ppsspp/GPU/GLES/TransformPipeline.cpp

1161 lines
36 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/timeutil.h"
#include "Common/MemoryUtil.h"
#include "../../Core/MemMap.h"
#include "../../Core/Host.h"
#include "../../Core/System.h"
#include "../../Core/Reporting.h"
#include "../../native/gfx_es2/gl_state.h"
#include "../../native/ext/cityhash/city.h"
#include "../Math3D.h"
#include "../GPUState.h"
#include "../ge_constants.h"
#include "../../Core/Config.h"
#include "StateMapping.h"
#include "TextureCache.h"
#include "TransformPipeline.h"
#include "VertexDecoder.h"
#include "ShaderManager.h"
#include "DisplayListInterpreter.h"
const GLuint glprim[8] = {
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN,
GL_TRIANGLES, // With OpenGL ES we have to expand sprites into triangles, tripling the data instead of doubling. sigh. OpenGL ES, Y U NO SUPPORT GL_QUADS?
};
enum {
DECODED_VERTEX_BUFFER_SIZE = 65536 * 48,
DECODED_INDEX_BUFFER_SIZE = 65536 * 2,
TRANSFORMED_VERTEX_BUFFER_SIZE = 65536 * sizeof(TransformedVertex)
};
TransformDrawEngine::TransformDrawEngine()
: collectedVerts(0),
prevPrim_(-1),
dec_(0),
lastVType_(-1),
curVbo_(0),
shaderManager_(0),
textureCache_(0),
framebufferManager_(0),
numDrawCalls(0) {
// Allocate nicely aligned memory. Maybe graphics drivers will
// appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE);
transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE);
transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
memset(vbo_, 0, sizeof(vbo_));
memset(ebo_, 0, sizeof(ebo_));
indexGen.Setup(decIndex);
InitDeviceObjects();
register_gl_resource_holder(this);
}
TransformDrawEngine::~TransformDrawEngine() {
DestroyDeviceObjects();
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
unregister_gl_resource_holder(this);
for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) {
delete iter->second;
}
}
void TransformDrawEngine::InitDeviceObjects() {
if (!vbo_[0]) {
glGenBuffers(NUM_VBOS, &vbo_[0]);
glGenBuffers(NUM_VBOS, &ebo_[0]);
} else {
ERROR_LOG(G3D, "Device objects already initialized!");
}
}
void TransformDrawEngine::DestroyDeviceObjects() {
glDeleteBuffers(NUM_VBOS, &vbo_[0]);
glDeleteBuffers(NUM_VBOS, &ebo_[0]);
memset(vbo_, 0, sizeof(vbo_));
memset(ebo_, 0, sizeof(ebo_));
ClearTrackedVertexArrays();
}
void TransformDrawEngine::GLLost() {
// The objects have already been deleted.
memset(vbo_, 0, sizeof(vbo_));
memset(ebo_, 0, sizeof(ebo_));
ClearTrackedVertexArrays();
InitDeviceObjects();
}
// Just to get something on the screen, we'll just not subdivide correctly.
void TransformDrawEngine::DrawBezier(int ucount, int vcount) {
u16 indices[3 * 3 * 6];
Reporting::ReportMessage("Unsupported bezier curve");
// Generate indices for a rectangular mesh.
int c = 0;
for (int y = 0; y < 3; y++) {
for (int x = 0; x < 3; x++) {
indices[c++] = y * 4 + x;
indices[c++] = y * 4 + x + 1;
indices[c++] = (y + 1) * 4 + x + 1;
indices[c++] = (y + 1) * 4 + x + 1;
indices[c++] = (y + 1) * 4 + x;
indices[c++] = y * 4 + x;
}
}
// We are free to use the "decoded" buffer here.
// Let's split it into two to get a second buffer, there's enough space.
u8 *decoded2 = decoded + 65536 * 24;
// Alright, now for the vertex data.
// For now, we will simply inject UVs.
float customUV[4 * 4 * 2];
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
customUV[(y * 4 + x) * 2 + 0] = (float)x/3.0f;
customUV[(y * 4 + x) * 2 + 1] = (float)y/3.0f;
}
}
if (!(gstate.vertType & GE_VTYPE_TC_MASK)) {
VertexDecoder *dec = GetVertexDecoder(gstate.vertType);
dec->SetVertexType(gstate.vertType);
u32 newVertType = dec->InjectUVs(decoded2, Memory::GetPointer(gstate_c.vertexAddr), customUV, 16);
SubmitPrim(decoded2, &indices[0], GE_PRIM_TRIANGLES, c, newVertType, GE_VTYPE_IDX_16BIT, 0);
} else {
SubmitPrim(Memory::GetPointer(gstate_c.vertexAddr), &indices[0], GE_PRIM_TRIANGLES, c, gstate.vertType, GE_VTYPE_IDX_16BIT, 0);
}
Flush(); // as our vertex storage here is temporary, it will only survive one draw.
