ppsspp/Core/MIPS/x86/CompBranch.cpp
Henrik Rydgård c5e0b799d9 Remove category from _assert_msg_ functions. We don't filter these by category anyway.
Fixes the inconsistency where we _assert_ didn't take a category but
_assert_msg_ did.
2020-07-19 20:33:25 +02:00

825 lines
24 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)
#include "profiler/profiler.h"
#include "Core/Config.h"
#include "Core/Core.h"
#include "Core/Reporting.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/HLETables.h"
#include "Core/Host.h"
#include "Core/MemMap.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/MIPSAnalyst.h"
#include "Core/MIPS/MIPSTables.h"
#include "Core/MIPS/x86/Jit.h"
#include "Core/MIPS/x86/RegCache.h"
#include "Core/MIPS/JitCommon/JitBlockCache.h"
#define _RS MIPS_GET_RS(op)
#define _RT MIPS_GET_RT(op)
#define _RD MIPS_GET_RD(op)
#define _FS MIPS_GET_FS(op)
#define _FT MIPS_GET_FT(op)
#define _FD MIPS_GET_FD(op)
#define _SA MIPS_GET_SA(op)
#define _POS ((op>> 6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
#define _IMM16 (signed short)(op & 0xFFFF)
#define _IMM26 (op & 0x03FFFFFF)
#define LOOPOPTIMIZATION 0
using namespace MIPSAnalyst;
// NOTE: Can't use CONDITIONAL_DISABLE in this file, branches are so special
// that they cannot be interpreted in the context of the Jit.
// But we can at least log and compare.
// #define DO_CONDITIONAL_LOG 1
#define DO_CONDITIONAL_LOG 0
// We can also disable nice delay slots.
// #define CONDITIONAL_NICE_DELAYSLOT delaySlotIsNice = false;
#define CONDITIONAL_NICE_DELAYSLOT ;
#if DO_CONDITIONAL_LOG
#define CONDITIONAL_LOG BranchLog(op);
#define CONDITIONAL_LOG_EXIT(addr) BranchLogExit(op, addr, false);
#define CONDITIONAL_LOG_EXIT_EAX() BranchLogExit(op, 0, true);
#else
#define CONDITIONAL_LOG ;
#define CONDITIONAL_LOG_EXIT(addr) ;
#define CONDITIONAL_LOG_EXIT_EAX() ;
#endif
namespace MIPSComp
{
using namespace Gen;
static void JitBranchLog(MIPSOpcode op, u32 pc) {
currentMIPS->pc = pc;
currentMIPS->inDelaySlot = false;
MIPSInterpretFunc func = MIPSGetInterpretFunc(op);
MIPSInfo info = MIPSGetInfo(op);
func(op);
// Branch taken, use nextPC.
if (currentMIPS->inDelaySlot)
currentMIPS->intBranchExit = currentMIPS->nextPC;
else
{
// Branch not taken, likely delay slot skipped.
if (info & LIKELY)
currentMIPS->intBranchExit = currentMIPS->pc;
// Branch not taken, so increment over delay slot.
else
currentMIPS->intBranchExit = currentMIPS->pc + 4;
}
currentMIPS->pc = pc;
currentMIPS->inDelaySlot = false;
}
static void JitBranchLogMismatch(MIPSOpcode op, u32 pc)
{
char temp[256];
MIPSDisAsm(op, pc, temp, true);
ERROR_LOG(JIT, "Bad jump: %s - int:%08x jit:%08x", temp, currentMIPS->intBranchExit, currentMIPS->jitBranchExit);
host->SetDebugMode(true);
}
void Jit::BranchLog(MIPSOpcode op)
{
FlushAll();
ABI_CallFunctionCC(thunks.ProtectFunction(&JitBranchLog), op.encoding, GetCompilerPC());
}
void Jit::BranchLogExit(MIPSOpcode op, u32 dest, bool useEAX)
{
OpArg destArg = useEAX ? R(EAX) : Imm32(dest);
CMP(32, MIPSSTATE_VAR(intBranchExit), destArg);
FixupBranch skip = J_CC(CC_E);
MOV(32, MIPSSTATE_VAR(jitBranchExit), destArg);
ABI_CallFunctionCC(thunks.ProtectFunction(&JitBranchLogMismatch), op.encoding, GetCompilerPC());
// Restore EAX, we probably ruined it.
