ppsspp/GPU/Vulkan/DrawEngineVulkan.cpp

904 lines
32 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <cassert>
#include "base/logging.h"
#include "base/timeutil.h"
#include "math/dataconv.h"
#include "Common/MemoryUtil.h"
#include "Core/MemMap.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "Common/Vulkan/VulkanContext.h"
#include "Common/Vulkan/VulkanMemory.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/TransformCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/SoftwareTransformCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#include "GPU/Vulkan/TextureCacheVulkan.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/PipelineManagerVulkan.h"
#include "GPU/Vulkan/FramebufferVulkan.h"
#include "GPU/Vulkan/GPU_Vulkan.h"
enum {
DRAW_BINDING_TEXTURE = 0,
DRAW_BINDING_2ND_TEXTURE = 1,
DRAW_BINDING_DYNUBO_BASE = 2,
DRAW_BINDING_DYNUBO_LIGHT = 3,
DRAW_BINDING_DYNUBO_BONE = 4,
};
enum {
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
};
DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan)
:
vulkan_(vulkan),
prevPrim_(GE_PRIM_INVALID),
lastVTypeID_(-1),
pipelineManager_(nullptr),
textureCache_(nullptr),
framebufferManager_(nullptr),
numDrawCalls(0),
vertexCountInDrawCalls(0),
fboTexNeedBind_(false),
fboTexBound_(false),
curFrame_(0),
nullTexture_(nullptr),
stats_{} {
decOptions_.expandAllWeightsToFloat = false;
decOptions_.expand8BitNormalsToFloat = false;
// Allocate nicely aligned memory. Maybe graphics drivers will
// appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
splineBuffer = (u8 *)AllocateMemoryPages(SPLINE_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
indexGen.Setup(decIndex);
InitDeviceObjects();
}
void DrawEngineVulkan::InitDeviceObjects() {
// All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated.
VkDescriptorSetLayoutBinding bindings[5];
bindings[0].descriptorCount = 1;
bindings[0].pImmutableSamplers = nullptr;
bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[0].binding = DRAW_BINDING_TEXTURE;
bindings[1].descriptorCount = 1;
bindings[1].pImmutableSamplers = nullptr;
bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[1].binding = DRAW_BINDING_2ND_TEXTURE;
bindings[2].descriptorCount = 1;
bindings[2].pImmutableSamplers = nullptr;
bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[2].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[2].binding = DRAW_BINDING_DYNUBO_BASE;
bindings[3].descriptorCount = 1;
bindings[3].pImmutableSamplers = nullptr;
bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[3].binding = DRAW_BINDING_DYNUBO_LIGHT;
bindings[4].descriptorCount = 1;
bindings[4].pImmutableSamplers = nullptr;
bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[4].binding = DRAW_BINDING_DYNUBO_BONE;
VkDevice device = vulkan_->GetDevice();
VkDescriptorSetLayoutCreateInfo dsl = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
dsl.bindingCount = 5;
dsl.pBindings = bindings;
VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_);
assert(VK_SUCCESS == res);
VkDescriptorPoolSize dpTypes[2];
dpTypes[0].descriptorCount = 2048;
dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
dpTypes[1].descriptorCount = 512;
dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
VkDescriptorPoolCreateInfo dp = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
dp.pNext = nullptr;
dp.flags = 0; // Don't want to mess around with individually freeing these, let's go fixed each frame and zap the whole array. Might try the dynamic approach later.
dp.maxSets = 1000;
dp.pPoolSizes = dpTypes;
dp.poolSizeCount = ARRAY_SIZE(dpTypes);
// We are going to use one-shot descriptors in the initial implementation. Might look into caching them
// if creating and updating them turns out to be expensive.
for (int i = 0; i < 2; i++) {
// If we run out of memory, try with less descriptors.
for (int tries = 0; tries < 3; ++tries) {
VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame_[i].descPool);
if (res == VK_SUCCESS) {
break;
}
// Let's try to reduce the counts.