}
// Copy code from bezier. This is not right, but allow to display something.
void TransformDrawEngine::DrawSpline(int ucount, int vcount, int utype, int vtype) {
u16 indices[3 * 3 * 6];
Reporting::ReportMessage("Unsupported spline curve");
// Generate indices for a rectangular mesh.
int c = 0;
for (int y = 0; y < 3; y++) {
for (int x = 0; x < 3; x++) {
indices[c++] = y * 4 + x;
indices[c++] = y * 4 + x + 1;
indices[c++] = (y + 1) * 4 + x + 1;
indices[c++] = (y + 1) * 4 + x + 1;
indices[c++] = (y + 1) * 4 + x;
indices[c++] = y * 4 + x;
}
}
// We are free to use the "decoded" buffer here.
// Let's split it into two to get a second buffer, there's enough space.
u8 *decoded2 = decoded + 65536 * 24;
// Alright, now for the vertex data.
// For now, we will simply inject UVs.
float customUV[4 * 4 * 2];
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
customUV[(y * 4 + x) * 2 + 0] = (float)x/3.0f;
customUV[(y * 4 + x) * 2 + 1] = (float)y/3.0f;
}
}
if (!(gstate.vertType & GE_VTYPE_TC_MASK)) {
VertexDecoder *dec = GetVertexDecoder(gstate.vertType);
dec->SetVertexType(gstate.vertType);
u32 newVertType = dec->InjectUVs(decoded2, Memory::GetPointer(gstate_c.vertexAddr), customUV, 16);
SubmitPrim(decoded2, &indices[0], GE_PRIM_TRIANGLES, c, newVertType, GE_VTYPE_IDX_16BIT, 0);
} else {
SubmitPrim(Memory::GetPointer(gstate_c.vertexAddr), &indices[0], GE_PRIM_TRIANGLES, c, gstate.vertType, GE_VTYPE_IDX_16BIT, 0);
}
Flush(); // as our vertex storage here is temporary, it will only survive one draw.
}
// Convenient way to do precomputation to save the parts of the lighting calculation
// that's common between the many vertices of a draw call.
class Lighter {
public:
Lighter();
void Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], Vec3 pos, Vec3 normal, float dots[4]);
private:
bool disabled_;
Color4 globalAmbient;
Color4 materialEmissive;
Color4 materialAmbient;
Color4 materialDiffuse;
Color4 materialSpecular;
float specCoef_;
// Vec3 viewer_;
bool doShadeMapping_;
int materialUpdate_;
};
Lighter::Lighter() {
doShadeMapping_ = (gstate.texmapmode & 0x3) == 2;
materialEmissive.GetFromRGB(gstate.materialemissive);
materialEmissive.a = 0.0f;
globalAmbient.GetFromRGB(gstate.ambientcolor);
globalAmbient.GetFromA(gstate.ambientalpha);
materialAmbient.GetFromRGB(gstate.materialambient);
materialAmbient.GetFromA(gstate.materialalpha);
materialDiffuse.GetFromRGB(gstate.materialdiffuse);
materialDiffuse.a = 1.0f;
materialSpecular.GetFromRGB(gstate.materialspecular);
materialSpecular.a = 1.0f;
specCoef_ = getFloat24(gstate.materialspecularcoef);
// viewer_ = Vec3(-gstate.viewMatrix[9], -gstate.viewMatrix[10], -gstate.viewMatrix[11]);
materialUpdate_ = gstate.materialupdate & 7;
}
void Lighter::Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], Vec3 pos, Vec3 norm, float dots[4])
{
Color4 in(colorIn);
const Color4 *ambient;
if (materialUpdate_ & 1)
ambient = &in;
else
ambient = &materialAmbient;
const Color4 *diffuse;
if (materialUpdate_ & 2)
diffuse = &in;
else
diffuse = &materialDiffuse;
const Color4 *specular;
if (materialUpdate_ & 4)
specular = &in;
else
specular = &materialSpecular;
Color4 lightSum0 = globalAmbient * *ambient + materialEmissive;
Color4 lightSum1(0, 0, 0, 0);
for (int l = 0; l < 4; l++)
{
// can we skip this light?
if ((gstate.lightEnable[l] & 1) == 0 && !doShadeMapping_)
continue;
GELightComputation comp = (GELightComputation)(gstate.ltype[l] & 3);
GELightType type = (GELightType)((gstate.ltype[l] >> 8) & 3);
Vec3 toLight(0,0,0);
if (type == GE_LIGHTTYPE_DIRECTIONAL)
toLight = Vec3(gstate_c.lightpos[l]); // lightdir is for spotlights
else
toLight = Vec3(gstate_c.lightpos[l]) - pos;
bool doSpecular = (comp != GE_LIGHTCOMP_ONLYDIFFUSE);
bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE;
float distanceToLight = toLight.Length();
float dot = 0.0f;
if (distanceToLight > 0.0f)
{
toLight /= distanceToLight;
dot = toLight * norm;
}
// Clamp dot to zero.