if (useEAX)
MOV(32, R(EAX), MIPSSTATE_VAR(jitBranchExit));
SetJumpTarget(skip);
}
CCFlags Jit::FlipCCFlag(CCFlags flag)
{
switch (flag)
{
case CC_O: return CC_NO;
case CC_NO: return CC_O;
case CC_B: return CC_NB;
case CC_NB: return CC_B;
case CC_Z: return CC_NZ;
case CC_NZ: return CC_Z;
case CC_BE: return CC_NBE;
case CC_NBE: return CC_BE;
case CC_S: return CC_NS;
case CC_NS: return CC_S;
case CC_P: return CC_NP;
case CC_NP: return CC_P;
case CC_L: return CC_NL;
case CC_NL: return CC_L;
case CC_LE: return CC_NLE;
case CC_NLE: return CC_LE;
}
ERROR_LOG_REPORT(JIT, "FlipCCFlag: Unexpected CC flag: %d", flag);
return CC_O;
}
CCFlags Jit::SwapCCFlag(CCFlags flag)
{
// This swaps the comparison for an lhs/rhs swap, but doesn't flip/invert the logic.
switch (flag)
{
case CC_O: return CC_O;
case CC_NO: return CC_NO;
case CC_B: return CC_A;
case CC_NB: return CC_NA;
case CC_Z: return CC_Z;
case CC_NZ: return CC_NZ;
case CC_BE: return CC_AE;
case CC_NBE: return CC_NAE;
case CC_S: return CC_S;
case CC_NS: return CC_NS;
case CC_P: return CC_P;
case CC_NP: return CC_NP;
case CC_L: return CC_G;
case CC_NL: return CC_NG;
case CC_LE: return CC_GE;
case CC_NLE: return CC_NGE;
}
ERROR_LOG_REPORT(JIT, "SwapCCFlag: Unexpected CC flag: %d", flag);
return CC_O;
}
bool Jit::PredictTakeBranch(u32 targetAddr, bool likely) {
// If it's likely, it's... probably likely, right?
if (likely)
return true;
// TODO: Normal branch prediction would be to take branches going upward to lower addresses.
// However, this results in worse performance as of this comment's writing.
// The reverse check generally gives better or same performance.
return targetAddr > GetCompilerPC();
}
void Jit::CompBranchExits(CCFlags cc, u32 targetAddr, u32 notTakenAddr, bool delaySlotIsNice, bool likely, bool andLink) {
if (andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
// We may want to try to continue along this branch a little while, to reduce reg flushing.
bool predictTakeBranch = PredictTakeBranch(targetAddr, likely);
if (CanContinueBranch(predictTakeBranch ? targetAddr : notTakenAddr))
{
if (predictTakeBranch)
cc = FlipCCFlag(cc);
Gen::FixupBranch ptr;
RegCacheState state;
if (!likely)
{
if (!delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_SAFE);
ptr = J_CC(cc, true);
GetStateAndFlushAll(state);
}
else
{
ptr = J_CC(cc, true);
if (predictTakeBranch)
GetStateAndFlushAll(state);
else
{
// We need to get the state BEFORE the delay slot is compiled.
gpr.GetState(state.gpr);
fpr.GetState(state.fpr);
CompileDelaySlot(DELAYSLOT_FLUSH);
}
}
if (predictTakeBranch)
{
// We flipped the cc, the not taken case is first.
CONDITIONAL_LOG_EXIT(notTakenAddr);
WriteExit(notTakenAddr, js.nextExit++);
// Now our taken path. Bring the regs back, we didn't flush 'em after all.