assert(res == VK_ERROR_OUT_OF_HOST_MEMORY || res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
dpTypes[0].descriptorCount /= 2;
dpTypes[1].descriptorCount /= 2;
}
frame_[i].pushUBO = new VulkanPushBuffer(vulkan_, 8 * 1024 * 1024);
frame_[i].pushVertex = new VulkanPushBuffer(vulkan_, 2 * 1024 * 1024);
frame_[i].pushIndex = new VulkanPushBuffer(vulkan_, 1 * 1024 * 1024);
}
VkPipelineLayoutCreateInfo pl = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
pl.pPushConstantRanges = nullptr;
pl.pushConstantRangeCount = 0;
pl.setLayoutCount = 1;
pl.pSetLayouts = &descriptorSetLayout_;
pl.flags = 0;
res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_);
assert(VK_SUCCESS == res);
VkSamplerCreateInfo samp = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samp.flags = 0;
samp.magFilter = VK_FILTER_NEAREST;
samp.minFilter = VK_FILTER_NEAREST;
res = vkCreateSampler(device, &samp, nullptr, &depalSampler_);
res = vkCreateSampler(device, &samp, nullptr, &nullSampler_);
assert(VK_SUCCESS == res);
}
DrawEngineVulkan::~DrawEngineVulkan() {
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
FreeMemoryPages(splineBuffer, SPLINE_BUFFER_SIZE);
FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
DestroyDeviceObjects();
}
void DrawEngineVulkan::FrameData::Destroy(VulkanContext *vulkan) {
if (descPool != VK_NULL_HANDLE) {
vulkan->Delete().QueueDeleteDescriptorPool(descPool);
}
if (pushUBO) {
pushUBO->Destroy(vulkan);
delete pushUBO;
pushUBO = nullptr;
}
if (pushVertex) {
pushVertex->Destroy(vulkan);
delete pushVertex;
pushVertex = nullptr;
}
if (pushIndex) {
pushIndex->Destroy(vulkan);
delete pushIndex;
pushIndex = nullptr;
}
}
void DrawEngineVulkan::DestroyDeviceObjects() {
for (int i = 0; i < 2; i++) {
frame_[i].Destroy(vulkan_);
}
if (depalSampler_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteSampler(depalSampler_);
if (nullSampler_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteSampler(nullSampler_);
if (pipelineLayout_ != VK_NULL_HANDLE)
vkDestroyPipelineLayout(vulkan_->GetDevice(), pipelineLayout_, nullptr);
pipelineLayout_ = VK_NULL_HANDLE;
if (descriptorSetLayout_ != VK_NULL_HANDLE)
vkDestroyDescriptorSetLayout(vulkan_->GetDevice(), descriptorSetLayout_, nullptr);
descriptorSetLayout_ = VK_NULL_HANDLE;
if (nullTexture_) {
nullTexture_->Destroy();
delete nullTexture_;
nullTexture_ = nullptr;
}
}
void DrawEngineVulkan::DeviceLost() {
DestroyDeviceObjects();
DirtyAllUBOs();
}
void DrawEngineVulkan::DeviceRestore(VulkanContext *vulkan) {
vulkan_ = vulkan;
InitDeviceObjects();
}
void DrawEngineVulkan::BeginFrame() {
FrameData *frame = &frame_[curFrame_ & 1];
vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0);
frame->descSets.clear();
// First reset all buffers, then begin. This is so that Reset can free memory and Begin can allocate it,
// if growing the buffer is needed. Doing it this way will reduce fragmentation if more than one buffer
// needs to grow in the same frame. The state where many buffers are reset can also be used to
// defragment memory.
frame->pushUBO->Reset();
frame->pushVertex->Reset();
frame->pushIndex->Reset();
frame->pushUBO->Begin(vulkan_);
frame->pushVertex->Begin(vulkan_);
frame->pushIndex->Begin(vulkan_);
// TODO : Find a better place to do this.
