ppsspp/Core/HLE/sceKernelVTimer.cpp
Unknown W. Brackets 2450724be2 Make Memory::Memcpy() execute memchecks directly.
This makes it easier to handle breakpoints in HLE.
2015-04-05 18:09:20 -07:00

523 lines
14 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "Core/CoreTiming.h"
#include "Core/MemMapHelpers.h"
#include "Core/Reporting.h"
#include "Core/HLE/sceKernel.h"
#include "Core/HLE/sceKernelInterrupt.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/HLE/sceKernelVTimer.h"
#include "Core/HLE/HLE.h"
#include "Common/ChunkFile.h"
static int vtimerTimer = -1;
static SceUID runningVTimer = 0;
static std::list<SceUID> vtimers;
struct NativeVTimer {
SceSize_le size;
char name[KERNELOBJECT_MAX_NAME_LENGTH+1];
s32_le active;
u64_le base;
u64_le current;
u64_le schedule;
u32_le handlerAddr;
u32_le commonAddr;
};
struct VTimer : public KernelObject {
const char *GetName() override { return nvt.name; }
const char *GetTypeName() override { return "VTimer"; }
static u32 GetMissingErrorCode() { return SCE_KERNEL_ERROR_UNKNOWN_VTID; }
static int GetStaticIDType() { return SCE_KERNEL_TMID_VTimer; }
int GetIDType() const override { return SCE_KERNEL_TMID_VTimer; }
void DoState(PointerWrap &p) override {
auto s = p.Section("VTimer", 1, 2);
if (!s)
return;
p.Do(nvt);
if (s < 2) {
u32 memoryPtr;
p.Do(memoryPtr);
}
}
NativeVTimer nvt;
};
KernelObject *__KernelVTimerObject() {
return new VTimer;
}
static u64 __getVTimerRunningTime(VTimer *vt) {
if (vt->nvt.active == 0)
return 0;
return CoreTiming::GetGlobalTimeUs() - vt->nvt.base;
}
static u64 __getVTimerCurrentTime(VTimer* vt) {
return vt->nvt.current + __getVTimerRunningTime(vt);
}
static int __KernelCancelVTimer(SceUID id) {
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(id, error);
if (!vt)
return error;
CoreTiming::UnscheduleEvent(vtimerTimer, id);
vt->nvt.handlerAddr = 0;
return 0;
}
static void __KernelScheduleVTimer(VTimer *vt, u64 schedule) {
CoreTiming::UnscheduleEvent(vtimerTimer, vt->GetUID());
vt->nvt.schedule = schedule;
if (vt->nvt.active == 1 && vt->nvt.handlerAddr != 0) {
// The "real" base is base + current. But when setting the time, base is important.
// The schedule is relative to those.
u64 cyclesIntoFuture;
if (schedule < 250) {
schedule = 250;
}
s64 goalUs = (u64)vt->nvt.base + schedule - (u64)vt->nvt.current;
s64 minGoalUs = CoreTiming::GetGlobalTimeUs() + 250;
if (goalUs < minGoalUs) {
cyclesIntoFuture = usToCycles(250);
} else {
cyclesIntoFuture = usToCycles(goalUs - CoreTiming::GetGlobalTimeUs());
}
CoreTiming::ScheduleEvent(cyclesIntoFuture, vtimerTimer, vt->GetUID());
}
}
static void __rescheduleVTimer(SceUID id, u32 delay) {
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(id, error);
if (error)
return;
__KernelScheduleVTimer(vt, vt->nvt.schedule + delay);
}
class VTimerIntrHandler : public IntrHandler
{
static const int HANDLER_STACK_SPACE = 48;
public:
VTimerIntrHandler() : IntrHandler(PSP_SYSTIMER1_INTR) {}
bool run(PendingInterrupt &pend) override {
u32 error;
SceUID vtimerID = vtimers.front();
VTimer *vtimer = kernelObjects.Get<VTimer>(vtimerID, error);
if (error)
return false;
// Reserve some stack space for arguments.