SetJumpTarget(ptr);
RestoreState(state);
CONDITIONAL_LOG_EXIT(targetAddr);
// Don't forget to run the delay slot if likely.
if (likely)
CompileDelaySlot(DELAYSLOT_NICE);
AddContinuedBlock(targetAddr);
// Account for the increment in the loop.
js.compilerPC = targetAddr - 4;
// In case the delay slot was a break or something.
js.compiling = true;
}
else
{
// Take the branch
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
// Not taken
SetJumpTarget(ptr);
RestoreState(state);
CONDITIONAL_LOG_EXIT(notTakenAddr);
// Account for the delay slot.
js.compilerPC += 4;
// In case the delay slot was a break or something.
js.compiling = true;
}
}
else
{
Gen::FixupBranch ptr;
if (!likely)
{
if (!delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_SAFE_FLUSH);
else
FlushAll();
ptr = J_CC(cc, true);
}
else
{
FlushAll();
ptr = J_CC(cc, true);
CompileDelaySlot(DELAYSLOT_FLUSH);
}
// Take the branch
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
// Not taken
SetJumpTarget(ptr);
CONDITIONAL_LOG_EXIT(notTakenAddr);
WriteExit(notTakenAddr, js.nextExit++);
js.compiling = false;
}
}
void Jit::CompBranchExit(bool taken, u32 targetAddr, u32 notTakenAddr, bool delaySlotIsNice, bool likely, bool andLink) {
// Continuing is handled in the imm branch case... TODO: move it here?
if (andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
if (taken || !likely)
CompileDelaySlot(DELAYSLOT_FLUSH);
else
FlushAll();
const u32 destAddr = taken ? targetAddr : notTakenAddr;
CONDITIONAL_LOG_EXIT(destAddr);
WriteExit(destAddr, js.nextExit++);
js.compiling = false;
}
void Jit::BranchRSRTComp(MIPSOpcode op, Gen::CCFlags cc, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(JIT, "Branch in RSRTComp delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = _IMM16 << 2;
MIPSGPReg rt = _RT;
MIPSGPReg rs = _RS;
u32 targetAddr = GetCompilerPC() + offset + 4;
bool immBranch = false;
bool immBranchTaken = false;
if (gpr.IsImm(rs) && gpr.IsImm(rt)) {
// The cc flags are opposites: when NOT to take the branch.
bool immBranchNotTaken;
s32 rsImm = (s32)gpr.GetImm(rs);
s32 rtImm = (s32)gpr.GetImm(rt);
switch (cc)
{
case CC_E: immBranchNotTaken = rsImm == rtImm; break;
case CC_NE: immBranchNotTaken = rsImm != rtImm; break;
default: immBranchNotTaken = false; _dbg_assert_msg_(false, "Bad cc flag in BranchRSRTComp().");
}
immBranch = true;
immBranchTaken = !immBranchNotTaken;
}
if (jo.immBranches && immBranch && js.numInstructions < jo.continueMaxInstructions)
{
if (!immBranchTaken)
{
// Skip the delay slot if likely, otherwise it'll be the next instruction.
if (likely)
js.compilerPC += 4;
return;
}
// Branch taken. Always compile the delay slot, and then go to dest.
CompileDelaySlot(DELAYSLOT_NICE);
AddContinuedBlock(targetAddr);
// Account for the increment in the loop.
js.compilerPC = targetAddr - 4;
// In case the delay slot was a break or something.
