ppsspp/GPU/GPUCommon.cpp
2017-08-14 11:14:26 +02:00

2526 lines
82 KiB
C++

#include <algorithm>
#include <type_traits>
#include <mutex>
#include "base/timeutil.h"
#include "Common/ColorConv.h"
#include "Core/Reporting.h"
#include "GPU/GeDisasm.h"
#include "GPU/GPU.h"
#include "GPU/GPUCommon.h"
#include "GPU/GPUState.h"
#include "ChunkFile.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "Core/MemMap.h"
#include "Core/Host.h"
#include "Core/Reporting.h"
#include "Core/HLE/HLE.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/HLE/sceKernelInterrupt.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/HLE/sceGe.h"
#include "Core/Debugger/Breakpoints.h"
#include "Core/MemMapHelpers.h"
#include "GPU/Common/FramebufferCommon.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Debugger/Record.h"
const CommonCommandTableEntry commonCommandTable[] = {
// From Common. No flushing but definitely need execute.
{ GE_CMD_OFFSETADDR, FLAG_EXECUTE, 0, &GPUCommon::Execute_OffsetAddr },
{ GE_CMD_ORIGIN, FLAG_EXECUTE | FLAG_READS_PC, 0, &GPUCommon::Execute_Origin },
{ GE_CMD_JUMP, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_Jump },
{ GE_CMD_CALL, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_Call },
{ GE_CMD_RET, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_Ret },
{ GE_CMD_END, FLAG_FLUSHBEFORE | FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_End },
{ GE_CMD_VADDR, FLAG_EXECUTE, 0, &GPUCommon::Execute_Vaddr },
{ GE_CMD_IADDR, FLAG_EXECUTE, 0, &GPUCommon::Execute_Iaddr },
{ GE_CMD_BJUMP, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_BJump }, // EXECUTE
{ GE_CMD_BOUNDINGBOX, FLAG_EXECUTE, 0, &GPUCommon::Execute_BoundingBox }, // + FLUSHBEFORE when we implement... or not, do we need to?
// These two are actually processed in CMD_END. Not sure if FLAG_FLUSHBEFORE matters.
{ GE_CMD_SIGNAL, FLAG_FLUSHBEFORE },
{ GE_CMD_FINISH, FLAG_FLUSHBEFORE },
// Changes that dirty the framebuffer
{ GE_CMD_FRAMEBUFPTR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_FRAMEBUFWIDTH, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_FRAMEBUFPIXFORMAT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_ZBUFPTR, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_ZBUFWIDTH, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_FOGCOLOR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FOGCOLOR },
{ GE_CMD_FOG1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FOGCOEF },
{ GE_CMD_FOG2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FOGCOEF },
// These affect the fragment shader so need flushing.
{ GE_CMD_CLEARMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE},
{ GE_CMD_TEXTUREMAPENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_FOGENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_TEXMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSHADELS, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_SHADEMODE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_TEXFUNC, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_COLORTEST, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_ALPHATESTENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_COLORTESTENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_COLORTESTMASK, FLAG_FLUSHBEFOREONCHANGE, DIRTY_ALPHACOLORMASK },
// These change the vertex shader so need flushing.
{ GE_CMD_REVERSENORMAL, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTINGENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTENABLE0, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTENABLE1, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTENABLE2, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTENABLE3, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTTYPE0, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTTYPE1, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTTYPE2, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_LIGHTTYPE3, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_MATERIALUPDATE, FLAG_FLUSHBEFOREONCHANGE },
// These change both shaders so need flushing.
{ GE_CMD_LIGHTMODE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_TEXFILTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXWRAP, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
// Uniform changes
{ GE_CMD_ALPHATEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_ALPHACOLORREF | DIRTY_ALPHACOLORMASK },
{ GE_CMD_COLORREF, FLAG_FLUSHBEFOREONCHANGE, DIRTY_ALPHACOLORREF },
{ GE_CMD_TEXENVCOLOR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXENV },
// Simple render state changes. Handled in StateMapping.cpp.