u32 argArea = currentMIPS->r[MIPS_REG_SP];
currentMIPS->r[MIPS_REG_SP] -= HANDLER_STACK_SPACE;
Memory::Write_U64(vtimer->nvt.schedule, argArea - 16);
Memory::Write_U64(__getVTimerCurrentTime(vtimer), argArea - 8);
currentMIPS->pc = vtimer->nvt.handlerAddr;
currentMIPS->r[MIPS_REG_A0] = vtimer->GetUID();
currentMIPS->r[MIPS_REG_A1] = argArea - 16;
currentMIPS->r[MIPS_REG_A2] = argArea - 8;
currentMIPS->r[MIPS_REG_A3] = vtimer->nvt.commonAddr;
runningVTimer = vtimerID;
return true;
}
void handleResult(PendingInterrupt &pend) override {
u32 result = currentMIPS->r[MIPS_REG_V0];
currentMIPS->r[MIPS_REG_SP] += HANDLER_STACK_SPACE;
int vtimerID = vtimers.front();
vtimers.pop_front();
runningVTimer = 0;
if (result == 0)
__KernelCancelVTimer(vtimerID);
else
__rescheduleVTimer(vtimerID, result);
}
};
static void __KernelTriggerVTimer(u64 userdata, int cyclesLate) {
SceUID uid = (SceUID) userdata;
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (vt) {
vtimers.push_back(uid);
__TriggerInterrupt(PSP_INTR_IMMEDIATE, PSP_SYSTIMER1_INTR);
}
}
void __KernelVTimerDoState(PointerWrap &p) {
auto s = p.Section("sceKernelVTimer", 1, 2);
if (!s)
return;
p.Do(vtimerTimer);
p.Do(vtimers);
CoreTiming::RestoreRegisterEvent(vtimerTimer, "VTimer", __KernelTriggerVTimer);
if (s >= 2)
p.Do(runningVTimer);
else
runningVTimer = 0;
}
void __KernelVTimerInit() {
vtimers.clear();
__RegisterIntrHandler(PSP_SYSTIMER1_INTR, new VTimerIntrHandler());
vtimerTimer = CoreTiming::RegisterEvent("VTimer", __KernelTriggerVTimer);
// Intentionally starts at 0. This explains the behavior where 0 is treated differently outside a timer.
runningVTimer = 0;
}
u32 sceKernelCreateVTimer(const char *name, u32 optParamAddr) {
if (!name) {
WARN_LOG_REPORT(SCEKERNEL, "%08x=sceKernelCreateVTimer(): invalid name", SCE_KERNEL_ERROR_ERROR);
return SCE_KERNEL_ERROR_ERROR;
}
DEBUG_LOG(SCEKERNEL, "sceKernelCreateVTimer(%s, %08x)", name, optParamAddr);
VTimer *vtimer = new VTimer;
SceUID id = kernelObjects.Create(vtimer);
memset(&vtimer->nvt, 0, sizeof(NativeVTimer));
vtimer->nvt.size = sizeof(NativeVTimer);
strncpy(vtimer->nvt.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
vtimer->nvt.name[KERNELOBJECT_MAX_NAME_LENGTH] = '\0';
if (optParamAddr != 0) {
u32 size = Memory::Read_U32(optParamAddr);
if (size > 4)
WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateVTimer(%s) unsupported options parameter, size = %d", name, size);
}
return id;
}
u32 sceKernelDeleteVTimer(SceUID uid) {
DEBUG_LOG(SCEKERNEL, "sceKernelDeleteVTimer(%08x)", uid);
u32 error;
VTimer* vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelDeleteVTimer(%08x)", error, uid);
return error;
}
for (std::list<SceUID>::iterator it = vtimers.begin(); it != vtimers.end(); ++it) {
if (*it == vt->GetUID()) {
vtimers.erase(it);
break;
}
}
return kernelObjects.Destroy<VTimer>(uid);
}
u32 sceKernelGetVTimerBase(SceUID uid, u32 baseClockAddr) {
