ppsspp/Core/HW/StereoResampler.cpp
Henrik Rydgård f76e5e70a7 Enable FlushInstructionCache on UWP, it's been allowed finally.
Minor warning fixes, UWP buildfix

Retarget UWP project to latest SDK.
2018-03-20 20:30:33 +01:00

285 lines
9.4 KiB
C++

// Copyright (c) 2015- PPSSPP Project and Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// Adapted from Dolphin.
// 16 bit Stereo
#define MAX_SAMPLES_DEFAULT (4096) // 2*64ms - had to double it for nVidia Shield which has huge buffers
#define MAX_SAMPLES_EXTRA (8192)
#define LOW_WATERMARK_DEFAULT 1680 // 40 ms
#define LOW_WATERMARK_EXTRA 3360 // 80 ms
#define MAX_FREQ_SHIFT 200 // per 32000 Hz
#define CONTROL_FACTOR 0.2f // in freq_shift per fifo size offset
#define CONTROL_AVG 32
#include <cstring>
#include "base/logging.h"
#include "base/NativeApp.h"
#include "Common/ChunkFile.h"
#include "Common/MathUtil.h"
#include "Common/Atomics.h"
#include "Core/Config.h"
#include "Core/HW/StereoResampler.h"
#include "Core/HLE/__sceAudio.h"
#include "Core/Util/AudioFormat.h" // for clamp_u8
#include "Core/System.h"
#ifdef _M_SSE
#include <emmintrin.h>
#endif
#if PPSSPP_ARCH(ARM_NEON)
#include <arm_neon.h>
#endif
StereoResampler::StereoResampler()
: m_bufsize(MAX_SAMPLES_DEFAULT)
, m_lowwatermark(LOW_WATERMARK_DEFAULT)
, m_input_sample_rate(44100)
, m_indexW(0)
, m_indexR(0)
, m_numLeftI(0.0f)
, m_frac(0)
, underrunCount_(0)
, overrunCount_(0)
, sample_rate_(0.0f)
, lastBufSize_(0) {
// Need to have space for the worst case in case it changes.
m_buffer = new int16_t[MAX_SAMPLES_EXTRA * 2]();
// Some Android devices are v-synced to non-60Hz framerates. We simply timestretch audio to fit.
// TODO: should only do this if auto frameskip is off?
float refresh = System_GetPropertyInt(SYSPROP_DISPLAY_REFRESH_RATE) / 1000.0f;
// If framerate is "close"...
if (refresh != 60.0f && refresh > 50.0f && refresh < 70.0f) {
SetInputSampleRate((int)(44100 * (refresh / 60.0f)));
}
UpdateBufferSize();
}
StereoResampler::~StereoResampler() {
delete[] m_buffer;
m_buffer = nullptr;
}
void StereoResampler::UpdateBufferSize() {
if (g_Config.bExtraAudioBuffering) {
m_bufsize = MAX_SAMPLES_EXTRA;
m_lowwatermark = LOW_WATERMARK_EXTRA;
} else {
m_bufsize = MAX_SAMPLES_DEFAULT;
m_lowwatermark = LOW_WATERMARK_DEFAULT;
}
}
template<bool useShift>
inline void ClampBufferToS16(s16 *out, const s32 *in, size_t size, s8 volShift) {
#ifdef _M_SSE
// Size will always be 16-byte aligned as the hwBlockSize is.