if (!nullTexture_) {
nullTexture_ = new VulkanTexture(vulkan_);
int w = 8;
int h = 8;
nullTexture_->CreateDirect(w, h, 1, VK_FORMAT_A8B8G8R8_UNORM_PACK32, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
uint32_t bindOffset;
VkBuffer bindBuf;
uint32_t *data = (uint32_t *)frame->pushUBO->Push(w * h * 4, &bindOffset, &bindBuf);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
// data[y*w + x] = ((x ^ y) & 1) ? 0xFF808080 : 0xFF000000; // gray/black checkerboard
data[y*w + x] = 0; // black
}
}
nullTexture_->UploadMip(0, w, h, bindBuf, bindOffset, w);
nullTexture_->EndCreate();
}
DirtyAllUBOs();
}
void DrawEngineVulkan::EndFrame() {
FrameData *frame = &frame_[curFrame_ & 1];
stats_.pushUBOSpaceUsed = (int)frame->pushUBO->GetOffset();
stats_.pushVertexSpaceUsed = (int)frame->pushVertex->GetOffset();
stats_.pushIndexSpaceUsed = (int)frame->pushIndex->GetOffset();
frame->pushUBO->End();
frame->pushVertex->End();
frame->pushIndex->End();
curFrame_++;
}
void DrawEngineVulkan::SetupVertexDecoder(u32 vertType) {
SetupVertexDecoderInternal(vertType);
}
inline void DrawEngineVulkan::SetupVertexDecoderInternal(u32 vertType) {
// As the decoder depends on the UVGenMode when we use UV prescale, we simply mash it
// into the top of the verttype where there are unused bits.
const u32 vertTypeID = (vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24);
// If vtype has changed, setup the vertex decoder.
if (vertTypeID != lastVTypeID_) {
dec_ = GetVertexDecoder(vertTypeID);
lastVTypeID_ = vertTypeID;
}
}
void DrawEngineVulkan::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int *bytesRead) {
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX)
Flush(cmd_);
// TODO: Is this the right thing to do?
if (prim == GE_PRIM_KEEP_PREVIOUS) {
prim = prevPrim_ != GE_PRIM_INVALID ? prevPrim_ : GE_PRIM_POINTS;
} else {
prevPrim_ = prim;
}
SetupVertexDecoderInternal(vertType);
*bytesRead = vertexCount * dec_->VertexSize();
if ((vertexCount < 2 && prim > 0) || (vertexCount < 3 && prim > 2 && prim != GE_PRIM_RECTANGLES))
return;
DeferredDrawCall &dc = drawCalls[numDrawCalls];
dc.verts = verts;
dc.inds = inds;
dc.vertType = vertType;
dc.indexType = (vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT;
dc.prim = prim;
dc.vertexCount = vertexCount;
if (inds) {
GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound);
} else {
dc.indexLowerBound = 0;
dc.indexUpperBound = vertexCount - 1;
}
uvScale[numDrawCalls] = gstate_c.uv;
numDrawCalls++;
vertexCountInDrawCalls += vertexCount;
if (prim == GE_PRIM_RECTANGLES && (gstate.getTextureAddress(0) & 0x3FFFFFFF) == (gstate.getFrameBufAddress() & 0x3FFFFFFF)) {
// Rendertarget == texture?
if (!g_Config.bDisableSlowFramebufEffects) {
gstate_c.textureChanged |= TEXCHANGE_PARAMSONLY;
Flush(cmd_);
}
}
}
void DrawEngineVulkan::DecodeVertsStep(u8 *dest, int &i, int &decodedVerts) {
const DeferredDrawCall &dc = drawCalls[i];
indexGen.SetIndex(decodedVerts);
int indexLowerBound = dc.indexLowerBound;
int indexUpperBound = dc.indexUpperBound;
void *inds = dc.inds;
if (dc.indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
// Decode the verts and apply morphing. Simple.
dec_->DecodeVerts(dest + decodedVerts * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
decodedVerts += indexUpperBound - indexLowerBound + 1;
indexGen.AddPrim(dc.prim, dc.vertexCount);
} else {
// It's fairly common that games issue long sequences of PRIM calls, with differing
// inds pointer but the same base vertex pointer. We'd like to reuse vertices between
// these as much as possible, so we make sure here to combine as many as possible
// into one nice big drawcall, sharing data.
// 1. Look ahead to find the max index, only looking as "matching" drawcalls.