if (dot < 0.0f) dot = 0.0f;
if (poweredDiffuse)
dot = powf(dot, specCoef_);
float lightScale = 1.0f;
if (type != GE_LIGHTTYPE_DIRECTIONAL)
{
lightScale = 1.0f / (gstate_c.lightatt[l][0] + gstate_c.lightatt[l][1]*distanceToLight + gstate_c.lightatt[l][2]*distanceToLight*distanceToLight);
if (lightScale > 1.0f) lightScale = 1.0f;
}
Color4 lightDiff(gstate_c.lightColor[1][l], 0.0f);
Color4 diff = (lightDiff * *diffuse) * (dot * lightScale);
// Real PSP specular
Vec3 toViewer(0,0,1);
// Better specular
// Vec3 toViewer = (viewer - pos).Normalized();
if (doSpecular)
{
Vec3 halfVec = (toLight + toViewer);
halfVec.Normalize();
dot = halfVec * norm;
if (dot > 0.0f)
{
Color4 lightSpec(gstate_c.lightColor[2][l], 0.0f);
lightSum1 += (lightSpec * *specular * (powf(dot, specCoef_) * (dot * lightScale)));
}
}
dots[l] = dot;
if (gstate.lightEnable[l] & 1)
{
Color4 lightAmbient(gstate_c.lightColor[0][l], 0.0f);
lightSum0 += lightAmbient + diff;
}
}
// 4?
for (int i = 0; i < 4; i++) {
colorOut0[i] = lightSum0[i] > 1.0f ? 1.0f : lightSum0[i];
colorOut1[i] = lightSum1[i] > 1.0f ? 1.0f : lightSum1[i];
}
}
struct GlTypeInfo {
u16 type;
u8 count;
u8 normalized;
};
static const GlTypeInfo GLComp[] = {
{0}, // DEC_NONE,
{GL_FLOAT, 1, GL_FALSE}, // DEC_FLOAT_1,
{GL_FLOAT, 2, GL_FALSE}, // DEC_FLOAT_2,
{GL_FLOAT, 3, GL_FALSE}, // DEC_FLOAT_3,
{GL_FLOAT, 4, GL_FALSE}, // DEC_FLOAT_4,
{GL_BYTE, 4, GL_TRUE}, // DEC_S8_3,
{GL_SHORT, 4, GL_TRUE},// DEC_S16_3,
{GL_UNSIGNED_BYTE, 1, GL_TRUE},// DEC_U8_1,
{GL_UNSIGNED_BYTE, 2, GL_TRUE},// DEC_U8_2,
{GL_UNSIGNED_BYTE, 3, GL_TRUE},// DEC_U8_3,
{GL_UNSIGNED_BYTE, 4, GL_TRUE},// DEC_U8_4,
{GL_UNSIGNED_SHORT, 1, GL_TRUE},// DEC_U16_1,
{GL_UNSIGNED_SHORT, 2, GL_TRUE},// DEC_U16_2,
{GL_UNSIGNED_SHORT, 3, GL_TRUE},// DEC_U16_3,
{GL_UNSIGNED_SHORT, 4, GL_TRUE},// DEC_U16_4,
{GL_UNSIGNED_BYTE, 2, GL_FALSE},// DEC_U8A_2,
{GL_UNSIGNED_SHORT, 2, GL_FALSE},// DEC_U16A_2,
};
static inline void VertexAttribSetup(int attrib, int fmt, int stride, u8 *ptr) {
if (attrib != -1 && fmt) {
const GlTypeInfo &type = GLComp[fmt];
glVertexAttribPointer(attrib, type.count, type.type, type.normalized, stride, ptr);
}
}
// TODO: Use VBO and get rid of the vertexData pointers - with that, we will supply only offsets
static void SetupDecFmtForDraw(LinkedShader *program, const DecVtxFormat &decFmt, u8 *vertexData) {
VertexAttribSetup(program->a_weight0123, decFmt.w0fmt, decFmt.stride, vertexData + decFmt.w0off);
VertexAttribSetup(program->a_weight4567, decFmt.w1fmt, decFmt.stride, vertexData + decFmt.w1off);
VertexAttribSetup(program->a_texcoord, decFmt.uvfmt, decFmt.stride, vertexData + decFmt.uvoff);
VertexAttribSetup(program->a_color0, decFmt.c0fmt, decFmt.stride, vertexData + decFmt.c0off);
VertexAttribSetup(program->a_color1, decFmt.c1fmt, decFmt.stride, vertexData + decFmt.c1off);
VertexAttribSetup(program->a_normal, decFmt.nrmfmt, decFmt.stride, vertexData + decFmt.nrmoff);
VertexAttribSetup(program->a_position, decFmt.posfmt, decFmt.stride, vertexData + decFmt.posoff);
}
// The verts are in the order: BR BL TL TR
static void SwapUVs(TransformedVertex &a, TransformedVertex &b) {
float tempu = a.u;
float tempv = a.v;
a.u = b.u;
a.v = b.v;
b.u = tempu;
b.v = tempv;
}
// 2 3 3 2 0 3 2 1
// to to or
// 1 0 0 1 1 2 3 0
// See comment below where this was called before.