js.compiling = true;
return;
}
MIPSOpcode delaySlotOp = GetOffsetInstruction(1);
bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rt, rs);
CONDITIONAL_NICE_DELAYSLOT;
if (immBranch)
CompBranchExit(immBranchTaken, targetAddr, GetCompilerPC() + 8, delaySlotIsNice, likely, false);
else
{
if (!likely && delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_NICE);
if (gpr.IsImm(rt) && gpr.GetImm(rt) == 0)
{
gpr.KillImmediate(rs, true, false);
CMP(32, gpr.R(rs), Imm32(0));
}
else
{
gpr.MapReg(rs, true, false);
CMP(32, gpr.R(rs), gpr.R(rt));
}
CompBranchExits(cc, targetAddr, GetCompilerPC() + 8, delaySlotIsNice, likely, false);
}
}
void Jit::BranchRSZeroComp(MIPSOpcode op, Gen::CCFlags cc, bool andLink, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(JIT, "Branch in RSZeroComp delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = _IMM16 << 2;
MIPSGPReg rs = _RS;
u32 targetAddr = GetCompilerPC() + offset + 4;
bool immBranch = false;
bool immBranchTaken = false;
if (gpr.IsImm(rs)) {
// The cc flags are opposites: when NOT to take the branch.
bool immBranchNotTaken;
s32 imm = (s32)gpr.GetImm(rs);
switch (cc)
{
case CC_G: immBranchNotTaken = imm > 0; break;
case CC_GE: immBranchNotTaken = imm >= 0; break;
case CC_L: immBranchNotTaken = imm < 0; break;
case CC_LE: immBranchNotTaken = imm <= 0; break;
default: immBranchNotTaken = false; _dbg_assert_msg_(false, "Bad cc flag in BranchRSZeroComp().");
}
immBranch = true;
immBranchTaken = !immBranchNotTaken;
}
if (jo.immBranches && immBranch && js.numInstructions < jo.continueMaxInstructions)
{
if (!immBranchTaken)
{
// Skip the delay slot if likely, otherwise it'll be the next instruction.
if (andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
if (likely)
js.compilerPC += 4;
return;
}
// Branch taken. Always compile the delay slot, and then go to dest.
if (andLink)
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
AddContinuedBlock(targetAddr);
// Account for the increment in the loop.
js.compilerPC = targetAddr - 4;
// In case the delay slot was a break or something.
js.compiling = true;
return;
}
MIPSOpcode delaySlotOp = GetOffsetInstruction(1);
bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rs);
CONDITIONAL_NICE_DELAYSLOT;
if (immBranch)
CompBranchExit(immBranchTaken, targetAddr, GetCompilerPC() + 8, delaySlotIsNice, likely, andLink);
else
{
if (!likely && delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_NICE);
gpr.MapReg(rs, true, false);
CMP(32, gpr.R(rs), Imm32(0));
CompBranchExits(cc, targetAddr, GetCompilerPC() + 8, delaySlotIsNice, likely, andLink);
}
}
void Jit::Comp_RelBranch(MIPSOpcode op)
{
switch (op>>26)
{
case 4: BranchRSRTComp(op, CC_NZ, false); break;//beq
case 5: BranchRSRTComp(op, CC_Z, false); break;//bne
case 6: BranchRSZeroComp(op, CC_G, false, false); break;//blez
case 7: BranchRSZeroComp(op, CC_LE, false, false); break;//bgtz
case 20: BranchRSRTComp(op, CC_NZ, true); break;//beql
case 21: BranchRSRTComp(op, CC_Z, true); break;//bnel
case 22: BranchRSZeroComp(op, CC_G, false, true); break;//blezl
case 23: BranchRSZeroComp(op, CC_LE, false, true); break;//bgtzl
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
}
void Jit::Comp_RelBranchRI(MIPSOpcode op)
{
switch ((op >> 16) & 0x1F)
{
case 0: BranchRSZeroComp(op, CC_GE, false, false); break; //if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 4; break;//bltz
case 1: BranchRSZeroComp(op, CC_L, false, false); break; //if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 4; break;//bgez
case 2: BranchRSZeroComp(op, CC_GE, false, true); break; //if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 8; break;//bltzl
case 3: BranchRSZeroComp(op, CC_L, false, true); break; //if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 8; break;//bgezl
case 16: BranchRSZeroComp(op, CC_GE, true, false); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 4; break;//bltzal
case 17: BranchRSZeroComp(op, CC_L, true, false); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 4; break;//bgezal
case 18: BranchRSZeroComp(op, CC_GE, true, true); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) < 0) DelayBranchTo(addr); else SkipLikely(); break;//bltzall
case 19: BranchRSZeroComp(op, CC_L, true, true); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) >= 0) DelayBranchTo(addr); else SkipLikely(); break;//bgezall
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
}
// If likely is set, discard the branch slot if NOT taken.