// Expand the lower and upper bounds as we go.
int lastMatch = i;
const int total = numDrawCalls;
for (int j = i + 1; j < total; ++j) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
}
// 2. Loop through the drawcalls, translating indices as we go.
switch (dc.indexType) {
case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound);
}
break;
case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16_le *)drawCalls[j].inds, indexLowerBound);
}
break;
case GE_VTYPE_IDX_32BIT >> GE_VTYPE_IDX_SHIFT:
for (int j = i; j <= lastMatch; j++) {
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u32_le *)drawCalls[j].inds, indexLowerBound);
}
break;
}
const int vertexCount = indexUpperBound - indexLowerBound + 1;
// This check is a workaround for Pangya Fantasy Golf, which sends bogus index data when switching items in "My Room" sometimes.
if (decodedVerts + vertexCount > VERTEX_BUFFER_MAX) {
return;
}
// 3. Decode that range of vertex data.
dec_->DecodeVerts(dest + decodedVerts * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
decodedVerts += vertexCount;
// 4. Advance indexgen vertex counter.
indexGen.Advance(vertexCount);
i = lastMatch;
}
}
void DrawEngineVulkan::DecodeVerts(VulkanPushBuffer *push, uint32_t *bindOffset, VkBuffer *vkbuf) {
int decodedVerts = 0;
u8 *dest = decoded;
// Figure out how much pushbuffer space we need to allocate.
if (push) {
int vertsToDecode = 0;
if (drawCalls[0].indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
vertsToDecode += dc.vertexCount;
}
} else {
// TODO: Share this computation with DecodeVertsStep?
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
int lastMatch = i;
const int total = numDrawCalls;
int indexLowerBound = dc.indexLowerBound;
int indexUpperBound = dc.indexUpperBound;
for (int j = i + 1; j < total; ++j) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
}
vertsToDecode += indexUpperBound - indexLowerBound + 1;
i = lastMatch;
}
}
dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, vkbuf);
}
const UVScale origUV = gstate_c.uv;
for (int i = 0; i < numDrawCalls; i++) {
gstate_c.uv = uvScale[i];
DecodeVertsStep(dest, i, decodedVerts); // Note that this can modify i
}
gstate_c.uv = origUV;
// Sanity check
if (indexGen.Prim() < 0) {
ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim());
// Force to points (0)
indexGen.AddPrim(GE_PRIM_POINTS, 0);
}
}
inline u32 ComputeMiniHashRange(const void *ptr, size_t sz) {
// Switch to u32 units.
const u32 *p = (const u32 *)ptr;
sz >>= 2;
if (sz > 100) {
size_t step = sz / 4;
u32 hash = 0;
for (size_t i = 0; i < sz; i += step) {
hash += DoReliableHash32(p + i, 100, 0x3A44B9C4);
}
return hash;
} else {
return p[0] + p[sz - 1];
}
}
VkDescriptorSet DrawEngineVulkan::GetDescriptorSet(VkImageView imageView, VkSampler sampler, VkBuffer base, VkBuffer light, VkBuffer bone) {
DescriptorSetKey key;
key.imageView_ = imageView;
key.sampler_ = sampler;
key.secondaryImageView_ = VK_NULL_HANDLE;
key.base_ = base;
key.light_ = light;
key.bone_ = bone;
assert(base != VK_NULL_HANDLE);
assert(light != VK_NULL_HANDLE);
assert(bone != VK_NULL_HANDLE);
FrameData *frame = &frame_[curFrame_ & 1];
auto iter = frame->descSets.find(key);
if (iter != frame->descSets.end()) {
return iter->second;
}
// Didn't find one in the frame descriptor set cache, let's make a new one.
// We wipe the cache on every frame.
VkDescriptorSet desc;
VkDescriptorSetAllocateInfo descAlloc = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
descAlloc.pNext = nullptr;
descAlloc.pSetLayouts = &descriptorSetLayout_;
descAlloc.descriptorPool = frame->descPool;
descAlloc.descriptorSetCount = 1;
VkResult result = vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc);
assert(result == VK_SUCCESS);
// We just don't write to the slots we don't care about.
VkWriteDescriptorSet writes[4];
memset(writes, 0, sizeof(writes));
// Main texture
int n = 0;
VkDescriptorImageInfo tex;
if (imageView) {
// TODO: Also support LAYOUT_GENERAL to be able to texture from framebuffers without transitioning them?
tex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tex.imageView = imageView;
tex.sampler = sampler;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TEXTURE;
writes[n].pImageInfo = &tex;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
// Skipping 2nd texture for now.