/*
static void RotateUV(TransformedVertex v[4]) {
float x1 = v[2].x;
float x2 = v[0].x;
float y1 = v[2].y;
float y2 = v[0].y;
if ((x1 < x2 && y1 < y2) || (x1 > x2 && y1 > y2))
SwapUVs(v[1], v[3]);
}*/
static void RotateUVThrough(TransformedVertex v[4]) {
float x1 = v[2].x;
float x2 = v[0].x;
float y1 = v[2].y;
float y2 = v[0].y;
if ((x1 < x2 && y1 > y2) || (x1 > x2 && y1 < y2))
SwapUVs(v[1], v[3]);
}
// This is the software transform pipeline, which is necessary for supporting RECT
// primitives correctly, and may be easier to use for debugging than the hardware
// transform pipeline.
// There's code here that simply expands transformed RECTANGLES into plain triangles.
// We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0.
// Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of
// this code.
// Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed
// space and thus make decent use of hardware transform.
// Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for
// GL_TRIANGLES. Still need to sw transform to compute the extra two corners though.
void TransformDrawEngine::SoftwareTransformAndDraw(
int prim, u8 *decoded, LinkedShader *program, int vertexCount, u32 vertType, void *inds, int indexType, const DecVtxFormat &decVtxFormat, int maxIndex) {
bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
bool lmode = (gstate.lmode & 1) && gstate.isLightingEnabled();
// TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts.
#if defined(USING_GLES2)
if (vertexCount > 0x10000/3)
vertexCount = 0x10000/3;
#endif
float uscale = 1.0f;
float vscale = 1.0f;
if (throughmode) {
uscale /= gstate_c.curTextureWidth;
vscale /= gstate_c.curTextureHeight;
}
Lighter lighter;
float fog_end = getFloat24(gstate.fog1);
float fog_slope = getFloat24(gstate.fog2);
VertexReader reader(decoded, decVtxFormat, vertType);
for (int index = 0; index < maxIndex; index++) {
reader.Goto(index);
float v[3] = {0, 0, 0};
float c0[4] = {1, 1, 1, 1};
float c1[4] = {0, 0, 0, 0};
float uv[2] = {0, 0};
float fogCoef = 1.0f;
if (throughmode) {
// Do not touch the coordinates or the colors. No lighting.
reader.ReadPos(v);
if (reader.hasColor0()) {
reader.ReadColor0(c0);
for (int j = 0; j < 4; j++) {
c1[j] = 0.0f;
}
} else {
c0[0] = (gstate.materialambient & 0xFF) / 255.f;
c0[1] = ((gstate.materialambient >> 8) & 0xFF) / 255.f;
c0[2] = ((gstate.materialambient >> 16) & 0xFF) / 255.f;
c0[3] = (gstate.materialalpha & 0xFF) / 255.f;
}
if (reader.hasUV()) {
reader.ReadUV(uv);
uv[0] *= uscale;
uv[1] *= vscale;
}
fogCoef = 1.0f;
// Scale UV?
} else {
// We do software T&L for now
float out[3], norm[3];
float pos[3], nrm[3];
Vec3 normal(0, 0, 0);
reader.ReadPos(pos);
if (reader.hasNormal())
reader.ReadNrm(nrm);
if ((vertType & GE_VTYPE_WEIGHT_MASK) == GE_VTYPE_WEIGHT_NONE) {
Vec3ByMatrix43(out, pos, gstate.worldMatrix);
if (reader.hasNormal()) {
Norm3ByMatrix43(norm, nrm, gstate.worldMatrix);
normal = Vec3(norm).Normalized();
}
} else {
float weights[8];
reader.ReadWeights(weights);
// Skinning
Vec3 psum(0,0,0);
Vec3 nsum(0,0,0);
int nweights = ((vertType & GE_VTYPE_WEIGHTCOUNT_MASK) >> GE_VTYPE_WEIGHTCOUNT_SHIFT) + 1;
for (int i = 0; i < nweights; i++)
{
if (weights[i] != 0.0f) {
Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12);
Vec3 tpos(out);
psum += tpos * weights[i];
if (reader.hasNormal()) {
Norm3ByMatrix43(norm, nrm, gstate.boneMatrix+i*12);
Vec3 tnorm(norm);
nsum += tnorm * weights[i];
}
}
}
// Yes, we really must multiply by the world matrix too.