while (size >= 8) {
__m128i in1 = _mm_loadu_si128((__m128i *)in);
__m128i in2 = _mm_loadu_si128((__m128i *)(in + 4));
__m128i packed = _mm_packs_epi32(in1, in2);
if (useShift) {
packed = _mm_srai_epi16(packed, volShift);
}
_mm_storeu_si128((__m128i *)out, packed);
out += 8;
in += 8;
size -= 8;
}
#elif PPSSPP_ARCH(ARM_NEON)
int16x4_t signedVolShift = vdup_n_s16 (-volShift); // Can only dynamic-shift right, but by a signed integer
while (size >= 8) {
int32x4_t in1 = vld1q_s32(in);
int32x4_t in2 = vld1q_s32(in + 4);
int16x4_t packed1 = vqmovn_s32(in1);
int16x4_t packed2 = vqmovn_s32(in2);
if (useShift) {
packed1 = vshl_s16(packed1, signedVolShift);
packed2 = vshl_s16(packed2, signedVolShift);
}
vst1_s16(out, packed1);
vst1_s16(out + 4, packed2);
out += 8;
in += 8;
size -= 8;
}
#endif
// This does the remainder if SIMD was used, otherwise it does it all.
for (size_t i = 0; i < size; i++) {
out[i] = clamp_s16(useShift ? (in[i] >> volShift) : in[i]);
}
}
inline void ClampBufferToS16WithVolume(s16 *out, const s32 *in, size_t size) {
if (g_Config.iGlobalVolume >= VOLUME_MAX) {
ClampBufferToS16<false>(out, in, size, 0);
} else if (g_Config.iGlobalVolume <= VOLUME_OFF) {
memset(out, 0, size * sizeof(s16));
} else {
ClampBufferToS16<true>(out, in, size, VOLUME_MAX - (s8)g_Config.iGlobalVolume);
}
}
void StereoResampler::Clear() {
memset(m_buffer, 0, m_bufsize * 2 * sizeof(int16_t));
}
// Executed from sound stream thread
unsigned int StereoResampler::Mix(short* samples, unsigned int numSamples, bool consider_framelimit, int sample_rate) {
if (!samples)
return 0;
unsigned int currentSample = 0;
// Cache access in non-volatile variable
// This is the only function changing the read value, so it's safe to
// cache it locally although it's written here.
// The writing pointer will be modified outside, but it will only increase,
// so we will just ignore new written data while interpolating.
// Without this cache, the compiler wouldn't be allowed to optimize the
// interpolation loop.
u32 indexR = Common::AtomicLoad(m_indexR);
u32 indexW = Common::AtomicLoad(m_indexW);
const int INDEX_MASK = (m_bufsize * 2 - 1);
// We force on the audio resampler if the output sample rate doesn't match the input.
if (!g_Config.bAudioResampler && sample_rate == (int)m_input_sample_rate) {
for (; currentSample < numSamples * 2 && ((indexW - indexR) & INDEX_MASK) > 2; currentSample += 2) {
s16 l1 = m_buffer[indexR & INDEX_MASK]; //current
s16 r1 = m_buffer[(indexR + 1) & INDEX_MASK]; //current
samples[currentSample] = l1;
samples[currentSample + 1] = r1;
indexR += 2;
}
sample_rate_ = (float)sample_rate;
} else {
// Drift prevention mechanism
float numLeft = (float)(((indexW - indexR) & INDEX_MASK) / 2);
m_numLeftI = (numLeft + m_numLeftI*(CONTROL_AVG - 1)) / CONTROL_AVG;
float offset = (m_numLeftI - m_lowwatermark) * CONTROL_FACTOR;
if (offset > MAX_FREQ_SHIFT) offset = MAX_FREQ_SHIFT;
if (offset < -MAX_FREQ_SHIFT) offset = -MAX_FREQ_SHIFT;
sample_rate_ = (float)(m_input_sample_rate + offset);
const u32 ratio = (u32)(65536.0 * sample_rate_ / (double)sample_rate);
// TODO: consider a higher-quality resampling algorithm.
