ppsspp/Core/HLE/sceKernelEventFlag.cpp
2015-12-19 19:58:32 -08:00

531 lines
18 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "Core/HLE/HLE.h"
#include "Core/MIPS/MIPS.h"
#include "Core/CoreTiming.h"
#include "Core/MemMapHelpers.h"
#include "Core/Reporting.h"
#include "Common/ChunkFile.h"
#include "Core/HLE/sceKernel.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/HLE/sceKernelEventFlag.h"
#include "Core/HLE/KernelWaitHelpers.h"
void __KernelEventFlagTimeout(u64 userdata, int cycleslate);
struct NativeEventFlag {
u32_le size;
char name[KERNELOBJECT_MAX_NAME_LENGTH + 1];
u32_le attr;
u32_le initPattern;
u32_le currentPattern;
s32_le numWaitThreads;
};
struct EventFlagTh {
SceUID threadID;
u32 bits;
u32 wait;
u32 outAddr;
u64 pausedTimeout;
bool operator ==(const SceUID &otherThreadID) const {
return threadID == otherThreadID;
}
};
class EventFlag : public KernelObject {
public:
const char *GetName() override { return nef.name; }
const char *GetTypeName() override { return "EventFlag"; }
void GetQuickInfo(char *ptr, int size) override {
sprintf(ptr, "init=%08x cur=%08x numwait=%i",
nef.initPattern,
nef.currentPattern,
nef.numWaitThreads);
}
static u32 GetMissingErrorCode() {
return SCE_KERNEL_ERROR_UNKNOWN_EVFID;
}
static int GetStaticIDType() { return SCE_KERNEL_TMID_EventFlag; }
int GetIDType() const override { return SCE_KERNEL_TMID_EventFlag; }
void DoState(PointerWrap &p) override {
auto s = p.Section("EventFlag", 1);
if (!s)
return;
p.Do(nef);
EventFlagTh eft = { 0 };
p.Do(waitingThreads, eft);
p.Do(pausedWaits);
}
NativeEventFlag nef;
std::vector<EventFlagTh> waitingThreads;
// Key is the callback id it was for, or if no callback, the thread id.
std::map<SceUID, EventFlagTh> pausedWaits;
};
/** Event flag creation attributes */
enum PspEventFlagAttributes {
/** Allow the event flag to be waited upon by multiple threads */
PSP_EVENT_WAITMULTIPLE = 0x200
};
/** Event flag wait types */
enum PspEventFlagWaitTypes {
/** Wait for all bits in the pattern to be set */
PSP_EVENT_WAITAND = 0x00,
/** Wait for one or more bits in the pattern to be set */
PSP_EVENT_WAITOR = 0x01,
/** Clear the entire pattern when it matches. */
PSP_EVENT_WAITCLEARALL = 0x10,
/** Clear the wait pattern when it matches */
PSP_EVENT_WAITCLEAR = 0x20,
PSP_EVENT_WAITKNOWN = PSP_EVENT_WAITCLEAR | PSP_EVENT_WAITCLEARALL | PSP_EVENT_WAITOR,
};
static int eventFlagWaitTimer = -1;
void __KernelEventFlagBeginCallback(SceUID threadID, SceUID prevCallbackId);
void __KernelEventFlagEndCallback(SceUID threadID, SceUID prevCallbackId);
void __KernelEventFlagInit() {
eventFlagWaitTimer = CoreTiming::RegisterEvent("EventFlagTimeout", __KernelEventFlagTimeout);
__KernelRegisterWaitTypeFuncs(WAITTYPE_EVENTFLAG, __KernelEventFlagBeginCallback, __KernelEventFlagEndCallback);
}
void __KernelEventFlagDoState(PointerWrap &p) {
auto s = p.Section("sceKernelEventFlag", 1);
if (!s)
return;
p.Do(eventFlagWaitTimer);
CoreTiming::RestoreRegisterEvent(eventFlagWaitTimer, "EventFlagTimeout", __KernelEventFlagTimeout);
}
KernelObject *__KernelEventFlagObject() {
// Default object to load from state.