Vec3ByMatrix43(out, psum.v, gstate.worldMatrix);
if (reader.hasNormal()) {
Norm3ByMatrix43(norm, nsum.v, gstate.worldMatrix);
normal = Vec3(norm).Normalized();
}
}
// Perform lighting here if enabled. don't need to check through, it's checked above.
float dots[4] = {0,0,0,0};
float unlitColor[4] = {1, 1, 1, 1};
if (reader.hasColor0()) {
reader.ReadColor0(unlitColor);
} else {
unlitColor[0] = (gstate.materialambient & 0xFF) / 255.f;
unlitColor[1] = ((gstate.materialambient >> 8) & 0xFF) / 255.f;
unlitColor[2] = ((gstate.materialambient >> 16) & 0xFF) / 255.f;
unlitColor[3] = (gstate.materialalpha & 0xFF) / 255.f;
}
float litColor0[4];
float litColor1[4];
lighter.Light(litColor0, litColor1, unlitColor, out, normal, dots);
if (gstate.isLightingEnabled()) {
// Don't ignore gstate.lmode - we should send two colors in that case
for (int j = 0; j < 4; j++) {
c0[j] = litColor0[j];
}
if (lmode) {
// Separate colors
for (int j = 0; j < 4; j++) {
c1[j] = litColor1[j];
}
} else {
// Summed color into c0
for (int j = 0; j < 4; j++) {
c0[j] = c0[j] + litColor1[j];
}
}
} else {
if (reader.hasColor0()) {
for (int j = 0; j < 4; j++) {
c0[j] = unlitColor[j];
}
} else {
c0[0] = (gstate.materialambient & 0xFF) / 255.f;
c0[1] = ((gstate.materialambient >> 8) & 0xFF) / 255.f;
c0[2] = ((gstate.materialambient >> 16)& 0xFF) / 255.f;
c0[3] = (gstate.materialalpha & 0xFF) / 255.f;
}
if (lmode) {
for (int j = 0; j < 4; j++) {
c1[j] = 0.0f;
}
}
}
float ruv[2] = {0.0f, 0.0f};
if (reader.hasUV())
reader.ReadUV(ruv);
// Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights.
switch (gstate.getUVGenMode())
{
case 0: // UV mapping
// Texture scale/offset is only performed in this mode.
uv[0] = uscale * (ruv[0]*gstate_c.uScale + gstate_c.uOff);
uv[1] = vscale * (ruv[1]*gstate_c.vScale + gstate_c.vOff);
break;
case 1:
{
// Projection mapping
Vec3 source;
switch (gstate.getUVProjMode())
{
case 0: // Use model space XYZ as source
source = pos;
break;
case 1: // Use unscaled UV as source
source = Vec3(ruv[0], ruv[1], 0.0f);
break;
case 2: // Use normalized normal as source
source = Vec3(norm).Normalized();
break;
case 3: // Use non-normalized normal as source!
source = Vec3(norm);
break;
}
float uvw[3];
Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix);
uv[0] = uvw[0];
uv[1] = uvw[1];
}
break;
case 2:
// Shade mapping - use dot products from light sources to generate U and V.
{
uv[0] = dots[gstate.getUVLS0()];
uv[1] = dots[gstate.getUVLS1()];
}
break;
case 3:
// Illegal
break;
}
// Transform the coord by the view matrix.
Vec3ByMatrix43(v, out, gstate.viewMatrix);
fogCoef = (v[2] + fog_end) * fog_slope;
}
// TODO: Write to a flexible buffer, we don't always need all four components.
memcpy(&transformed[index].x, v, 3 * sizeof(float));
transformed[index].fog = fogCoef;
memcpy(&transformed[index].u, uv, 2 * sizeof(float));
if (gstate_c.flipTexture) {
if (throughmode)
transformed[index].v = 1.0f - transformed[index].v;
else
transformed[index].v = 1.0f - transformed[index].v * 2.0f;
}
for (int i = 0; i < 4; i++) {
transformed[index].color0[i] = c0[i] * 255.0f;
}
for (int i = 0; i < 4; i++) {
transformed[index].color1[i] = c1[i] * 255.0f;
}
}
// Step 2: expand rectangles.
const TransformedVertex *drawBuffer = transformed;
int numTrans = 0;
bool drawIndexed = false;
if (prim != GE_PRIM_RECTANGLES) {
// We can simply draw the unexpanded buffer.
numTrans = vertexCount;
drawIndexed = true;
} else {
numTrans = 0;
drawBuffer = transformedExpanded;
TransformedVertex *trans = &transformedExpanded[0];
TransformedVertex saved;
for (int i = 0; i < vertexCount; i++) {
int index = ((u16*)inds)[i];
TransformedVertex &transVtx = transformed[index];
if ((i & 1) == 0)
{
// Save this vertex so we can generate when we get the next one. Color is taken from the last vertex.
saved = transVtx;
}
else
{
// We have to turn the rectangle into two triangles, so 6 points. Sigh.