// Uniform buffer objects
VkDescriptorBufferInfo buf[3];
int count = 0;
buf[count].buffer = base;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_FS_Base);
count++;
buf[count].buffer = light;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_Lights);
count++;
buf[count].buffer = bone;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_Bones);
count++;
for (int i = 0; i < count; i++) {
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE + i;
writes[n].dstArrayElement = 0;
writes[n].pBufferInfo = &buf[i];
writes[n].dstSet = desc;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
n++;
}
vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr);
frame->descSets[key] = desc;
return desc;
}
void DrawEngineVulkan::DirtyAllUBOs() {
baseUBOOffset = 0;
lightUBOOffset = 0;
boneUBOOffset = 0;
baseBuf = VK_NULL_HANDLE;
lightBuf = VK_NULL_HANDLE;
boneBuf = VK_NULL_HANDLE;
dirtyUniforms_ = DIRTY_BASE_UNIFORMS | DIRTY_LIGHT_UNIFORMS | DIRTY_BONE_UNIFORMS;
imageView = VK_NULL_HANDLE;
sampler = VK_NULL_HANDLE;
gstate_c.textureChanged = TEXCHANGE_UPDATED;
}
//void DrawEngineVulkan::ApplyDrawStateLate() {
/*
// At this point, we know if the vertices are full alpha or not.
// TODO: Set the nearest/linear here (since we correctly know if alpha/color tests are needed)?
if (!gstate.isModeClear()) {
// TODO: Test texture?
if (fboTexNeedBind_) {
// Note that this is positions, not UVs, that we need the copy from.
framebufferManager_->BindFramebufferColor(1, nullptr, BINDFBCOLOR_MAY_COPY);
// If we are rendering at a higher resolution, linear is probably best for the dest color.
pD3Ddevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
pD3Ddevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
fboTexBound_ = true;
fboTexNeedBind_ = false;
}
}
*/
//}
// The inline wrapper in the header checks for numDrawCalls == 0d
void DrawEngineVulkan::DoFlush(VkCommandBuffer cmd) {
gpuStats.numFlushes++;
FrameData *frame = &frame_[curFrame_ & 1];
bool textureNeedsApply = false;
if (gstate_c.textureChanged != TEXCHANGE_UNCHANGED && !gstate.isModeClear() && gstate.isTextureMapEnabled()) {
textureCache_->SetTexture();
textureNeedsApply = true;
gstate_c.textureChanged = TEXCHANGE_UNCHANGED;
if (gstate_c.needShaderTexClamp) {
// We will rarely need to set this, so let's do it every time on use rather than in runloop.
// Most of the time non-framebuffer textures will be used which can be clamped themselves.
shaderManager_->DirtyUniform(DIRTY_TEXCLAMP);
}
}
GEPrimitiveType prim = prevPrim_;
bool useHWTransform = CanUseHardwareTransform(prim);
VulkanVertexShader *vshader = nullptr;
VulkanFragmentShader *fshader = nullptr;
uint32_t ibOffset = 0;
uint32_t vbOffset = 0;
if (useHWTransform) {
// We don't detect clears in this path, so here we can switch framebuffers if necessary.
int vertexCount = 0;
bool useElements = true;
// Decode directly into the pushbuffer
VkBuffer vbuf;
DecodeVerts(frame->pushVertex, &vbOffset, &vbuf);
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
if (!useElements && indexGen.PureCount()) {
vertexCount = indexGen.PureCount();
}
prim = indexGen.Prim();
bool hasColor = (lastVTypeID_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
if (textureNeedsApply) {
textureCache_->ApplyTexture(frame->pushUBO, imageView, sampler);
if (imageView == VK_NULL_HANDLE)
imageView = nullTexture_->GetImageView();
if (sampler == VK_NULL_HANDLE)
sampler = nullSampler_;
}
VulkanPipelineRasterStateKey pipelineKey;
VulkanDynamicState dynState;
ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey, dynState);
// TODO: Dirty-flag these.
vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor);
vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport);
if (dynState.useStencil) {
vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask);
vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask);
vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef);
}
if (dynState.useBlendColor) {
float bc[4];
Uint8x4ToFloat4(bc, dynState.blendColor);
vkCmdSetBlendConstants(cmd_, bc);
}
dirtyUniforms_ |= shaderManager_->UpdateUniforms();
shaderManager_->GetShaders(prim, lastVTypeID_, &vshader, &fshader, useHWTransform);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader, fshader, true);
if (!pipeline) {
// Already logged, let's bail out.
return;
}
vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw.
