mirror of
https://github.com/hrydgard/ppsspp.git
synced 2025-01-07 13:51:01 +00:00
909 lines
30 KiB
C++
909 lines
30 KiB
C++
// Copyright (C) 2003 Dolphin Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official SVN repository and contact information can be found at
|
|
// http://code.google.com/p/dolphin-emu/
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include <cstdint>
|
|
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Log.h"
|
|
#include "Common/ArmCommon.h"
|
|
#include "Common/CodeBlock.h"
|
|
|
|
// VCVT flags
|
|
#define TO_FLOAT 0
|
|
#define TO_INT 1 << 0
|
|
#define IS_SIGNED 1 << 1
|
|
#define ROUND_TO_ZERO 1 << 2
|
|
|
|
namespace ArmGen
|
|
{
|
|
enum ARMReg
|
|
{
|
|
// GPRs
|
|
R0 = 0, R1, R2, R3, R4, R5,
|
|
R6, R7, R8, R9, R10, R11,
|
|
|
|
// SPRs
|
|
// R13 - R15 are SP, LR, and PC.
|
|
// Almost always referred to by name instead of register number
|
|
R12 = 12, R13 = 13, R14 = 14, R15 = 15,
|
|
R_IP = 12, R_SP = 13, R_LR = 14, R_PC = 15,
|
|
|
|
|
|
// VFP single precision registers
|
|
S0, S1, S2, S3, S4, S5, S6,
|
|
S7, S8, S9, S10, S11, S12, S13,
|
|
S14, S15, S16, S17, S18, S19, S20,
|
|
S21, S22, S23, S24, S25, S26, S27,
|
|
S28, S29, S30, S31,
|
|
|
|
// VFP Double Precision registers
|
|
D0, D1, D2, D3, D4, D5, D6, D7,
|
|
D8, D9, D10, D11, D12, D13, D14, D15,
|
|
D16, D17, D18, D19, D20, D21, D22, D23,
|
|
D24, D25, D26, D27, D28, D29, D30, D31,
|
|
|
|
// ASIMD Quad-Word registers
|
|
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
|
|
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
|
|
|
|
// for NEON VLD/VST instructions
|
|
REG_UPDATE = R13,
|
|
INVALID_REG = 0xFFFFFFFF
|
|
};
|
|
|
|
enum ShiftType
|
|
{
|
|
ST_LSL = 0,
|
|
ST_ASL = 0,
|
|
ST_LSR = 1,
|
|
ST_ASR = 2,
|
|
ST_ROR = 3,
|
|
ST_RRX = 4
|
|
};
|
|
enum IntegerSize
|
|
{
|
|
I_I8 = 0,
|
|
I_I16,
|
|
I_I32,
|
|
I_I64
|
|
};
|
|
|
|
enum
|
|
{
|
|
NUMGPRs = 13,
|
|
};
|
|
|
|
class ARMXEmitter;
|
|
|
|
enum OpType
|
|
{
|
|
TYPE_IMM = 0,
|
|
TYPE_REG,
|
|
TYPE_IMMSREG,
|
|
TYPE_RSR,
|
|
TYPE_MEM
|
|
};
|
|
|
|
// This is no longer a proper operand2 class. Need to split up.
|
|
class Operand2
|
|
{
|
|
friend class ARMXEmitter;
|
|
protected:
|
|
u32 Value;
|
|
|
|
private:
|
|
OpType Type;
|
|
|
|
// IMM types
|
|
u8 Rotation = 0; // Only for u8 values
|
|
|
|
// Register types
|
|
u8 IndexOrShift = 0;
|
|
ShiftType Shift = ST_LSL;
|
|
public:
|
|
OpType GetType() const {
|
|
return Type;
|
|
}
|
|
Operand2() {
|
|
Type = TYPE_IMM;
|
|
Value = 0;
|
|
}
|
|
Operand2(u32 imm, OpType type = TYPE_IMM) {
|
|
Type = type;
|
|
Value = imm;
|
|
}
|
|
|
|
Operand2(ARMReg Reg) {
|
|
Type = TYPE_REG;
|
|
Value = Reg;
|
|
}
|
|
Operand2(u8 imm, u8 rotation) {
|
|
Type = TYPE_IMM;
|
|
Value = imm;
|
|
Rotation = rotation;
|
|
}
|
|
Operand2(ARMReg base, ShiftType type, ARMReg shift) // RSR
|
|
{
|
|
Type = TYPE_RSR;
|
|
_assert_msg_(type != ST_RRX, "Invalid Operand2: RRX does not take a register shift amount");
|
|
IndexOrShift = shift;
|
|
Shift = type;
|
|
Value = base;
|
|
}
|
|
|
|
Operand2(ARMReg base, ShiftType type, u8 shift)// For IMM shifted register
|
|
{
|
|
if(shift == 32) shift = 0;
|
|
switch (type)
|
|
{
|
|
case ST_LSL:
|
|
_assert_msg_(shift < 32, "Invalid Operand2: LSL %u", shift);
|
|
break;
|
|
case ST_LSR:
|
|
_assert_msg_(shift <= 32, "Invalid Operand2: LSR %u", shift);
|
|
if (!shift)
|
|
type = ST_LSL;
|
|
if (shift == 32)
|
|