// bottom right
trans[0] = transVtx;
// bottom left
trans[1] = transVtx;
trans[1].y = saved.y;
trans[1].v = saved.v;
// top left
trans[2] = transVtx;
trans[2].x = saved.x;
trans[2].y = saved.y;
trans[2].u = saved.u;
trans[2].v = saved.v;
// top right
trans[3] = transVtx;
trans[3].x = saved.x;
trans[3].u = saved.u;
// That's the four corners. Now process UV rotation.
if (throughmode)
RotateUVThrough(trans);
// Apparently, non-through RotateUV just breaks things.
// If we find a game where it helps, we'll just have to figure out how they differ.
// Possibly, it has something to do with flipped viewport Y axis, which a few games use.
// else
// RotateUV(trans);
// bottom right
trans[4] = trans[0];
// top left
trans[5] = trans[2];
trans += 6;
numTrans += 6;
}
}
}
// TODO: Add a post-transform cache here for multi-RECTANGLES only.
// Might help for text drawing.
// these spam the gDebugger log.
const int vertexSize = sizeof(transformed[0]);
bool useVBO = g_Config.bUseVBO;
if (useVBO) {
//char title[64];
//sprintf(title, "upload %i verts for sw", indexGen.VertexCount());
//LoggingDeadline deadline(title, 5);
glBindBuffer(GL_ARRAY_BUFFER, vbo_[curVbo_]);
glBufferData(GL_ARRAY_BUFFER, vertexSize * numTrans, drawBuffer, GL_STREAM_DRAW);
drawBuffer = 0; // so that the calls use offsets instead.
}
glVertexAttribPointer(program->a_position, 4, GL_FLOAT, GL_FALSE, vertexSize, drawBuffer);
if (program->a_texcoord != -1) glVertexAttribPointer(program->a_texcoord, 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)drawBuffer) + 4 * 4);
if (program->a_color0 != -1) glVertexAttribPointer(program->a_color0, 4, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, ((uint8_t*)drawBuffer) + 6 * 4);
if (program->a_color1 != -1) glVertexAttribPointer(program->a_color1, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, ((uint8_t*)drawBuffer) + 7 * 4);
if (drawIndexed) {
if (useVBO) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo_[curVbo_]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short) * numTrans, inds, GL_STREAM_DRAW);
inds = 0;
}
glDrawElements(glprim[prim], numTrans, GL_UNSIGNED_SHORT, inds);
if (useVBO) {
// Attempt to orphan the buffer we used so the GPU can alloc a new one.
// glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short) * numTrans, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
} else {
glDrawArrays(glprim[prim], 0, numTrans);
}
if (useVBO) {
// Attempt to orphan the buffer we used so the GPU can alloc a new one.
// glBufferData(GL_ARRAY_BUFFER, vertexSize * numTrans, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
curVbo_++;
if (curVbo_ == NUM_VBOS)
curVbo_ = 0;
}
}
VertexDecoder *TransformDrawEngine::GetVertexDecoder(u32 vtype) {
auto iter = decoderMap_.find(vtype);
if (iter != decoderMap_.end())
return iter->second;
VertexDecoder *dec = new VertexDecoder();
dec->SetVertexType(vtype);
decoderMap_[vtype] = dec;
return dec;
}
void TransformDrawEngine::SubmitPrim(void *verts, void *inds, int prim, int vertexCount, u32 vertType, int forceIndexType, int *bytesRead) {
if (vertexCount == 0)
return; // we ignore zero-sized draw calls.
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS)
Flush();
prevPrim_ = prim;
// If vtype has changed, setup the vertex decoder.
// TODO: Simply cache the setup decoders instead.
if (vertType != lastVType_) {
dec_ = GetVertexDecoder(vertType);
lastVType_ = vertType;
}
dec_->IncrementStat(STAT_VERTSSUBMITTED, vertexCount);
if (bytesRead)
*bytesRead = vertexCount * dec_->VertexSize();
gpuStats.numDrawCalls++;
gpuStats.numVertsSubmitted += vertexCount;
DeferredDrawCall &dc = drawCalls[numDrawCalls++];
dc.verts = verts;
dc.inds = inds;
dc.vertType = vertType;
dc.indexType = ((forceIndexType == -1) ? (vertType & GE_VTYPE_IDX_MASK) : forceIndexType) >> GE_VTYPE_IDX_SHIFT;
dc.prim = prim;
dc.vertexCount = vertexCount;
if (inds) {
GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound);
} else {
dc.indexLowerBound = 0;
dc.indexUpperBound = vertexCount - 1;
}
}
void TransformDrawEngine::DecodeVerts() {
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
indexGen.SetIndex(collectedVerts);
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
u32 indexType = dc.indexType;
void *inds = dc.inds;
if (indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
// Decode the verts and apply morphing. Simple.
dec_->DecodeVerts(decoded + collectedVerts * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
collectedVerts += indexUpperBound - indexLowerBound + 1;
indexGen.AddPrim(dc.prim, dc.vertexCount);
} else {
// It's fairly common that games issue long sequences of PRIM calls, with differing
// inds pointer but the same base vertex pointer. We'd like to reuse vertices between
// these as much as possible, so we make sure here to combine as many as possible
// into one nice big drawcall, sharing data.
