ppsspp/Common/Thread/ThreadManager.cpp
Henrik Rydgård e01ca5b057
Logging API change (refactor) (#19324)
* Rename LogType to Log

* Explicitly use the Log:: enum when logging. Allows for autocomplete when editing.

* Mac/ARM64 buildfix

* Do the same with the hle result log macros

* Rename the log names to mixed case while at it.

* iOS buildfix

* Qt buildfix attempt, ARM32 buildfix
2024-07-14 14:42:59 +02:00

326 lines
10 KiB
C++

#include <cstdio>
#include <algorithm>
#include <thread>
#include <deque>
#include <condition_variable>
#include <mutex>
#include <vector>
#include <atomic>
#include "Common/Log.h"
#include "Common/Thread/ThreadUtil.h"
#include "Common/Thread/ThreadManager.h"
// Threads and task scheduling
//
// * The threadpool should contain a number of threads that's the the number of cores,
// plus a fixed number more for I/O-limited background tasks.
// * Parallel compute-limited loops should use as many threads as there are cores.
// They should always be scheduled to the first N threads.
// * For some tasks, splitting the input values up linearly between the threads
// is not fair. However, we ignore that for now.
const int MAX_CORES_TO_USE = 16;
const int MIN_IO_BLOCKING_THREADS = 4;
static constexpr size_t TASK_PRIORITY_COUNT = (size_t)TaskPriority::COUNT;
struct GlobalThreadContext {
std::mutex mutex;
std::deque<Task *> compute_queue[TASK_PRIORITY_COUNT];
std::atomic<int> compute_queue_size;
std::deque<Task *> io_queue[TASK_PRIORITY_COUNT];
std::atomic<int> io_queue_size;
std::vector<TaskThreadContext *> threads_;
std::atomic<int> roundRobin;
};
struct TaskThreadContext {
std::atomic<int> queue_size;
std::deque<Task *> private_queue[TASK_PRIORITY_COUNT];
std::thread thread; // the worker thread
std::condition_variable cond; // used to signal new work
std::mutex mutex; // protects the local queue.
int index;
TaskType type;
std::atomic<bool> cancelled;
char name[16];
};
ThreadManager::ThreadManager() : global_(new GlobalThreadContext()) {
global_->compute_queue_size = 0;
global_->io_queue_size = 0;
global_->roundRobin = 0;
}
ThreadManager::~ThreadManager() {
delete global_;
}
void ThreadManager::Teardown() {
for (TaskThreadContext *&threadCtx : global_->threads_) {
std::unique_lock<std::mutex> lock(threadCtx->mutex);
threadCtx->cancelled = true;
threadCtx->cond.notify_one();
}
// Purge any cancellable tasks while the threads shut down.
if (global_->compute_queue_size > 0 || global_->io_queue_size > 0) {
auto drainQueue = [&](std::deque<Task *> queue[TASK_PRIORITY_COUNT], std::atomic<int> &size) {
for (size_t i = 0; i < TASK_PRIORITY_COUNT; ++i) {
for (auto it = queue[i].begin(); it != queue[i].end(); ++it) {
if (TeardownTask(*it, false)) {
queue[i].erase(it);
size--;
return false;
}
}
}
return true;
};
std::unique_lock<std::mutex> lock(global_->mutex);
while (!drainQueue(global_->compute_queue, global_->compute_queue_size))
continue;
while (!drainQueue(global_->io_queue, global_->io_queue_size))
continue;
}
for (TaskThreadContext *&threadCtx : global_->threads_) {
threadCtx->thread.join();
// TODO: Is it better to just delete these?
for (size_t i = 0; i < TASK_PRIORITY_COUNT; ++i) {
for (Task *task : threadCtx->private_queue[i]) {
TeardownTask(task, true);
}
}
delete threadCtx;
}
global_->threads_.clear();
if (global_->compute_queue_size > 0 || global_->io_queue_size > 0) {