DEBUG_LOG(SCEKERNEL, "sceKernelGetVTimerBase(%08x, %08x)", uid, baseClockAddr);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelGetVTimerBase(%08x, %08x)", error, uid, baseClockAddr);
return error;
}
if (Memory::IsValidAddress(baseClockAddr))
Memory::Write_U64(vt->nvt.base, baseClockAddr);
return 0;
}
u64 sceKernelGetVTimerBaseWide(SceUID uid) {
DEBUG_LOG(SCEKERNEL, "sceKernelGetVTimerBaseWide(%08x)", uid);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelGetVTimerBaseWide(%08x)", error, uid);
return -1;
}
return vt->nvt.base;
}
u32 sceKernelGetVTimerTime(SceUID uid, u32 timeClockAddr) {
DEBUG_LOG(SCEKERNEL, "sceKernelGetVTimerTime(%08x, %08x)", uid, timeClockAddr);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelGetVTimerTime(%08x, %08x)", error, uid, timeClockAddr);
return error;
}
u64 time = __getVTimerCurrentTime(vt);
if (Memory::IsValidAddress(timeClockAddr))
Memory::Write_U64(time, timeClockAddr);
return 0;
}
u64 sceKernelGetVTimerTimeWide(SceUID uid) {
DEBUG_LOG(SCEKERNEL, "sceKernelGetVTimerTimeWide(%08x)", uid);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelGetVTimerTimeWide(%08x)", error, uid);
return -1;
}
u64 time = __getVTimerCurrentTime(vt);
return time;
}
static u64 __KernelSetVTimer(VTimer *vt, u64 time) {
u64 current = __getVTimerCurrentTime(vt);
vt->nvt.current = time - __getVTimerRunningTime(vt);
// Run if we're now passed the schedule.
__KernelScheduleVTimer(vt, vt->nvt.schedule);
return current;
}
u32 sceKernelSetVTimerTime(SceUID uid, u32 timeClockAddr) {
DEBUG_LOG(SCEKERNEL, "sceKernelSetVTimerTime(%08x, %08x)", uid, timeClockAddr);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelSetVTimerTime(%08x, %08x)", error, uid, timeClockAddr);
return error;
}
u64 time = Memory::Read_U64(timeClockAddr);
if (Memory::IsValidAddress(timeClockAddr))
Memory::Write_U64(__KernelSetVTimer(vt, time), timeClockAddr);
return 0;
}
u64 sceKernelSetVTimerTimeWide(SceUID uid, u64 timeClock) {
if (__IsInInterrupt()) {
WARN_LOG(SCEKERNEL, "sceKernelSetVTimerTimeWide(%08x, %llu): in interrupt", uid, timeClock);
return -1;
}
DEBUG_LOG(SCEKERNEL, "sceKernelSetVTimerTimeWide(%08x, %llu)", uid, timeClock);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error || vt == NULL) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelSetVTimerTimeWide(%08x, %llu)", error, uid, timeClock);
return -1;
}
return __KernelSetVTimer(vt, timeClock);
}
static void __startVTimer(VTimer *vt) {
vt->nvt.active = 1;
vt->nvt.base = CoreTiming::GetGlobalTimeUs();
if (vt->nvt.handlerAddr != 0)
__KernelScheduleVTimer(vt, vt->nvt.schedule);
}
u32 sceKernelStartVTimer(SceUID uid) {
hleEatCycles(12200);
if (uid == runningVTimer) {
WARN_LOG(SCEKERNEL, "sceKernelStartVTimer(%08x): invalid vtimer", uid);
return SCE_KERNEL_ERROR_ILLEGAL_VTID;
}
DEBUG_LOG(SCEKERNEL, "sceKernelStartVTimer(%08x)", uid);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (vt) {
if (vt->nvt.active != 0)
return 1;
__startVTimer(vt);
return 0;
}
return error;
}
static void __stopVTimer(VTimer *vt) {
// This increases (__getVTimerCurrentTime includes nvt.current.)
