg vt = NEONMapPrefixD(_VT, V_Single, MAP_NOINIT | MAP_DIRTY);
FP16 half;
half.u = op & 0xFFFF;
FP32 fval = half_to_float_fast5(half);
// TODO: Optimize for low registers.
MOVI2F(S0, (float)fval.f, R0);
VMOV_neon(vt.rd, D0);
NEONApplyPrefixD(vt);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
// https://code.google.com/p/bullet/source/browse/branches/PhysicsEffects/include/vecmath/neon/vectormath_neon_assembly_implementations.S?r=2488
void ArmJit::CompNEON_VCrossQuat(MIPSOpcode op) {
// This op does not support prefixes anyway.
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE_UNKNOWN_PREFIX;
}
VectorSize sz = GetVecSize(op);
if (sz != V_Triple) {
// Quaternion product. Bleh.
DISABLE;
}
MappedRegs r = NEONMapDirtyInIn(op, sz, sz, sz, false);
ARMReg t1 = Q0;
ARMReg t2 = fpr.QAllocTemp(V_Triple);
// There has to be a faster way to do this. This is not really any better than
// scalar.
// d18, d19 (q9) = t1 = r.vt
// d16, d17 (q8) = t2 = r.vs
// d20, d21 (q10) = t
VMOV_neon(t1, r.vs);
VMOV_neon(t2, r.vt);
VTRN(F_32, D_0(t2), D_1(t2)); // vtrn.32 d18,d19 @ q9 = <x2,z2,y2,w2> = d18,d19
VREV64(F_32, D_0(t1), D_0(t1)); // vrev64.32 d16,d16 @ q8 = <y1,x1,z1,w1> = d16,d17
VREV64(F_32, D_0(t2), D_0(t2)); // vrev64.32 d18,d18 @ q9 = <z2,x2,y2,w2> = d18,d19
VTRN(F_32, D_0(t1), D_1(t1)); // vtrn.32 d16,d17 @ q8 = <y1,z1,x1,w1> = d16,d17
// perform first half of cross product using rearranged inputs
VMUL(F_32, r.vd, t1, t2); // vmul.f32 q10, q8, q9 @ q10 = <y1*z2,z1*x2,x1*y2,w1*w2>
// @ rearrange inputs again
VTRN(F_32, D_0(t2), D_1(t2)); // vtrn.32 d18,d19 @ q9 = <z2,y2,x2,w2> = d18,d19
VREV64(F_32, D_0(t1), D_0(t1)); // vrev64.32 d16,d16 @ q8 = <z1,y1,x1,w1> = d16,d17
VREV64(F_32, D_0(t2), D_0(t2)); // vrev64.32 d18,d18 @ q9 = <y2,z2,x2,w2> = d18,d19
VTRN(F_32, D_0(t1), D_1(t1)); // vtrn.32 d16,d17 @ q8 = <z1,x1,y1,w1> = d16,d17
// @ perform last half of cross product using rearranged inputs
VMLS(F_32, r.vd, t1, t2); // vmls.f32 q10, q8, q9 @ q10 = <y1*z2-y2*z1,z1*x2-z2*x1,x1*y2-x2*y1,w1*w2-w2*w1>
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_Vsgn(MIPSOpcode op) {
DISABLE;
// This will be a bunch of bit magic.
}
void ArmJit::CompNEON_Vocp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
if (js.HasUnknownPrefix()) {
DISABLE;
}
VectorSize sz = GetVecSize(op);
int n = GetNumVectorElements(sz);
MappedRegs regs = NEONMapDirtyIn(op, sz, sz);
MOVI2F_neon(Q0, 1.0f, R0);
VSUB(F_32, regs.vd, Q0, regs.vs);
NEONApplyPrefixD(regs.vd);
fpr.ReleaseSpillLocksAndDiscardTemps();
}
void ArmJit::CompNEON_ColorConv(MIPSOpcode op) {
DISABLE;
}
void ArmJit::CompNEON_Vbfy(MIPSOpcode op) {
DISABLE;
}
}
// namespace MIPSComp
#endif // PPSSPP_ARCH(ARM)