shift = 0;
|
|
break;
|
|
case ST_ASR:
|
|
_assert_msg_(shift < 32, "Invalid Operand2: ASR %u", shift);
|
|
if (!shift)
|
|
type = ST_LSL;
|
|
if (shift == 32)
|
|
shift = 0;
|
|
break;
|
|
case ST_ROR:
|
|
_assert_msg_(shift < 32, "Invalid Operand2: ROR %u", shift);
|
|
if (!shift)
|
|
type = ST_LSL;
|
|
break;
|
|
case ST_RRX:
|
|
_assert_msg_(shift == 0, "Invalid Operand2: RRX does not take an immediate shift amount");
|
|
type = ST_ROR;
|
|
break;
|
|
}
|
|
IndexOrShift = shift;
|
|
Shift = type;
|
|
Value = base;
|
|
Type = TYPE_IMMSREG;
|
|
}
|
|
u32 GetData()
|
|
{
|
|
switch(Type)
|
|
{
|
|
case TYPE_IMM:
|
|
return Imm12Mod(); // This'll need to be changed later
|
|
case TYPE_REG:
|
|
return Rm();
|
|
case TYPE_IMMSREG:
|
|
return IMMSR();
|
|
case TYPE_RSR:
|
|
return RSR();
|
|
default:
|
|
_assert_msg_(false, "GetData with Invalid Type");
|
|
return 0;
|
|
}
|
|
}
|
|
u32 IMMSR() // IMM shifted register
|
|
{
|
|
_assert_msg_(Type == TYPE_IMMSREG, "IMMSR must be imm shifted register");
|
|
return ((IndexOrShift & 0x1f) << 7 | (Shift << 5) | Value);
|
|
}
|
|
u32 RSR() // Register shifted register
|
|
{
|
|
_assert_msg_(Type == TYPE_RSR, "RSR must be RSR Of Course");
|
|
return (IndexOrShift << 8) | (Shift << 5) | 0x10 | Value;
|
|
}
|
|
u32 Rm() const
|
|
{
|
|
_assert_msg_(Type == TYPE_REG, "Rm must be with Reg");
|
|
return Value;
|
|
}
|
|
|
|
u32 Imm5() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm5 not IMM value");
|
|
return ((Value & 0x0000001F) << 7);
|
|
}
|
|
u32 Imm8() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm8Rot not IMM value");
|
|
return Value & 0xFF;
|
|
}
|
|
u32 Imm8Rot() const // IMM8 with Rotation
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm8Rot not IMM value");
|
|
_assert_msg_((Rotation & 0xE1) != 0, "Invalid Operand2: immediate rotation %u", Rotation);
|
|
return (1 << 25) | (Rotation << 7) | (Value & 0x000000FF);
|
|
}
|
|
u32 Imm12() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm12 not IMM");
|
|
return (Value & 0x00000FFF);
|
|
}
|
|
|
|
u32 Imm12Mod() const
|
|
{
|
|
// This is an IMM12 with the top four bits being rotation and the
|
|
// bottom eight being an IMM. This is for instructions that need to
|
|
// expand a 8bit IMM to a 32bit value and gives you some rotation as
|
|
// well.
|
|
// Each rotation rotates to the right by 2 bits
|
|
_assert_msg_((Type == TYPE_IMM), "Imm12Mod not IMM");
|
|
return ((Rotation & 0xF) << 8) | (Value & 0xFF);
|
|
}
|
|
u32 Imm16() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm16 not IMM");
|
|
return ( (Value & 0xF000) << 4) | (Value & 0x0FFF);
|
|
}
|
|
u32 Imm16Low() const
|
|
{
|
|
return Imm16();
|
|
}
|
|
u32 Imm16High() const // Returns high 16bits
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm16 not IMM");
|
|
return ( ((Value >> 16) & 0xF000) << 4) | ((Value >> 16) & 0x0FFF);
|
|
}
|
|
u32 Imm24() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm16 not IMM");
|
|
return (Value & 0x0FFFFFFF);
|
|
}
|
|
// NEON and ASIMD specific
|
|
u32 Imm8ASIMD() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm8ASIMD not IMM");
|
|
return ((Value & 0x80) << 17) | ((Value & 0x70) << 12) | (Value & 0xF);
|
|
}
|
|
u32 Imm8VFP() const
|
|
{
|
|
_assert_msg_((Type == TYPE_IMM), "Imm8VFP not IMM");
|
|
return ((Value & 0xF0) << 12) | (Value & 0xF);
|
|
}
|
|
};
|
|
|
|
// Use these when you don't know if an imm can be represented as an operand2.