void Jit::BranchFPFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(JIT, "Branch in FPFlag delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = _IMM16 << 2;
u32 targetAddr = GetCompilerPC() + offset + 4;
MIPSOpcode delaySlotOp = GetOffsetInstruction(1);
bool delaySlotIsNice = IsDelaySlotNiceFPU(op, delaySlotOp);
CONDITIONAL_NICE_DELAYSLOT;
if (!likely && delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_NICE);
gpr.KillImmediate(MIPS_REG_FPCOND, true, false);
TEST(32, gpr.R(MIPS_REG_FPCOND), Imm32(1));
CompBranchExits(cc, targetAddr, GetCompilerPC() + 8, delaySlotIsNice, likely, false);
}
void Jit::Comp_FPUBranch(MIPSOpcode op)
{
switch((op >> 16) & 0x1f)
{
case 0: BranchFPFlag(op, CC_NZ, false); break; //bc1f
case 1: BranchFPFlag(op, CC_Z, false); break; //bc1t
case 2: BranchFPFlag(op, CC_NZ, true); break; //bc1fl
case 3: BranchFPFlag(op, CC_Z, true); break; //bc1tl
default:
_dbg_assert_msg_(false,"Trying to interpret instruction that can't be interpreted");
break;
}
}
// If likely is set, discard the branch slot if NOT taken.
void Jit::BranchVFPUFlag(MIPSOpcode op, Gen::CCFlags cc, bool likely)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
// I think we can safely just warn-log this without reporting, it's pretty clear that this type
// of branch is ignored.
WARN_LOG(JIT, "Branch in VFPU delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
int offset = _IMM16 << 2;
u32 targetAddr = GetCompilerPC() + offset + 4;
MIPSOpcode delaySlotOp = GetOffsetInstruction(1);
// Sometimes there's a VFPU branch in a delay slot (Disgaea 2: Dark Hero Days, Zettai Hero Project, La Pucelle)
// The behavior is undefined - the CPU may take the second branch even if the first one passes.
// However, it does consistently try each branch, which these games seem to expect.
bool delaySlotIsBranch = MIPSCodeUtils::IsVFPUBranch(delaySlotOp);
bool delaySlotIsNice = !delaySlotIsBranch && IsDelaySlotNiceVFPU(op, delaySlotOp);
CONDITIONAL_NICE_DELAYSLOT;
if (!likely && delaySlotIsNice)
CompileDelaySlot(DELAYSLOT_NICE);
if (delaySlotIsBranch && (signed short)(delaySlotOp & 0xFFFF) != (signed short)(op & 0xFFFF) - 1)
ERROR_LOG_REPORT(JIT, "VFPU branch in VFPU delay slot at %08x with different target %d / %d", GetCompilerPC(), (signed short)(delaySlotOp & 0xFFFF), (signed short)(op & 0xFFFF) - 1);
// THE CONDITION
int imm3 = (op >> 18) & 7;
gpr.KillImmediate(MIPS_REG_VFPUCC, true, false);
TEST(32, gpr.R(MIPS_REG_VFPUCC), Imm32(1 << imm3));
u32 notTakenTarget = GetCompilerPC() + (delaySlotIsBranch ? 4 : 8);
CompBranchExits(cc, targetAddr, notTakenTarget, delaySlotIsNice, likely, false);
}
void Jit::Comp_VBranch(MIPSOpcode op)
{
switch ((op >> 16) & 3)
{
case 0: BranchVFPUFlag(op, CC_NZ, false); break; //bvf
case 1: BranchVFPUFlag(op, CC_Z, false); break; //bvt
case 2: BranchVFPUFlag(op, CC_NZ, true); break; //bvfl
case 3: BranchVFPUFlag(op, CC_Z, true); break; //bvtl
default:
_dbg_assert_msg_(false,"Comp_VBranch: Invalid instruction");
break;
}
}
static void HitInvalidJump(uint32_t dest) {
Core_ExecException(dest, currentMIPS->pc - 8, ExecExceptionType::JUMP);
}
void Jit::Comp_Jump(MIPSOpcode op) {
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(JIT, "Branch in Jump delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
u32 off = _IMM26 << 2;
u32 targetAddr = (GetCompilerPC() & 0xF0000000) | off;
// Might be a stubbed address or something?