return new EventFlag;
}
static bool __KernelCheckEventFlagMatches(u32 pattern, u32 bits, u8 wait) {
// Is this in OR (any bit can match) or AND (all bits must match) mode?
if (wait & PSP_EVENT_WAITOR) {
return (bits & pattern) != 0;
} else {
return (bits & pattern) == bits;
}
}
static bool __KernelApplyEventFlagMatch(u32_le *pattern, u32 bits, u8 wait, u32 outAddr) {
if (__KernelCheckEventFlagMatches(*pattern, bits, wait)) {
if (Memory::IsValidAddress(outAddr))
Memory::Write_U32(*pattern, outAddr);
if (wait & PSP_EVENT_WAITCLEAR)
*pattern &= ~bits;
if (wait & PSP_EVENT_WAITCLEARALL)
*pattern = 0;
return true;
}
return false;
}
static bool __KernelUnlockEventFlagForThread(EventFlag *e, EventFlagTh &th, u32 &error, int result, bool &wokeThreads) {
if (!HLEKernel::VerifyWait(th.threadID, WAITTYPE_EVENTFLAG, e->GetUID()))
return true;
// If result is an error code, we're just letting it go.
if (result == 0) {
if (!__KernelApplyEventFlagMatch(&e->nef.currentPattern, th.bits, th.wait, th.outAddr))
return false;
} else {
// Otherwise, we set the current result since we're bailing.
if (Memory::IsValidAddress(th.outAddr))
Memory::Write_U32(e->nef.currentPattern, th.outAddr);
}
u32 timeoutPtr = __KernelGetWaitTimeoutPtr(th.threadID, error);
if (timeoutPtr != 0 && eventFlagWaitTimer != -1) {
// Remove any event for this thread.
s64 cyclesLeft = CoreTiming::UnscheduleEvent(eventFlagWaitTimer, th.threadID);
Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr);
}
__KernelResumeThreadFromWait(th.threadID, result);
wokeThreads = true;
return true;
}
static bool __KernelClearEventFlagThreads(EventFlag *e, int reason) {
u32 error;
bool wokeThreads = false;
std::vector<EventFlagTh>::iterator iter, end;
for (iter = e->waitingThreads.begin(), end = e->waitingThreads.end(); iter != end; ++iter)
__KernelUnlockEventFlagForThread(e, *iter, error, reason, wokeThreads);
e->waitingThreads.clear();
return wokeThreads;
}
void __KernelEventFlagBeginCallback(SceUID threadID, SceUID prevCallbackId) {
auto result = HLEKernel::WaitBeginCallback<EventFlag, WAITTYPE_EVENTFLAG, EventFlagTh>(threadID, prevCallbackId, eventFlagWaitTimer);
if (result == HLEKernel::WAIT_CB_SUCCESS)
DEBUG_LOG(SCEKERNEL, "sceKernelWaitEventFlagCB: Suspending lock wait for callback");
else if (result == HLEKernel::WAIT_CB_BAD_WAIT_DATA)
ERROR_LOG_REPORT(SCEKERNEL, "sceKernelWaitEventFlagCB: wait not found to pause for callback");
else
WARN_LOG_REPORT(SCEKERNEL, "sceKernelWaitEventFlagCB: beginning callback with bad wait id?");
}
void __KernelEventFlagEndCallback(SceUID threadID, SceUID prevCallbackId) {
auto result = HLEKernel::WaitEndCallback<EventFlag, WAITTYPE_EVENTFLAG, EventFlagTh>(threadID, prevCallbackId, eventFlagWaitTimer, __KernelUnlockEventFlagForThread);
if (result == HLEKernel::WAIT_CB_RESUMED_WAIT)
DEBUG_LOG(SCEKERNEL, "sceKernelWaitEventFlagCB: Resuming lock wait from callback");
}
//SceUID sceKernelCreateEventFlag(const char *name, int attr, int bits, SceKernelEventFlagOptParam *opt);
int sceKernelCreateEventFlag(const char *name, u32 flag_attr, u32 flag_initPattern, u32 optPtr) {
if (!name) {
return hleReportWarning(SCEKERNEL, SCE_KERNEL_ERROR_ERROR, "invalid name");
}
// These attributes aren't valid.