vt->nvt.current = __getVTimerCurrentTime(vt);
vt->nvt.active = 0;
vt->nvt.base = 0;
}
u32 sceKernelStopVTimer(SceUID uid) {
if (uid == runningVTimer) {
WARN_LOG(SCEKERNEL, "sceKernelStopVTimer(%08x): invalid vtimer", uid);
return SCE_KERNEL_ERROR_ILLEGAL_VTID;
}
DEBUG_LOG(SCEKERNEL, "sceKernelStopVTimer(%08x)", uid);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (vt) {
if (vt->nvt.active == 0)
return 0;
__stopVTimer(vt);
return 1;
}
return error;
}
u32 sceKernelSetVTimerHandler(SceUID uid, u32 scheduleAddr, u32 handlerFuncAddr, u32 commonAddr) {
hleEatCycles(900);
if (uid == runningVTimer) {
WARN_LOG(SCEKERNEL, "sceKernelSetVTimerHandler(%08x, %08x, %08x, %08x): invalid vtimer", uid, scheduleAddr, handlerFuncAddr, commonAddr);
return SCE_KERNEL_ERROR_ILLEGAL_VTID;
}
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelSetVTimerHandler(%08x, %08x, %08x, %08x)", error, uid, scheduleAddr, handlerFuncAddr, commonAddr);
return error;
}
DEBUG_LOG(SCEKERNEL, "sceKernelSetVTimerHandler(%08x, %08x, %08x, %08x)", uid, scheduleAddr, handlerFuncAddr, commonAddr);
hleEatCycles(2000);
u64 schedule = Memory::Read_U64(scheduleAddr);
vt->nvt.handlerAddr = handlerFuncAddr;
if (handlerFuncAddr) {
vt->nvt.commonAddr = commonAddr;
__KernelScheduleVTimer(vt, schedule);
} else {
__KernelScheduleVTimer(vt, vt->nvt.schedule);
}
return 0;
}
u32 sceKernelSetVTimerHandlerWide(SceUID uid, u64 schedule, u32 handlerFuncAddr, u32 commonAddr) {
hleEatCycles(900);
if (uid == runningVTimer) {
WARN_LOG(SCEKERNEL, "sceKernelSetVTimerHandlerWide(%08x, %llu, %08x, %08x): invalid vtimer", uid, schedule, handlerFuncAddr, commonAddr);
return SCE_KERNEL_ERROR_ILLEGAL_VTID;
}
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelSetVTimerHandlerWide(%08x, %llu, %08x, %08x)", error, uid, schedule, handlerFuncAddr, commonAddr);
return error;
}
DEBUG_LOG(SCEKERNEL, "sceKernelSetVTimerHandlerWide(%08x, %llu, %08x, %08x)", uid, schedule, handlerFuncAddr, commonAddr);
vt->nvt.handlerAddr = handlerFuncAddr;
if (handlerFuncAddr) {
vt->nvt.commonAddr = commonAddr;
__KernelScheduleVTimer(vt, schedule);
} else {
__KernelScheduleVTimer(vt, vt->nvt.schedule);
}
return 0;
}
u32 sceKernelCancelVTimerHandler(SceUID uid) {
if (uid == runningVTimer) {
WARN_LOG(SCEKERNEL, "sceKernelCancelVTimerHandler(%08x): invalid vtimer", uid);
return SCE_KERNEL_ERROR_ILLEGAL_VTID;
}
DEBUG_LOG(SCEKERNEL, "sceKernelCancelVTimerHandler(%08x)", uid);
//__cancelVTimer checks if uid is valid
return __KernelCancelVTimer(uid);
}
u32 sceKernelReferVTimerStatus(SceUID uid, u32 statusAddr) {
DEBUG_LOG(SCEKERNEL, "sceKernelReferVTimerStatus(%08x, %08x)", uid, statusAddr);
u32 error;
VTimer *vt = kernelObjects.Get<VTimer>(uid, error);
if (error) {
WARN_LOG(SCEKERNEL, "%08x=sceKernelReferVTimerStatus(%08x, %08x)", error, uid, statusAddr);
return error;
}
if (Memory::IsValidAddress(statusAddr)) {
NativeVTimer status = vt->nvt;
u32 size = Memory::Read_U32(statusAddr);
status.current = __getVTimerCurrentTime(vt);
Memory::Memcpy(statusAddr, &status, std::min(size, (u32)sizeof(status)));
}
return 0;
}
// Not sure why this is exposed...
void _sceKernelReturnFromTimerHandler() {
ERROR_LOG_REPORT(SCEKERNEL,"_sceKernelReturnFromTimerHandler - should not be called!");
}