|
|
// This lets you generate both an optimal and a fallback solution by checking
|
|
// the return value, which will be false if these fail to find a Operand2 that
|
|
// represents your 32-bit imm value.
|
|
bool TryMakeOperand2(u32 imm, Operand2 &op2);
|
|
bool TryMakeOperand2_AllowInverse(u32 imm, Operand2 &op2, bool *inverse);
|
|
bool TryMakeOperand2_AllowNegation(s32 imm, Operand2 &op2, bool *negated);
|
|
|
|
// Use this only when you know imm can be made into an Operand2.
|
|
Operand2 AssumeMakeOperand2(u32 imm);
|
|
|
|
inline Operand2 R(ARMReg Reg) { return Operand2(Reg, TYPE_REG); }
|
|
inline Operand2 IMM(u32 Imm) { return Operand2(Imm, TYPE_IMM); }
|
|
inline Operand2 Mem(void *ptr) { return Operand2((u32)(uintptr_t)ptr, TYPE_IMM); }
|
|
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
|
|
#define STRUCT_OFF(str,elem) ((u32)((u32)&(str).elem-(u32)&(str)))
|
|
|
|
|
|
struct FixupBranch
|
|
{
|
|
u8 *ptr;
|
|
u32 condition; // Remembers our codition at the time
|
|
int type; //0 = B 1 = BL
|
|
};
|
|
|
|
struct LiteralPool
|
|
{
|
|
intptr_t loc;
|
|
u8* ldr_address;
|
|
u32 val;
|
|
};
|
|
|
|
typedef const u8* JumpTarget;
|
|
|
|
// XXX: Stop polluting the global namespace
|
|
const u32 I_8 = (1 << 0);
|
|
const u32 I_16 = (1 << 1);
|
|
const u32 I_32 = (1 << 2);
|
|
const u32 I_64 = (1 << 3);
|
|
const u32 I_SIGNED = (1 << 4);
|
|
const u32 I_UNSIGNED = (1 << 5);
|
|
const u32 F_32 = (1 << 6);
|
|
const u32 I_POLYNOMIAL = (1 << 7); // Only used in VMUL/VMULL
|
|
|
|
enum VIMMMode {
|
|
VIMM___x___x = 0x0, // 0000 VMOV
|
|
VIMM__x___x_ = 0x2, // 0010
|
|
VIMM_x___x__ = 0x4, // 0100
|
|
VIMMx___x___ = 0x6, // 0110
|
|
VIMM_x_x_x_x = 0x8, // 1000
|
|
VIMMx_x_x_x_ = 0xA, // 1010
|
|
VIMM__x1__x1 = 0xC, // 1100
|
|
VIMM_x11_x11 = 0xD, // 1101
|
|
VIMMxxxxxxxx = 0xE, // 1110 // op == 0
|
|
VIMMf000f000 = 0xF, // 1111 // op == 0 ( really aBbbbbbc defgh 00000000 00000000 ) where B = NOT b
|
|
VIMMbits2bytes = 0x1E, // Bit replication into bytes! Easily created 111111111 00000000 masks!
|
|
};
|
|
|
|
u32 EncodeVd(ARMReg Vd);
|
|
u32 EncodeVn(ARMReg Vn);
|
|
u32 EncodeVm(ARMReg Vm);
|
|
|
|
u32 encodedSize(u32 value);
|
|
|
|
// Subtracts the base from the register to give us the real one
|
|
ARMReg SubBase(ARMReg Reg);
|
|
|
|
inline bool IsQ(ARMReg r) {
|
|
return r >= Q0 && r <= Q15;
|
|
}
|
|
|
|
inline bool IsD(ARMReg r) {
|
|
return r >= D0 && r <= D31;
|
|
}
|
|
|
|
// See A.7.1 in the ARMv7-A
|
|
// VMUL F32 scalars can only be up to D15[0], D15[1] - higher scalars cannot be individually addressed
|
|
ARMReg DScalar(ARMReg dreg, int subScalar);
|
|
ARMReg QScalar(ARMReg qreg, int subScalar);
|
|
inline ARMReg XScalar(ARMReg reg, int subScalar) {
|
|
if (IsQ(reg))
|
|
return QScalar(reg, subScalar);
|
|
else
|
|
return DScalar(reg, subScalar);
|
|
}
|
|
|
|
const char *ARMRegAsString(ARMReg reg);
|
|
|
|
// Get the two halves of a Q register.