if ((flag_attr & 0x100) != 0 || flag_attr >= 0x300) {
return hleReportWarning(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_ATTR, "invalid attr parameter: %08x", flag_attr);
}
EventFlag *e = new EventFlag();
SceUID id = kernelObjects.Create(e);
e->nef.size = sizeof(NativeEventFlag);
strncpy(e->nef.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
e->nef.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0;
e->nef.attr = flag_attr;
e->nef.initPattern = flag_initPattern;
e->nef.currentPattern = e->nef.initPattern;
e->nef.numWaitThreads = 0;
if (optPtr != 0) {
u32 size = Memory::Read_U32(optPtr);
if (size > 4)
WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateEventFlag(%s) unsupported options parameter, size = %d", name, size);
}
if ((flag_attr & ~PSP_EVENT_WAITMULTIPLE) != 0)
WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateEventFlag(%s) unsupported attr parameter: %08x", name, flag_attr);
return hleLogSuccessI(SCEKERNEL, id);
}
u32 sceKernelCancelEventFlag(SceUID uid, u32 pattern, u32 numWaitThreadsPtr) {
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(uid, error);
if (e) {
e->nef.numWaitThreads = (int) e->waitingThreads.size();
if (Memory::IsValidAddress(numWaitThreadsPtr))
Memory::Write_U32(e->nef.numWaitThreads, numWaitThreadsPtr);
e->nef.currentPattern = pattern;
if (__KernelClearEventFlagThreads(e, SCE_KERNEL_ERROR_WAIT_CANCEL))
hleReSchedule("event flag canceled");
return hleLogSuccessI(SCEKERNEL, 0);
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
u32 sceKernelClearEventFlag(SceUID id, u32 bits) {
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(id, error);
if (e) {
e->nef.currentPattern &= bits;
// Note that it's not possible for threads to get woken up by this action.
hleEatCycles(430);
return hleLogSuccessI(SCEKERNEL, 0);
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
u32 sceKernelDeleteEventFlag(SceUID uid) {
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(uid, error);
if (e) {
bool wokeThreads = __KernelClearEventFlagThreads(e, SCE_KERNEL_ERROR_WAIT_DELETE);
if (wokeThreads)
hleReSchedule("event flag deleted");
return hleLogSuccessI(SCEKERNEL, kernelObjects.Destroy<EventFlag>(uid));
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
u32 sceKernelSetEventFlag(SceUID id, u32 bitsToSet) {
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(id, error);
if (e) {
bool wokeThreads = false;
e->nef.currentPattern |= bitsToSet;
for (size_t i = 0; i < e->waitingThreads.size(); ++i) {
EventFlagTh *t = &e->waitingThreads[i];
if (__KernelUnlockEventFlagForThread(e, *t, error, 0, wokeThreads)) {
e->waitingThreads.erase(e->waitingThreads.begin() + i);
// Try the one that used to be in this place next.
--i;
}
}
if (wokeThreads)
hleReSchedule("event flag set");
hleEatCycles(430);
return hleLogSuccessI(SCEKERNEL, 0);
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
void __KernelEventFlagTimeout(u64 userdata, int cycleslate) {
SceUID threadID = (SceUID)userdata;
// This still needs to set the result pointer from the wait.
u32 error;
SceUID flagID = __KernelGetWaitID(threadID, WAITTYPE_EVENTFLAG, error);
u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error);
EventFlag *e = kernelObjects.Get<EventFlag>(flagID, error);
if (e) {
if (timeoutPtr != 0)
Memory::Write_U32(0, timeoutPtr);
for (size_t i = 0; i < e->waitingThreads.size(); i++) {
EventFlagTh *t = &e->waitingThreads[i];
if (t->threadID == threadID) {
bool wokeThreads;
// This thread isn't waiting anymore, but we'll remove it from waitingThreads later.