WARN_LOG(Log::System, "ThreadManager::Teardown() with tasks still enqueued");
}
}
bool ThreadManager::TeardownTask(Task *task, bool enqueue) {
if (!task)
return true;
if (task->Cancellable()) {
task->Cancel();
task->Release();
return true;
}
if (enqueue) {
size_t queueIndex = (size_t)task->Priority();
if (task->Type() == TaskType::CPU_COMPUTE) {
global_->compute_queue[queueIndex].push_back(task);
global_->compute_queue_size++;
} else if (task->Type() == TaskType::IO_BLOCKING) {
global_->io_queue[queueIndex].push_back(task);
global_->io_queue_size++;
} else {
_assert_(false);
}
}
return false;
}
static void WorkerThreadFunc(GlobalThreadContext *global, TaskThreadContext *thread) {
if (thread->type == TaskType::CPU_COMPUTE) {
snprintf(thread->name, sizeof(thread->name), "PoolWorker %d", thread->index);
} else {
_assert_(thread->type == TaskType::IO_BLOCKING);
snprintf(thread->name, sizeof(thread->name), "PoolWorkerIO %d", thread->index);
}
SetCurrentThreadName(thread->name);
if (thread->type == TaskType::IO_BLOCKING) {
AttachThreadToJNI();
}
const bool isCompute = thread->type == TaskType::CPU_COMPUTE;
const auto global_queue_size = [isCompute, &global]() -> int {
return isCompute ? global->compute_queue_size.load() : global->io_queue_size.load();
};
while (!thread->cancelled) {
Task *task = nullptr;
// Check the global queue first, then check the private queue and wait if there's nothing to do.
if (global_queue_size() > 0) {
// Grab one from the global queue if there is any.
std::unique_lock<std::mutex> lock(global->mutex);
auto queue = isCompute ? global->compute_queue : global->io_queue;
auto &queue_size = isCompute ? global->compute_queue_size : global->io_queue_size;
for (size_t p = 0; p < TASK_PRIORITY_COUNT; ++p) {
if (!queue[p].empty()) {
task = queue[p].front();
queue[p].pop_front();
queue_size--;
// We are processing one now, so mark that.
thread->queue_size++;
break;
} else if (thread->queue_size != 0) {
// Check the thread, as we prefer a HIGH thread task to a global NORMAL task.
std::unique_lock<std::mutex> lock(thread->mutex);
if (!thread->private_queue[p].empty()) {
task = thread->private_queue[p].front();
thread->private_queue[p].pop_front();
break;
}
}
}
}
if (!task) {
// We didn't have any global, do we have anything on the thread?
std::unique_lock<std::mutex> lock(thread->mutex);
for (size_t p = 0; p < TASK_PRIORITY_COUNT; ++p) {
if (thread->private_queue[p].empty())
continue;
task = thread->private_queue[p].front();
thread->private_queue[p].pop_front();
break;
}
// We must check both queue and single again, while locked.
bool wait = !thread->cancelled && !task && global_queue_size() == 0;
if (wait)
thread->cond.wait(lock);
}
// The task itself takes care of notifying anyone waiting on it. Not the
// responsibility of the ThreadManager (although it could be!).
if (task) {
task->Run();
task->Release();
// Reduce the queue size once complete.
thread->queue_size--;
// _dbg_assert_(thread->queue_size == thread->private_queue[0].size() + thread->private_queue[1].size() + thread->private_queue[2].size());
}
}
// In case it got attached to JNI, detach it. Don't think this has any side effects if called redundantly.
if (thread->type == TaskType::IO_BLOCKING) {
DetachThreadFromJNI();
}
}
void ThreadManager::Init(int numRealCores, int numLogicalCoresPerCpu) {
if (IsInitialized()) {
Teardown();
}
numComputeThreads_ = std::min(numRealCores * numLogicalCoresPerCpu, MAX_CORES_TO_USE);