|
|
inline ARMReg D_0(ARMReg q) {
|
|
if (q >= Q0 && q <= Q15) {
|
|
return ARMReg(D0 + (q - Q0) * 2);
|
|
} else if (q >= D0 && q <= D31) {
|
|
return q;
|
|
} else {
|
|
return INVALID_REG;
|
|
}
|
|
}
|
|
inline ARMReg D_1(ARMReg q) {
|
|
return ARMReg(D0 + (q - Q0) * 2 + 1);
|
|
}
|
|
|
|
enum NEONAlignment {
|
|
ALIGN_NONE = 0,
|
|
ALIGN_64 = 1,
|
|
ALIGN_128 = 2,
|
|
ALIGN_256 = 3
|
|
};
|
|
|
|
|
|
class NEONXEmitter;
|
|
|
|
class ARMXEmitter
|
|
{
|
|
friend struct OpArg; // for Write8 etc
|
|
friend class NEONXEmitter;
|
|
private:
|
|
u8 *code, *startcode;
|
|
u8 *lastCacheFlushEnd;
|
|
u32 condition;
|
|
std::vector<LiteralPool> currentLitPool;
|
|
|
|
void WriteStoreOp(u32 Op, ARMReg Rt, ARMReg Rn, Operand2 op2, bool RegAdd);
|
|
void WriteRegStoreOp(u32 op, ARMReg dest, bool WriteBack, u16 RegList);
|
|
void WriteVRegStoreOp(u32 op, ARMReg dest, bool Double, bool WriteBack, ARMReg firstreg, u8 numregs);
|
|
void WriteShiftedDataOp(u32 op, bool SetFlags, ARMReg dest, ARMReg src, ARMReg op2);
|
|
void WriteShiftedDataOp(u32 op, bool SetFlags, ARMReg dest, ARMReg src, Operand2 op2);
|
|
void WriteSignedMultiply(u32 Op, u32 Op2, u32 Op3, ARMReg dest, ARMReg r1, ARMReg r2);
|
|
|
|
void WriteVFPDataOp(u32 Op, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
|
|
void Write4OpMultiply(u32 op, ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
|
|
// New Ops
|
|
void WriteInstruction(u32 op, ARMReg Rd, ARMReg Rn, Operand2 Rm, bool SetFlags = false);
|
|
|
|
void WriteVLDST1(bool load, u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align, ARMReg Rm);
|
|
void WriteVLDST1_lane(bool load, u32 Size, ARMReg Vd, ARMReg Rn, int lane, bool aligned, ARMReg Rm);
|
|
|
|
void WriteVimm(ARMReg Vd, int cmode, u8 imm, int op);
|
|
|
|
void EncodeShiftByImm(u32 Size, ARMReg Vd, ARMReg Vm, int shiftAmount, u8 opcode, bool quad, bool inverse, bool halve);
|
|
|
|
protected:
|
|
inline void Write32(u32 value) {*(u32*)code = value; code+=4;}
|
|
|
|
public:
|
|
ARMXEmitter() : code(0), startcode(0), lastCacheFlushEnd(0) {
|
|
condition = CC_AL << 28;
|
|
}
|
|
ARMXEmitter(u8 *code_ptr) {
|
|
code = code_ptr;
|
|
lastCacheFlushEnd = code_ptr;
|
|
startcode = code_ptr;
|
|
condition = CC_AL << 28;
|
|
}
|
|
virtual ~ARMXEmitter() {}
|
|
|
|
void SetCodePointer(u8 *ptr, u8 *writePtr);
|
|
const u8 *GetCodePointer() const;
|
|
|
|
void ReserveCodeSpace(u32 bytes);
|
|
const u8 *AlignCode16();
|
|
const u8 *AlignCodePage();
|
|
const u8 *NopAlignCode16();
|
|
|
|
void FlushIcache();
|
|
void FlushIcacheSection(u8 *start, u8 *end);
|
|
u8 *GetWritableCodePtr();
|
|
|
|
void FlushLitPool();
|
|
void AddNewLit(u32 val);
|
|
bool TrySetValue_TwoOp(ARMReg reg, u32 val);
|
|
|
|
CCFlags GetCC() const { return CCFlags(condition >> 28); }
|
|
void SetCC(CCFlags cond = CC_AL);
|
|
|
|
// Special purpose instructions
|
|
|
|
// Dynamic Endian Switching
|
|
void SETEND(bool BE);
|
|
// Debug Breakpoint
|
|
void BKPT(u16 arg);
|
|
|
|
// Hint instruction
|
|
void YIELD();
|
|
|
|
// Do nothing
|
|
void NOP(int count = 1); //nop padding - TODO: fast nop slides, for amd and intel (check their manuals)
|
|
|
|
#ifdef CALL
|
|
#undef CALL
|
|
#endif
|
|
|
|
// Branching
|
|
FixupBranch B();
|
|
FixupBranch B_CC(CCFlags Cond);
|
|
void B_CC(CCFlags Cond, const void *fnptr);
|
|
FixupBranch BL();
|
|
FixupBranch BL_CC(CCFlags Cond);
|
|
void SetJumpTarget(FixupBranch const &branch);
|
|
|
|
void B (const void *fnptr);
|
|
void B (ARMReg src);
|
|
void BL(const void *fnptr);
|
|
void BL(ARMReg src);
|
|
bool BLInRange(const void *fnptr) const;
|
|
|
|
void PUSH(const int num, ...);