// The reason is, if it times out, but what it was waiting on is DELETED prior to it
// actually running, it will get a DELETE result instead of a TIMEOUT.
// So, we need to remember it or we won't be able to mark it DELETE instead later.
__KernelUnlockEventFlagForThread(e, *t, error, SCE_KERNEL_ERROR_WAIT_TIMEOUT, wokeThreads);
break;
}
}
}
}
static void __KernelSetEventFlagTimeout(EventFlag *e, u32 timeoutPtr) {
if (timeoutPtr == 0 || eventFlagWaitTimer == -1)
return;
int micro = (int) Memory::Read_U32(timeoutPtr);
// This seems like the actual timing of timeouts on hardware.
if (micro <= 1)
micro = 25;
else if (micro <= 209)
micro = 240;
// This should call __KernelEventFlagTimeout() later, unless we cancel it.
CoreTiming::ScheduleEvent(usToCycles(micro), eventFlagWaitTimer, __KernelGetCurThread());
}
int sceKernelWaitEventFlag(SceUID id, u32 bits, u32 wait, u32 outBitsPtr, u32 timeoutPtr) {
if ((wait & ~PSP_EVENT_WAITKNOWN) != 0) {
return hleReportWarning(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_MODE, "invalid mode parameter: %08x", wait);
}
// Can't wait on 0, that's guaranteed to wait forever.
if (bits == 0) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_ILPAT, "bad pattern");
}
if (!__KernelIsDispatchEnabled()) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_CAN_NOT_WAIT, "dispatch disabled");
}
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(id, error);
if (e) {
EventFlagTh th;
if (!__KernelApplyEventFlagMatch(&e->nef.currentPattern, bits, wait, outBitsPtr)) {
// If this thread was left in waitingThreads after a timeout, remove it.
// Otherwise we might write the outBitsPtr in the wrong place.
HLEKernel::RemoveWaitingThread(e->waitingThreads, __KernelGetCurThread());
u32 timeout = 0xFFFFFFFF;
if (Memory::IsValidAddress(timeoutPtr))
timeout = Memory::Read_U32(timeoutPtr);
// Do we allow more than one thread to wait?
if (e->waitingThreads.size() > 0 && (e->nef.attr & PSP_EVENT_WAITMULTIPLE) == 0) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_MULTI);
}
(void)hleLogSuccessI(SCEKERNEL, 0, "waiting");
// No match - must wait.
th.threadID = __KernelGetCurThread();
th.bits = bits;
th.wait = wait;
// If < 5ms, sometimes hardware doesn't write this, but it's unpredictable.
th.outAddr = timeout == 0 ? 0 : outBitsPtr;
e->waitingThreads.push_back(th);
__KernelSetEventFlagTimeout(e, timeoutPtr);
__KernelWaitCurThread(WAITTYPE_EVENTFLAG, id, 0, timeoutPtr, false, "event flag waited");
} else {
(void)hleLogSuccessI(SCEKERNEL, 0);
}
hleEatCycles(600);
return 0;
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
int sceKernelWaitEventFlagCB(SceUID id, u32 bits, u32 wait, u32 outBitsPtr, u32 timeoutPtr) {
if ((wait & ~PSP_EVENT_WAITKNOWN) != 0) {
return hleReportWarning(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_MODE, "invalid mode parameter: %08x", wait);
}
// Can't wait on 0, that's guaranteed to wait forever.
if (bits == 0) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_ILPAT, "bad pattern");
}
if (!__KernelIsDispatchEnabled()) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_CAN_NOT_WAIT, "dispatch disabled");
}
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(id, error);
if (e) {
EventFlagTh th;
// We only check, not apply here. This way the CLEAR/etc. options don't apply yet.
// If we run callbacks, we will check again after the callbacks complete.
bool doWait = !__KernelCheckEventFlagMatches(e->nef.currentPattern, bits, wait);
bool doCallbackWait = false;
if (__KernelCurHasReadyCallbacks()) {
doWait = true;
doCallbackWait = true;
}
if (doWait) {
// If this thread was left in waitingThreads after a timeout, remove it.