// 1. Look ahead to find the max index, only looking as "matching" drawcalls.
// Expand the lower and upper bounds as we go.
int j = i + 1;
int lastMatch = i;
while (j < numDrawCalls) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
j++;
}
// 2. Loop through the drawcalls, translating indices as we go.
for (j = i; j <= lastMatch; j++) {
switch (indexType) {
case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT:
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound);
break;
case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT:
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16 *)drawCalls[j].inds, indexLowerBound);
break;
}
}
// 3. Decode that range of vertex data.
dec_->DecodeVerts(decoded + collectedVerts * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
collectedVerts += indexUpperBound - indexLowerBound + 1;
// 4. Advance indexgen vertex counter.
indexGen.Advance(indexUpperBound - indexLowerBound + 1);
i = lastMatch;
}
}
}
u32 TransformDrawEngine::ComputeHash() {
u32 fullhash = 0;
int vertexSize = dec_->GetDecVtxFmt().stride;
// TODO: Add some caps both for numDrawCalls and num verts to check?
for (int i = 0; i < numDrawCalls; i++) {
if (!drawCalls[i].inds) {
fullhash += CityHash32((const char *)drawCalls[i].verts, vertexSize * drawCalls[i].vertexCount);
} else {
fullhash += CityHash32((const char *)drawCalls[i].verts + vertexSize * drawCalls[i].indexLowerBound,
vertexSize * (drawCalls[i].indexUpperBound - drawCalls[i].indexLowerBound));
int indexSize = (dec_->VertexType() & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT ? 2 : 1;
fullhash += CityHash32((const char *)drawCalls[i].inds, indexSize * drawCalls[i].vertexCount);
}
}
return fullhash;
}
u32 TransformDrawEngine::ComputeFastDCID() {
u32 hash = 0;
for (int i = 0; i < numDrawCalls; i++) {
hash ^= *(u32*)&drawCalls[i].verts;
hash = _rotl(hash, 13);
hash ^= *(u32*)&drawCalls[i].inds;
hash = _rotl(hash, 13);
hash ^= (u32)drawCalls[i].vertType;
hash = _rotl(hash, 13);
hash ^= (u32)drawCalls[i].vertexCount;
hash = _rotl(hash, 13);
hash ^= (u32)drawCalls[i].prim;
}
return hash;
}
enum { VAI_KILL_AGE = 120 };
void TransformDrawEngine::ClearTrackedVertexArrays() {
for (auto vai = vai_.begin(); vai != vai_.end(); vai++) {
delete vai->second;
}
vai_.clear();
}
void TransformDrawEngine::DecimateTrackedVertexArrays() {
int threshold = gpuStats.numFrames - VAI_KILL_AGE;
for (auto iter = vai_.begin(); iter != vai_.end(); ) {
if (iter->second->lastFrame < threshold) {
delete iter->second;
vai_.erase(iter++);
}
else
++iter;
}
// Enable if you want to see vertex decoders in the log output. Need a better way.
#if 0
char buffer[16384];
for (std::map<u32, VertexDecoder*>::iterator dec = decoderMap_.begin(); dec != decoderMap_.end(); ++dec) {
char *ptr = buffer;
ptr += dec->second->ToString(ptr);
// *ptr++ = '\n';
NOTICE_LOG(HLE, buffer);
}
#endif
}
VertexArrayInfo::~VertexArrayInfo() {
if (vbo)
glDeleteBuffers(1, &vbo);
if (ebo)
glDeleteBuffers(1, &ebo);
}
void TransformDrawEngine::Flush() {
if (!numDrawCalls)
return;
gpuStats.numFlushes++;
gpuStats.numTrackedVertexArrays = (int)vai_.size();
// TODO: This should not be done on every drawcall, we should collect vertex data
// until critical state changes. That's when we draw (flush).
int prim = prevPrim_;
ApplyDrawState(prim);
LinkedShader *program = shaderManager_->ApplyShader(prim);
if (CanUseHardwareTransform(prevPrim_)) {
GLuint vbo = 0, ebo = 0;
int vertexCount = 0;
bool useElements = true;
// Cannot cache vertex data with morph enabled.
if (g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK)) {
u32 id = ComputeFastDCID();
auto iter = vai_.find(id);
VertexArrayInfo *vai;
if (iter != vai_.end()) {
// We've seen this before. Could have been a cached draw.
vai = iter->second;
} else {
vai = new VertexArrayInfo();
vai->decFmt = dec_->GetDecVtxFmt();
vai_[id] = vai;
}
switch (vai->status) {
case VertexArrayInfo::VAI_NEW:
{
// Haven't seen this one before.
u32 dataHash = ComputeHash();
vai->hash = dataHash;
vai->status = VertexArrayInfo::VAI_HASHING;
vai->drawsUntilNextFullHash = 0;
DecodeVerts(); // writes to indexGen
goto rotateVBO;
}
// Hashing - still gaining confidence about the buffer.