|
|
void POP(const int num, ...);
|
|
|
|
// New Data Ops
|
|
void AND (ARMReg Rd, ARMReg Rn, Operand2 Rm);
|
|
void ANDS(ARMReg Rd, ARMReg Rn, Operand2 Rm);
|
|
void EOR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void EORS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SUB (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SUBS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RSB (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RSBS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADD (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADDS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADC (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADCS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSL (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSL (ARMReg dest, ARMReg src, ARMReg op2);
|
|
void LSLS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSLS(ARMReg dest, ARMReg src, ARMReg op2);
|
|
void LSR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSRS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSR (ARMReg dest, ARMReg src, ARMReg op2);
|
|
void LSRS(ARMReg dest, ARMReg src, ARMReg op2);
|
|
void ASR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ASRS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ASR (ARMReg dest, ARMReg src, ARMReg op2);
|
|
void ASRS(ARMReg dest, ARMReg src, ARMReg op2);
|
|
|
|
void SBC (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SBCS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RBIT(ARMReg dest, ARMReg src);
|
|
void REV (ARMReg dest, ARMReg src);
|
|
void REV16 (ARMReg dest, ARMReg src);
|
|
void RSC (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RSCS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void TST ( ARMReg src, Operand2 op2);
|
|
void TEQ ( ARMReg src, Operand2 op2);
|
|
void CMP ( ARMReg src, Operand2 op2);
|
|
void CMN ( ARMReg src, Operand2 op2);
|
|
void ORR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ORRS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void MOV (ARMReg dest, Operand2 op2);
|
|
void MOVS(ARMReg dest, Operand2 op2);
|
|
void BIC (ARMReg dest, ARMReg src, Operand2 op2); // BIC = ANDN
|
|
void BICS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void MVN (ARMReg dest, Operand2 op2);
|
|
void MVNS(ARMReg dest, Operand2 op2);
|
|
void MOVW(ARMReg dest, Operand2 op2);
|
|
void MOVT(ARMReg dest, Operand2 op2, bool TopBits = false);
|
|
|
|
// UDIV and SDIV are only available on CPUs that have
|
|
// the idiva hardare capacity
|
|
void UDIV(ARMReg dest, ARMReg dividend, ARMReg divisor);
|
|
void SDIV(ARMReg dest, ARMReg dividend, ARMReg divisor);
|
|
|
|
void MUL (ARMReg dest, ARMReg src, ARMReg op2);
|
|
void MULS(ARMReg dest, ARMReg src, ARMReg op2);
|
|
|
|
void UMULL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
void SMULL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
|
|
void UMLAL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
void SMLAL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
|
|
void SXTB(ARMReg dest, ARMReg op2);
|
|
void SXTH(ARMReg dest, ARMReg op2, u8 rotation = 0);
|
|
void SXTAH(ARMReg dest, ARMReg src, ARMReg op2, u8 rotation = 0);
|
|
void BFI(ARMReg rd, ARMReg rn, u8 lsb, u8 width);
|
|
void BFC(ARMReg rd, u8 lsb, u8 width);
|
|
void UBFX(ARMReg dest, ARMReg op2, u8 lsb, u8 width);
|
|
void SBFX(ARMReg dest, ARMReg op2, u8 lsb, u8 width);
|
|
void CLZ(ARMReg rd, ARMReg rm);
|
|
void PLD(ARMReg rd, int offset, bool forWrite = false);
|
|
|
|
// Using just MSR here messes with our defines on the PPC side of stuff (when this code was in dolphin...)