if (!Memory::IsValidAddress(targetAddr)) {
if (js.nextExit == 0) {
ERROR_LOG_REPORT(JIT, "Jump to invalid address: %08x PC %08x LR %08x", targetAddr, GetCompilerPC(), currentMIPS->r[MIPS_REG_RA]);
} else {
js.compiling = false;
}
// TODO: Mark this block dirty or something? May be indication it will be changed by imports.
CompileDelaySlot(DELAYSLOT_NICE);
FlushAll();
MOV(32, MIPSSTATE_VAR(pc), Imm32(GetCompilerPC() + 8));
ABI_CallFunctionC(&HitInvalidJump, targetAddr);
WriteSyscallExit();
return;
}
switch (op >> 26) {
case 2: //j
CompileDelaySlot(DELAYSLOT_NICE);
if (CanContinueJump(targetAddr))
{
AddContinuedBlock(targetAddr);
// Account for the increment in the loop.
js.compilerPC = targetAddr - 4;
// In case the delay slot was a break or something.
js.compiling = true;
return;
}
FlushAll();
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
break;
case 3: //jal
// Special case for branches to "replace functions":
if (ReplaceJalTo(targetAddr))
return;
// Check for small function inlining (future)
// Save return address - might be overwritten by delay slot.
gpr.SetImm(MIPS_REG_RA, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
if (CanContinueJump(targetAddr))
{
AddContinuedBlock(targetAddr);
// Account for the increment in the loop.
js.compilerPC = targetAddr - 4;
// In case the delay slot was a break or something.
js.compiling = true;
return;
}
FlushAll();
CONDITIONAL_LOG_EXIT(targetAddr);
WriteExit(targetAddr, js.nextExit++);
break;
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
js.compiling = false;
}
void Jit::Comp_JumpReg(MIPSOpcode op)
{
CONDITIONAL_LOG;
if (js.inDelaySlot) {
ERROR_LOG_REPORT(JIT, "Branch in JumpReg delay slot at %08x in block starting at %08x", GetCompilerPC(), js.blockStart);
return;
}
MIPSGPReg rs = _RS;
MIPSGPReg rd = _RD;
bool andLink = (op & 0x3f) == 9 && rd != MIPS_REG_ZERO;
MIPSOpcode delaySlotOp = GetOffsetInstruction(1);
bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rs);
if (andLink && rs == rd)
delaySlotIsNice = false;
CONDITIONAL_NICE_DELAYSLOT;
X64Reg destReg = EAX;
if (IsSyscall(delaySlotOp))
{
// If this is a syscall, write the pc (for thread switching and other good reasons.)
gpr.MapReg(rs, true, false);
MOV(32, MIPSSTATE_VAR(pc), gpr.R(rs));
if (andLink)
gpr.SetImm(rd, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_FLUSH);
// Syscalls write the exit code for us.
_dbg_assert_msg_(!js.compiling, "Expected syscall to write an exit code.");
return;
}
else if (delaySlotIsNice)
{
if (andLink)
gpr.SetImm(rd, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
if (!andLink && rs == MIPS_REG_RA && g_Config.bDiscardRegsOnJRRA) {
// According to the MIPS ABI, there are some regs we don't need to preserve.