UpdateUBOs(frame);
VkDescriptorSet ds = GetDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf);
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets);
int stride = dec_->GetDecVtxFmt().stride;
VkDeviceSize offsets[1] = { vbOffset };
if (useElements) {
VkBuffer ibuf;
ibOffset = (uint32_t)frame->pushIndex->Push(decIndex, 2 * indexGen.VertexCount(), &ibuf);
// TODO: Avoid rebinding vertex/index buffers if the vertex size stays the same by using the offset arguments
vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets);
vkCmdBindIndexBuffer(cmd_, ibuf, ibOffset, VK_INDEX_TYPE_UINT16);
vkCmdDrawIndexed(cmd_, vertexCount, 1, 0, 0, 0);
} else {
vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets);
vkCmdDraw(cmd_, vertexCount, 1, 0, 0);
}
} else {
// Decode to "decoded"
DecodeVerts(nullptr, nullptr, nullptr);
bool hasColor = (lastVTypeID_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
// Undo the strip optimization, not supported by the SW code yet.
if (prim == GE_PRIM_TRIANGLE_STRIP)
prim = GE_PRIM_TRIANGLES;
VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount());
int numTrans = 0;
bool drawIndexed = false;
u16 *inds = decIndex;
TransformedVertex *drawBuffer = NULL;
SoftwareTransformResult result;
memset(&result, 0, sizeof(result));
SoftwareTransformParams params;
memset(&params, 0, sizeof(params));
params.decoded = decoded;
params.transformed = transformed;
params.transformedExpanded = transformedExpanded;
params.fbman = framebufferManager_;
params.texCache = textureCache_;
params.allowSeparateAlphaClear = false;
int maxIndex = indexGen.MaxIndex();
SoftwareTransform(
prim, indexGen.VertexCount(),
dec_->VertexType(), inds, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(),
maxIndex, drawBuffer, numTrans, drawIndexed, &params, &result);
// Only here, where we know whether to clear or to draw primitives, should we actually set the current framebuffer! Because that gives use the opportunity
// to use a "pre-clear" render pass, for high efficiency on tilers.
if (result.action == SW_DRAW_PRIMITIVES) {
if (textureNeedsApply) {
textureCache_->ApplyTexture(frame->pushUBO, imageView, sampler);
if (imageView == VK_NULL_HANDLE)
imageView = nullTexture_->GetImageView();
if (sampler == VK_NULL_HANDLE)
sampler = nullSampler_;
}
VulkanPipelineRasterStateKey pipelineKey;
VulkanDynamicState dynState;
ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey, dynState);
// TODO: Dirty-flag these.
vkCmdSetScissor(cmd_, 0, 1, &dynState.scissor);
vkCmdSetViewport(cmd_, 0, 1, &dynState.viewport);
if (dynState.useStencil) {
vkCmdSetStencilWriteMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilWriteMask);
vkCmdSetStencilCompareMask(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilCompareMask);
}
if (result.setStencil) {
vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, result.stencilValue);
} else if (dynState.useStencil) {
vkCmdSetStencilReference(cmd_, VK_STENCIL_FRONT_AND_BACK, dynState.stencilRef);
}
if (dynState.useBlendColor) {
float bc[4];
Uint8x4ToFloat4(bc, dynState.blendColor);
vkCmdSetBlendConstants(cmd_, bc);
}
dirtyUniforms_ |= shaderManager_->UpdateUniforms();
shaderManager_->GetShaders(prim, lastVTypeID_, &vshader, &fshader, useHWTransform);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, pipelineKey, dec_, vshader, fshader, false);
if (!pipeline) {
// Already logged, let's bail out.
return;
}
vkCmdBindPipeline(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline->pipeline); // TODO: Avoid if same as last draw.