|
|
// Just need to put an underscore here, bit annoying.
|
|
void _MSR (bool nzcvq, bool g, Operand2 op2);
|
|
void _MSR (bool nzcvq, bool g, ARMReg src);
|
|
void MRS (ARMReg dest);
|
|
|
|
// Memory load/store operations
|
|
void LDR (ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRB (ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRH (ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRSB(ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRSH(ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void STR (ARMReg result, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void STRB (ARMReg result, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void STRH (ARMReg result, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
|
|
void STMFD(ARMReg dest, bool WriteBack, const int Regnum, ...);
|
|
void LDMFD(ARMReg dest, bool WriteBack, const int Regnum, ...);
|
|
void STMIA(ARMReg dest, bool WriteBack, const int Regnum, ...);
|
|
void LDMIA(ARMReg dest, bool WriteBack, const int Regnum, ...);
|
|
void STM(ARMReg dest, bool Add, bool Before, bool WriteBack, const int Regnum, ...);
|
|
void LDM(ARMReg dest, bool Add, bool Before, bool WriteBack, const int Regnum, ...);
|
|
void STMBitmask(ARMReg dest, bool Add, bool Before, bool WriteBack, const u16 RegList);
|
|
void LDMBitmask(ARMReg dest, bool Add, bool Before, bool WriteBack, const u16 RegList);
|
|
|
|
// Exclusive Access operations
|
|
void LDREX(ARMReg dest, ARMReg base);
|
|
// result contains the result if the instruction managed to store the value
|
|
void STREX(ARMReg result, ARMReg base, ARMReg op);
|
|
void DMB ();
|
|
void SVC(Operand2 op);
|
|
|
|
// NEON and ASIMD instructions
|
|
// None of these will be created with conditional since ARM
|
|
// is deprecating conditional execution of ASIMD instructions.
|
|
// ASIMD instructions don't even have a conditional encoding.
|
|
|
|
// NEON Only
|
|
void VABD(IntegerSize size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADD(IntegerSize size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUB(IntegerSize size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
|
|
// VFP Only
|
|
void VLDMIA(ARMReg dest, bool WriteBack, ARMReg firstreg, int numregs);
|
|
void VSTMIA(ARMReg dest, bool WriteBack, ARMReg firstreg, int numregs);
|
|
void VLDMDB(ARMReg dest, bool WriteBack, ARMReg firstreg, int numregs);
|
|
void VSTMDB(ARMReg dest, bool WriteBack, ARMReg firstreg, int numregs);
|
|
void VPUSH(ARMReg firstvreg, int numvregs) {
|
|
VSTMDB(R_SP, true, firstvreg, numvregs);
|
|
}
|
|
void VPOP(ARMReg firstvreg, int numvregs) {
|
|
VLDMIA(R_SP, true, firstvreg, numvregs);
|
|
}
|
|
void VLDR(ARMReg Dest, ARMReg Base, s16 offset);
|
|
void VSTR(ARMReg Src, ARMReg Base, s16 offset);
|
|
void VCMP(ARMReg Vd, ARMReg Vm);
|
|
void VCMPE(ARMReg Vd, ARMReg Vm);
|
|
// Compares against zero
|
|
void VCMP(ARMReg Vd);
|
|
void VCMPE(ARMReg Vd);
|
|
|
|
void VNMLA(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VNMLS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VNMUL(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VDIV(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSQRT(ARMReg Vd, ARMReg Vm);
|
|
|
|
// NEON and VFP
|
|
void VADD(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUB(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABS(ARMReg Vd, ARMReg Vm);
|
|
void VNEG(ARMReg Vd, ARMReg Vm);
|
|
void VMUL(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLA(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMOV(ARMReg Dest, Operand2 op2);
|
|
void VMOV(ARMReg Dest, ARMReg Src, bool high);
|
|
void VMOV(ARMReg Dest, ARMReg Src);
|
|
// Either Vd, Rt, Rt2 or Rt, Rt2, Vd.