// But if we get this far it's likely to be worth creating a vertex buffer.
case VertexArrayInfo::VAI_HASHING:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFrames) {
vai->numFrames++;
}
if (vai->drawsUntilNextFullHash == 0) {
u32 newHash = ComputeHash();
if (newHash != vai->hash) {
vai->status = VertexArrayInfo::VAI_UNRELIABLE;
if (vai->vbo) {
glDeleteBuffers(1, &vai->vbo);
vai->vbo = 0;
}
if (vai->ebo) {
glDeleteBuffers(1, &vai->ebo);
vai->ebo = 0;
}
DecodeVerts();
goto rotateVBO;
}
if (vai->numVerts > 100) {
// exponential backoff up to 16 draws, then every 24
vai->drawsUntilNextFullHash = std::min(24, vai->numFrames);
} else {
// Lower numbers seem much more likely to change.
vai->drawsUntilNextFullHash = 0;
}
// TODO: tweak
//if (vai->numFrames > 1000) {
// vai->status = VertexArrayInfo::VAI_RELIABLE;
//}
} else {
vai->drawsUntilNextFullHash--;
// TODO: "mini-hashing" the first 32 bytes of the vertex/index data or something.
}
if (vai->vbo == 0) {
DecodeVerts();
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
useElements = !indexGen.SeenOnlyPurePrims();
glGenBuffers(1, &vai->vbo);
glBindBuffer(GL_ARRAY_BUFFER, vai->vbo);
glBufferData(GL_ARRAY_BUFFER, dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(), decoded, GL_STATIC_DRAW);
// If there's only been one primitive type, and it's either TRIANGLES, LINES or POINTS,
// there is no need for the index buffer we built. We can then use glDrawArrays instead
// for a very minor speed boost.
if (useElements) {
glGenBuffers(1, &vai->ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vai->ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short) * indexGen.VertexCount(), (GLvoid *)decIndex, GL_STATIC_DRAW);
} else {
vai->ebo = 0;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
} else {
gpuStats.numCachedDrawCalls++;
glBindBuffer(GL_ARRAY_BUFFER, vai->vbo);
if (vai->ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vai->ebo);
useElements = vai->ebo ? true : false;
gpuStats.numCachedVertsDrawn += vai->numVerts;
}
vbo = vai->vbo;
ebo = vai->ebo;
vertexCount = vai->numVerts;
prim = vai->prim;
break;
}
// Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time.
case VertexArrayInfo::VAI_RELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFrames) {
vai->numFrames++;
}
gpuStats.numCachedDrawCalls++;
gpuStats.numCachedVertsDrawn += vai->numVerts;
vbo = vai->vbo;
ebo = vai->ebo;
glBindBuffer(GL_ARRAY_BUFFER, vbo);
if (ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
vertexCount = vai->numVerts;
prim = vai->prim;
break;
}
case VertexArrayInfo::VAI_UNRELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFrames) {
vai->numFrames++;
}
DecodeVerts();
goto rotateVBO;
}
}
vai->lastFrame = gpuStats.numFrames;
} else {
DecodeVerts();
rotateVBO:
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
if (g_Config.bUseVBO) {
// Just rotate VBO.
vbo = vbo_[curVbo_];
ebo = ebo_[curVbo_];
curVbo_++;
if (curVbo_ == NUM_VBOS)
curVbo_ = 0;
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(), decoded, GL_STREAM_DRAW);
if (useElements) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short) * vertexCount, (GLvoid *)decIndex, GL_STREAM_DRAW);
}
} else {
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
prim = indexGen.Prim();
}
DEBUG_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount);
SetupDecFmtForDraw(program, dec_->GetDecVtxFmt(), vbo ? 0 : decoded);
if (useElements) {
glDrawElements(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, ebo ? 0 : (GLvoid*)decIndex);
if (ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
glDrawArrays(glprim[prim], 0, vertexCount);
}
if (vbo)
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
DecodeVerts();
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
DEBUG_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount());
SoftwareTransformAndDraw(
prim, decoded, program, indexGen.VertexCount(),
dec_->VertexType(), (void *)decIndex, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(),
indexGen.MaxIndex());
}
indexGen.Reset();
collectedVerts = 0;
numDrawCalls = 0;
prevPrim_ = -1;
}