// Double it for the IO blocking threads.
int numThreads = numComputeThreads_ + std::max(MIN_IO_BLOCKING_THREADS, numComputeThreads_);
numThreads_ = numThreads;
INFO_LOG(Log::System, "ThreadManager::Init(compute threads: %d, all: %d)", numComputeThreads_, numThreads_);
for (int i = 0; i < numThreads; i++) {
TaskThreadContext *thread = new TaskThreadContext();
thread->cancelled.store(false);
thread->type = i < numComputeThreads_ ? TaskType::CPU_COMPUTE : TaskType::IO_BLOCKING;
thread->index = i;
thread->thread = std::thread(&WorkerThreadFunc, global_, thread);
global_->threads_.push_back(thread);
}
}
void ThreadManager::EnqueueTask(Task *task) {
if (task->Type() == TaskType::DEDICATED_THREAD) {
std::thread th([=](Task *task) {
SetCurrentThreadName("DedicatedThreadTask");
task->Run();
task->Release();
}, task);
th.detach();
return;
}
_assert_msg_(IsInitialized(), "ThreadManager not initialized");
size_t queueIndex = (size_t)task->Priority();
int minThread;
int maxThread;
if (task->Type() == TaskType::CPU_COMPUTE) {
// only the threads reserved for heavy compute.
minThread = 0;
maxThread = numComputeThreads_;
} else {
// Only IO blocking threads (to avoid starving compute threads.)
minThread = numComputeThreads_;
maxThread = numThreads_;
}
// Find a thread with no outstanding work.
_assert_(maxThread <= (int)global_->threads_.size());
for (int threadNum = minThread; threadNum < maxThread; threadNum++) {
TaskThreadContext *thread = global_->threads_[threadNum];
if (thread->queue_size.load() == 0) {
std::unique_lock<std::mutex> lock(thread->mutex);
thread->private_queue[queueIndex].push_back(task);
thread->queue_size++;
thread->cond.notify_one();
// Found it - done.
return;
}
}
// Still not scheduled? Put it on the global queue and notify a thread chosen by round-robin.
// Not particularly scientific, but hopefully we should not run into this too much.
{
std::unique_lock<std::mutex> lock(global_->mutex);
if (task->Type() == TaskType::CPU_COMPUTE) {
global_->compute_queue[queueIndex].push_back(task);
global_->compute_queue_size++;
} else if (task->Type() == TaskType::IO_BLOCKING) {
global_->io_queue[queueIndex].push_back(task);
global_->io_queue_size++;
} else {
_assert_(false);
}
}
int chosenIndex = global_->roundRobin++;
chosenIndex = minThread + (chosenIndex % (maxThread - minThread));
TaskThreadContext *&chosenThread = global_->threads_[chosenIndex];
// Lock the thread to ensure it gets the message.
std::unique_lock<std::mutex> lock(chosenThread->mutex);
chosenThread->cond.notify_one();
}
void ThreadManager::EnqueueTaskOnThread(int threadNum, Task *task) {
_assert_msg_(task->Type() != TaskType::DEDICATED_THREAD, "Dedicated thread tasks can't be put on specific threads");
_assert_msg_(threadNum >= 0 && threadNum < (int)global_->threads_.size(), "Bad threadnum or not initialized");
TaskThreadContext *thread = global_->threads_[threadNum];
size_t queueIndex = (size_t)task->Priority();
thread->queue_size++;
std::unique_lock<std::mutex> lock(thread->mutex);
thread->private_queue[queueIndex].push_back(task);
thread->cond.notify_one();
}
int ThreadManager::GetNumLooperThreads() const {
return numComputeThreads_;
}
void ThreadManager::TryCancelTask(uint64_t taskID) {
// Do nothing for now, just let it finish.
}
bool ThreadManager::IsInitialized() const {
return !global_->threads_.empty();
}