// Even if the first draw is through-mode, make sure we at least have one copy of these uniforms buffered
UpdateUBOs(frame);
VkDescriptorSet ds = GetDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf);
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
vkCmdBindDescriptorSets(cmd_, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &ds, 3, dynamicUBOOffsets);
if (drawIndexed) {
VkBuffer vbuf, ibuf;
vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, maxIndex * sizeof(TransformedVertex), &vbuf);
ibOffset = (uint32_t)frame->pushIndex->Push(inds, sizeof(short) * numTrans, &ibuf);
VkDeviceSize offsets[1] = { vbOffset };
// TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments
vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets);
vkCmdBindIndexBuffer(cmd_, ibuf, ibOffset, VK_INDEX_TYPE_UINT16);
vkCmdDrawIndexed(cmd_, numTrans, 1, 0, 0, 0);
} else {
VkBuffer vbuf;
vbOffset = (uint32_t)frame->pushVertex->Push(drawBuffer, numTrans * sizeof(TransformedVertex), &vbuf);
VkDeviceSize offsets[1] = { vbOffset };
// TODO: Avoid rebinding if the vertex size stays the same by using the offset arguments
vkCmdBindVertexBuffers(cmd_, 0, 1, &vbuf, offsets);
vkCmdDraw(cmd_, numTrans, 1, 0, 0);
}
} else if (result.action == SW_CLEAR) {
// Note: we won't get here if the clear is alpha but not color, or color but not alpha.
// We let the framebuffer manager handle the clear. It can use renderpasses to optimize on tilers.
framebufferManager_->NotifyClear(gstate.isClearModeColorMask(), gstate.isClearModeAlphaMask(), gstate.isClearModeDepthMask(), result.color, result.depth);
int scissorX1 = gstate.getScissorX1();
int scissorY1 = gstate.getScissorY1();
int scissorX2 = gstate.getScissorX2() + 1;
int scissorY2 = gstate.getScissorY2() + 1;
framebufferManager_->SetSafeSize(scissorX2, scissorY2);
if (g_Config.bBlockTransferGPU && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) {
ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, result.color);
}
}
}
gpuStats.numDrawCalls += numDrawCalls;
gpuStats.numVertsSubmitted += vertexCountInDrawCalls;
indexGen.Reset();
numDrawCalls = 0;
vertexCountInDrawCalls = 0;
prevPrim_ = GE_PRIM_INVALID;
gstate_c.vertexFullAlpha = true;
framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason);
// Now seems as good a time as any to reset the min/max coords, which we may examine later.
gstate_c.vertBounds.minU = 512;
gstate_c.vertBounds.minV = 512;
gstate_c.vertBounds.maxU = 0;
gstate_c.vertBounds.maxV = 0;
host->GPUNotifyDraw();
}
void DrawEngineVulkan::UpdateUBOs(FrameData *frame) {
if ((dirtyUniforms_ & DIRTY_BASE_UNIFORMS) || baseBuf == VK_NULL_HANDLE) {
baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushUBO, &baseBuf);
dirtyUniforms_ &= ~DIRTY_BASE_UNIFORMS;
}
if ((dirtyUniforms_ & DIRTY_LIGHT_UNIFORMS) || lightBuf == VK_NULL_HANDLE) {
lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushUBO, &lightBuf);
dirtyUniforms_ &= ~DIRTY_LIGHT_UNIFORMS;
}
if ((dirtyUniforms_ & DIRTY_BONE_UNIFORMS) || boneBuf == VK_NULL_HANDLE) {
boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushUBO, &boneBuf);
dirtyUniforms_ &= ~DIRTY_BONE_UNIFORMS;
}
}
void DrawEngineVulkan::Resized() {
decJitCache_->Clear();
lastVTypeID_ = -1;
dec_ = NULL;
for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) {
delete iter->second;
}
decoderMap_.clear();
}
bool DrawEngineVulkan::IsCodePtrVertexDecoder(const u8 *ptr) const {
return decJitCache_->IsInSpace(ptr);
}