|
|
void VMOV(ARMReg Dest, ARMReg Src1, ARMReg Src2);
|
|
void VCVT(ARMReg Dest, ARMReg Src, int flags);
|
|
|
|
// NEON, need to check for this (supported if VFP4 is supported)
|
|
void VCVTF32F16(ARMReg Dest, ARMReg Src);
|
|
void VCVTF16F32(ARMReg Dest, ARMReg Src);
|
|
|
|
void VABA(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABAL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABDL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABS(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VACGE(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VACGT(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VACLE(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VACLT(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADDHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADDL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADDW(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBIF(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBIT(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBSL(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCEQ(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCEQ(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCGE(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCGE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCGT(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCGT(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLE(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCLE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLS(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLT(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCLT(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLZ(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCNT(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VDUP(u32 Size, ARMReg Vd, ARMReg Vm, u8 index);
|
|
void VDUP(u32 Size, ARMReg Vd, ARMReg Rt);
|
|
void VEXT(ARMReg Vd, ARMReg Vn, ARMReg Vm, u8 index);
|
|
void VFMA(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VFMS(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VHADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VHSUB(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMAX(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMIN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
|
|
// Three registers
|
|
void VMLA(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLS(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLAL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLSL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMUL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMULL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMLAL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMLSL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMULH(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMULL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQRDMULH(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
|
|
// Two registers and a scalar
|
|
// These two are super useful for matrix multiplication
|
|
void VMUL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLA_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
|
|
// TODO:
|
|
/*
|
|
void VMLS_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLAL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLSL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMULL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMLAL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMLSL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMULH_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMULL_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQRDMULH_scalar(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
*/
|
|
|
|
// Vector bitwise. These don't have an element size for obvious reasons.
|
|
void VAND(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBIC(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VEOR(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VORN(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VORR(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
inline void VMOV_neon(ARMReg Dest, ARMReg Src) {
|
|
VORR(Dest, Src, Src);
|
|
}
|
|
void VMOV_neon(u32 Size, ARMReg Vd, u32 imm);
|
|
void VMOV_neon(u32 Size, ARMReg Vd, float imm) {
|
|
_dbg_assert_msg_(Size == F_32, "Expecting F_32 immediate for VMOV_neon float arg.");
|
|
union {
|
|
float f;
|
|
u32 u;
|
|
} val;
|
|
val.f = imm;
|
|
VMOV_neon(I_32, Vd, val.u);
|
|
}
|
|
void VMOV_neon(u32 Size, ARMReg Vd, ARMReg Rt, int lane);
|
|
|
|
void VNEG(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VMVN(ARMReg Vd, ARMReg Vm);
|
|
void VPADAL(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VPADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VPADDL(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VPMAX(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VPMIN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQABS(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VQADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQNEG(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VQRSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQSUB(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRADDHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRECPE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VRECPS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRHADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRSQRTE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VRSQRTS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRSUBHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSHL(u32 Size, ARMReg Vd, ARMReg Vm, ARMReg Vn); // Register shift
|
|
void VSUB(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUBHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUBL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUBW(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSWP(ARMReg Vd, ARMReg Vm);
|
|
void VTRN(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VTST(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VUZP(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VZIP(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREVX(u32 size, u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREV64(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREV32(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREV16(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
|
|
|
|
// NEON immediate instructions
|
|
|
|
|
|
void VMOV_imm(u32 Size, ARMReg Vd, VIMMMode type, int imm);
|
|
void VMOV_immf(ARMReg Vd, float value); // This only works with a select few values (1.0f and -1.0f).
|
|
|
|
void VORR_imm(u32 Size, ARMReg Vd, VIMMMode type, int imm);
|
|
void VMVN_imm(u32 Size, ARMReg Vd, VIMMMode type, int imm);
|
|
void VBIC_imm(u32 Size, ARMReg Vd, VIMMMode type, int imm);
|
|
|
|
// Widening and narrowing moves
|
|
void VMOVL(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VMOVN(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VQMOVN(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VQMOVUN(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
|
|
// Shifts by immediate
|
|
void VSHL(u32 Size, ARMReg Vd, ARMReg Vm, int shiftAmount);
|
|
void VSHLL(u32 Size, ARMReg Vd, ARMReg Vm, int shiftAmount); // widening
|
|
void VSHR(u32 Size, ARMReg Vd, ARMReg Vm, int shiftAmount);
|
|
void VSHRN(u32 Size, ARMReg Vd, ARMReg Vm, int shiftAmount); // narrowing
|
|
|
|
// Vector VCVT
|
|
void VCVT(u32 DestSize, ARMReg Dest, ARMReg Src);
|
|
|
|
|
|
// Notes:
|
|
// Rm == R_PC is interpreted as no offset, otherwise, effective address is sum of Rn and Rm
|
|
// Rm == R13 is interpreted as VLD1, .... [Rn]! Added a REG_UPDATE pseudo register.