// TODO: Add a fast path for 1:1.
for (; currentSample < numSamples * 2 && ((indexW - indexR) & INDEX_MASK) > 2; currentSample += 2) {
u32 indexR2 = indexR + 2; //next sample
s16 l1 = m_buffer[indexR & INDEX_MASK]; //current
s16 r1 = m_buffer[(indexR + 1) & INDEX_MASK]; //current
s16 l2 = m_buffer[indexR2 & INDEX_MASK]; //next
s16 r2 = m_buffer[(indexR2 + 1) & INDEX_MASK]; //next
int sampleL = ((l1 << 16) + (l2 - l1) * (u16)m_frac) >> 16;
int sampleR = ((r1 << 16) + (r2 - r1) * (u16)m_frac) >> 16;
samples[currentSample] = sampleL;
samples[currentSample + 1] = sampleR;
m_frac += ratio;
indexR += 2 * (u16)(m_frac >> 16);
m_frac &= 0xffff;
}
}
int realSamples = currentSample;
if (currentSample < numSamples * 2)
underrunCount_++;
// Padding with the last value to reduce clicking
short s[2];
s[0] = clamp_s16(m_buffer[(indexR - 1) & INDEX_MASK]);
s[1] = clamp_s16(m_buffer[(indexR - 2) & INDEX_MASK]);
for (; currentSample < numSamples * 2; currentSample += 2) {
samples[currentSample] = s[0];
samples[currentSample + 1] = s[1];
}
// Flush cached variable
Common::AtomicStore(m_indexR, indexR);
//if (realSamples != numSamples * 2) {
// ILOG("Underrun! %i / %i", realSamples / 2, numSamples);
//}
lastBufSize_ = (m_indexW - m_indexR) & INDEX_MASK;
return realSamples / 2;
}
void StereoResampler::PushSamples(const s32 *samples, unsigned int num_samples) {
UpdateBufferSize();
const int INDEX_MASK = (m_bufsize * 2 - 1);
// Cache access in non-volatile variable
// indexR isn't allowed to cache in the audio throttling loop as it
// needs to get updates to not deadlock.
u32 indexW = Common::AtomicLoad(m_indexW);
u32 cap = m_bufsize * 2;
// If unthottling, no need to fill up the entire buffer, just screws up timing after releasing unthrottle.
if (PSP_CoreParameter().unthrottle)
cap = m_lowwatermark * 2;
// Check if we have enough free space
// indexW == m_indexR results in empty buffer, so indexR must always be smaller than indexW
if (num_samples * 2 + ((indexW - Common::AtomicLoad(m_indexR)) & INDEX_MASK) >= cap) {
if (!PSP_CoreParameter().unthrottle)
overrunCount_++;
// TODO: "Timestretch" by doing a windowed overlap with existing buffer content?
return;
}
int over_bytes = num_samples * 4 - (m_bufsize * 2 - (indexW & INDEX_MASK)) * sizeof(short);
if (over_bytes > 0) {
ClampBufferToS16WithVolume(&m_buffer[indexW & INDEX_MASK], samples, (num_samples * 4 - over_bytes) / 2);
ClampBufferToS16WithVolume(&m_buffer[0], samples + (num_samples * 4 - over_bytes) / sizeof(short), over_bytes / 2);
} else {
ClampBufferToS16WithVolume(&m_buffer[indexW & INDEX_MASK], samples, num_samples * 2);
}
Common::AtomicAdd(m_indexW, num_samples * 2);
lastPushSize_ = num_samples;
}
void StereoResampler::GetAudioDebugStats(AudioDebugStats *stats) {
stats->buffered = lastBufSize_;
stats->underrunCount += underrunCount_;
underrunCount_ = 0;
stats->overrunCount += overrunCount_;
overrunCount_ = 0;
stats->watermark = m_lowwatermark;
stats->bufsize = m_bufsize * 2;
stats->instantSampleRate = (int)sample_rate_;
stats->lastPushSize = lastPushSize_;
}
void StereoResampler::SetInputSampleRate(unsigned int rate) {
m_input_sample_rate = rate;
}
void StereoResampler::DoState(PointerWrap &p) {
auto s = p.Section("resampler", 1);
if (!s)
return;
}