// Otherwise we might write the outBitsPtr in the wrong place.
HLEKernel::RemoveWaitingThread(e->waitingThreads, __KernelGetCurThread());
u32 timeout = 0xFFFFFFFF;
if (Memory::IsValidAddress(timeoutPtr))
timeout = Memory::Read_U32(timeoutPtr);
// Do we allow more than one thread to wait?
if (e->waitingThreads.size() > 0 && (e->nef.attr & PSP_EVENT_WAITMULTIPLE) == 0) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_MULTI);
}
(void)hleLogSuccessI(SCEKERNEL, 0, "waiting");
// No match - must wait.
th.threadID = __KernelGetCurThread();
th.bits = bits;
th.wait = wait;
// If < 5ms, sometimes hardware doesn't write this, but it's unpredictable.
th.outAddr = timeout == 0 ? 0 : outBitsPtr;
e->waitingThreads.push_back(th);
__KernelSetEventFlagTimeout(e, timeoutPtr);
if (doCallbackWait)
__KernelWaitCallbacksCurThread(WAITTYPE_EVENTFLAG, id, 0, timeoutPtr);
else
__KernelWaitCurThread(WAITTYPE_EVENTFLAG, id, 0, timeoutPtr, true, "event flag waited");
} else {
(void)hleLogSuccessI(SCEKERNEL, 0);
__KernelApplyEventFlagMatch(&e->nef.currentPattern, bits, wait, outBitsPtr);
hleCheckCurrentCallbacks();
}
return 0;
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
int sceKernelPollEventFlag(SceUID id, u32 bits, u32 wait, u32 outBitsPtr) {
if ((wait & ~PSP_EVENT_WAITKNOWN) != 0) {
return hleReportWarning(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_MODE, "invalid mode parameter: %08x", wait);
}
// Poll seems to also fail when CLEAR and CLEARALL are used together, but not wait.
if ((wait & PSP_EVENT_WAITCLEAR) != 0 && (wait & PSP_EVENT_WAITCLEARALL) != 0) {
return hleReportWarning(SCEKERNEL, SCE_KERNEL_ERROR_ILLEGAL_MODE, "invalid mode parameter: %08x", wait);
}
// Can't wait on 0, it never matches.
if (bits == 0) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_ILPAT, "bad pattern");
}
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(id, error);
if (e) {
if (!__KernelApplyEventFlagMatch(&e->nef.currentPattern, bits, wait, outBitsPtr)) {
if (Memory::IsValidAddress(outBitsPtr))
Memory::Write_U32(e->nef.currentPattern, outBitsPtr);
if (e->waitingThreads.size() > 0 && (e->nef.attr & PSP_EVENT_WAITMULTIPLE) == 0) {
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_MULTI);
}
// No match - return that, this is polling, not waiting.
return hleLogDebug(SCEKERNEL, SCE_KERNEL_ERROR_EVF_COND);
} else {
return hleLogSuccessI(SCEKERNEL, 0);
}
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}
//int sceKernelReferEventFlagStatus(SceUID event, SceKernelEventFlagInfo *status);
u32 sceKernelReferEventFlagStatus(SceUID id, u32 statusPtr) {
u32 error;
EventFlag *e = kernelObjects.Get<EventFlag>(id, error);
if (e) {
if (!Memory::IsValidAddress(statusPtr))
return hleLogWarning(SCEKERNEL, -1, "invalid ptr");
HLEKernel::CleanupWaitingThreads(WAITTYPE_EVENTFLAG, id, e->waitingThreads);
e->nef.numWaitThreads = (int) e->waitingThreads.size();
if (Memory::Read_U32(statusPtr) != 0)
Memory::WriteStruct(statusPtr, &e->nef);
return hleLogSuccessI(SCEKERNEL, 0);
} else {
return hleLogDebug(SCEKERNEL, error, "invalid event flag");
}
}