// Let's discard them so we don't need to write them back.
// NOTE: Not all games follow the MIPS ABI! Tekken 6, for example, will crash
// with this enabled.
gpr.DiscardRegContentsIfCached(MIPS_REG_COMPILER_SCRATCH);
for (int i = MIPS_REG_A0; i <= MIPS_REG_T7; i++)
gpr.DiscardRegContentsIfCached((MIPSGPReg)i);
gpr.DiscardRegContentsIfCached(MIPS_REG_T8);
gpr.DiscardRegContentsIfCached(MIPS_REG_T9);
}
if (gpr.IsImm(rs) && CanContinueJump(gpr.GetImm(rs)))
{
AddContinuedBlock(gpr.GetImm(rs));
// Account for the increment in the loop.
js.compilerPC = gpr.GetImm(rs) - 4;
// In case the delay slot was a break or something.
js.compiling = true;
return;
}
if (gpr.R(rs).IsSimpleReg()) {
destReg = gpr.R(rs).GetSimpleReg();
} else {
MOV(32, R(EAX), gpr.R(rs));
}
FlushAll();
} else {
// Latch destination now - save it in memory.
gpr.MapReg(rs, true, false);
MOV(32, MIPSSTATE_VAR(savedPC), gpr.R(rs));
if (andLink)
gpr.SetImm(rd, GetCompilerPC() + 8);
CompileDelaySlot(DELAYSLOT_NICE);
MOV(32, R(EAX), MIPSSTATE_VAR(savedPC));
FlushAll();
}
switch (op & 0x3f) {
case 8: //jr
break;
case 9: //jalr
break;
default:
_dbg_assert_msg_(false,"Trying to compile instruction that can't be compiled");
break;
}
CONDITIONAL_LOG_EXIT_EAX();
WriteExitDestInReg(destReg);
js.compiling = false;
}
void Jit::Comp_Syscall(MIPSOpcode op)
{
if (op.encoding == 0x03FFFFcc) {
WARN_LOG(JIT, "Encountered bad syscall instruction at %08x (%08x)", js.compilerPC, op.encoding);
}
if (!g_Config.bSkipDeadbeefFilling)
{
// All of these will be overwritten with DEADBEEF anyway.
gpr.DiscardR(MIPS_REG_COMPILER_SCRATCH);
// We need to keep A0 - T3, which are used for args.
gpr.DiscardR(MIPS_REG_T4);
gpr.DiscardR(MIPS_REG_T5);
gpr.DiscardR(MIPS_REG_T6);
gpr.DiscardR(MIPS_REG_T7);
gpr.DiscardR(MIPS_REG_T8);
gpr.DiscardR(MIPS_REG_T9);
gpr.DiscardR(MIPS_REG_HI);
gpr.DiscardR(MIPS_REG_LO);
}
FlushAll();
// If we're in a delay slot, this is off by one.
const int offset = js.inDelaySlot ? -1 : 0;
WriteDowncount(offset);
RestoreRoundingMode();
js.downcountAmount = -offset;
if (!js.inDelaySlot) {
MOV(32, MIPSSTATE_VAR(pc), Imm32(GetCompilerPC() + 4));
}
#ifdef USE_PROFILER
// When profiling, we can't skip CallSyscall, since it times syscalls.
ABI_CallFunctionC(&CallSyscall, op.encoding);
#else
// Skip the CallSyscall where possible.
void *quickFunc = GetQuickSyscallFunc(op);
if (quickFunc)
ABI_CallFunctionP(quickFunc, (void *)GetSyscallFuncPointer(op));
else
ABI_CallFunctionC(&CallSyscall, op.encoding);
#endif
ApplyRoundingMode();
WriteSyscallExit();
js.compiling = false;
}
void Jit::Comp_Break(MIPSOpcode op)
{
Comp_Generic(op);
WriteSyscallExit();
js.compiling = false;
}
} // namespace Mipscomp
#endif // PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)