|
|
|
|
// Load/store multiple registers full of elements (a register is a D register)
|
|
// Specifying alignment when it can be guaranteed is documented to improve load/store performance.
|
|
// For example, when loading a set of four 64-bit registers that we know is 32-byte aligned, we should specify ALIGN_256.
|
|
void VLD1(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
void VST1(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
|
|
// Load/store single lanes of D registers
|
|
void VLD1_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, bool aligned, ARMReg Rm = R_PC);
|
|
void VST1_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, bool aligned, ARMReg Rm = R_PC);
|
|
|
|
// Load one value into all lanes of a D or a Q register (either supported, all formats should work).
|
|
void VLD1_all_lanes(u32 Size, ARMReg Vd, ARMReg Rn, bool aligned, ARMReg Rm = R_PC);
|
|
|
|
/*
|
|
// Deinterleave two loads... or something. TODO
|
|
void VLD2(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
void VST2(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
|
|
void VLD2_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, ARMReg Rm = R_PC);
|
|
void VST2_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, ARMReg Rm = R_PC);
|
|
|
|
void VLD3(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
void VST3(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
|
|
void VLD3_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, ARMReg Rm = R_PC);
|
|
void VST3_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, ARMReg Rm = R_PC);
|
|
|
|
void VLD4(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
void VST4(u32 Size, ARMReg Vd, ARMReg Rn, int regCount, NEONAlignment align = ALIGN_NONE, ARMReg Rm = R_PC);
|
|
|
|
void VLD4_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, ARMReg Rm = R_PC);
|
|
void VST4_lane(u32 Size, ARMReg Vd, ARMReg Rn, int lane, ARMReg Rm = R_PC);
|
|
*/
|
|
|
|
void VMRS_APSR();
|
|
void VMRS(ARMReg Rt);
|
|
void VMSR(ARMReg Rt);
|
|
|
|
void QuickCallFunction(ARMReg scratchreg, const void *func);
|
|
template <typename T> void QuickCallFunction(ARMReg scratchreg, T func) {
|
|
QuickCallFunction(scratchreg, (const void *)func);
|
|
}
|
|
|
|
// Wrapper around MOVT/MOVW with fallbacks.
|
|
void MOVI2R(ARMReg reg, u32 val, bool optimize = true);
|
|
void MOVI2FR(ARMReg dest, float val, bool negate = false);
|
|
void MOVI2F(ARMReg dest, float val, ARMReg tempReg, bool negate = false);
|
|
void MOVI2F_neon(ARMReg dest, float val, ARMReg tempReg, bool negate = false);
|
|
|
|
// Load pointers without casting
|
|
template <class T> void MOVP2R(ARMReg reg, T *val) {
|
|
MOVI2R(reg, (u32)(uintptr_t)(void *)val);
|
|
}
|
|
|
|
void MOVIU2F(ARMReg dest, u32 val, ARMReg tempReg, bool negate = false) {
|
|
union {
|
|
u32 u;
|
|
float f;
|
|
} v = {val};
|
|
MOVI2F(dest, v.f, tempReg, negate);
|
|
}
|
|
|
|
void ADDI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TryADDI2R(ARMReg rd, ARMReg rs, u32 val);
|
|
void SUBI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TrySUBI2R(ARMReg rd, ARMReg rs, u32 val);
|
|
void ANDI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TryANDI2R(ARMReg rd, ARMReg rs, u32 val);
|
|
void CMPI2R(ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TryCMPI2R(ARMReg rs, u32 val);
|
|
void TSTI2R(ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TryTSTI2R(ARMReg rs, u32 val);
|
|
void ORI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TryORI2R(ARMReg rd, ARMReg rs, u32 val);
|
|
void EORI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
bool TryEORI2R(ARMReg rd, ARMReg rs, u32 val);
|
|
}; // class ARMXEmitter
|
|
|
|
|
|
// Everything that needs to generate machine code should inherit from this.
|
|
// You get memory management for free, plus, you can use all the MOV etc functions without
|
|
// having to prefix them with gen-> or something similar.
|
|
|
|
class ARMXCodeBlock : public CodeBlock<ARMXEmitter> {
|
|
public:
|
|
void PoisonMemory(int offset) override;
|
|
};
|
|
|
|
// VFP Specific
|
|
struct VFPEnc {
|
|
s16 opc1;
|
|
s16 opc2;
|
|
};
|
|
extern const VFPEnc VFPOps[16][2];
|
|
extern const char *VFPOpNames[16];
|
|
|
|
} // namespace
|