{ GE_CMD_OFFSETX, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_OFFSETY, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_CULL, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_CULLFACEENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_DITHERENABLE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_STENCILOP, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_STENCILTESTENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_ALPHABLENDENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_BLENDMODE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_BLENDFIXEDA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_BLENDFIXEDB, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_MASKRGB, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_MASKALPHA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_ZTEST, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_ZTESTENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_ZWRITEDISABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHSTENCIL_STATE },
{ GE_CMD_LOGICOP, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_LOGICOPENABLE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_BLEND_STATE },
{ GE_CMD_TEXMAPMODE, FLAG_FLUSHBEFOREONCHANGE, 0 },
{ GE_CMD_TEXSCALEU, FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_TexScaleU },
{ GE_CMD_TEXSCALEV, FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_TexScaleV },
{ GE_CMD_TEXOFFSETU, FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_TexOffsetU },
{ GE_CMD_TEXOFFSETV, FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_TexOffsetV },
// TEXSIZE0 is handled by each backend.
{ GE_CMD_TEXSIZE1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE4, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE5, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE6, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXSIZE7, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXFORMAT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_IMAGE },
{ GE_CMD_TEXLEVEL, FLAG_EXECUTEONCHANGE, DIRTY_TEXTURE_PARAMS, &GPUCommon::Execute_TexLevel },
{ GE_CMD_TEXLODSLOPE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_IMAGE | DIRTY_UVSCALEOFFSET },
{ GE_CMD_TEXADDR1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR4, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR5, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR6, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXADDR7, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_IMAGE },
{ GE_CMD_TEXBUFWIDTH1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH4, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH5, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH6, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
{ GE_CMD_TEXBUFWIDTH7, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
// These must flush on change, so that LoadClut doesn't have to always flush.
{ GE_CMD_CLUTADDR, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_CLUTADDRUPPER, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_CLUTFORMAT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_TEXTURE_PARAMS },
// Morph weights. TODO: Remove precomputation?
{ GE_CMD_MORPHWEIGHT0, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT1, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT2, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT3, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT4, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT5, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT6, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
{ GE_CMD_MORPHWEIGHT7, FLAG_FLUSHBEFOREONCHANGE | FLAG_EXECUTEONCHANGE, 0, &GPUCommon::Execute_MorphWeight },
// Control spline/bezier patches. Don't really require flushing as such, but meh.
{ GE_CMD_PATCHDIVISION, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_PATCHPRIMITIVE, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_PATCHFACING, FLAG_FLUSHBEFOREONCHANGE },
{ GE_CMD_PATCHCULLENABLE, FLAG_FLUSHBEFOREONCHANGE },
// Can probably ignore this one as we don't support AA lines.
{ GE_CMD_ANTIALIASENABLE, FLAG_FLUSHBEFOREONCHANGE },
// Viewport.
{ GE_CMD_VIEWPORTXSCALE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_VIEWPORTYSCALE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_VIEWPORTXCENTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_VIEWPORTYCENTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_VIEWPORTZSCALE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_DEPTHRANGE | DIRTY_PROJMATRIX },
{ GE_CMD_VIEWPORTZCENTER, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS | DIRTY_DEPTHRANGE | DIRTY_PROJMATRIX },
{ GE_CMD_CLIPENABLE, FLAG_FLUSHBEFOREONCHANGE },
// Z clip
{ GE_CMD_MINZ, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHRANGE },
{ GE_CMD_MAXZ, FLAG_FLUSHBEFOREONCHANGE, DIRTY_DEPTHRANGE },
// Region
{ GE_CMD_REGION1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_REGION2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
// Scissor
{ GE_CMD_SCISSOR1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
{ GE_CMD_SCISSOR2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_FRAMEBUF | DIRTY_TEXTURE_PARAMS },
// Lighting base colors
{ GE_CMD_AMBIENTCOLOR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_AMBIENT },
{ GE_CMD_AMBIENTALPHA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_AMBIENT },
{ GE_CMD_MATERIALDIFFUSE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATDIFFUSE },
{ GE_CMD_MATERIALEMISSIVE, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATEMISSIVE },
{ GE_CMD_MATERIALAMBIENT, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATAMBIENTALPHA },
{ GE_CMD_MATERIALALPHA, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATAMBIENTALPHA },
{ GE_CMD_MATERIALSPECULAR, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATSPECULAR },
{ GE_CMD_MATERIALSPECULARCOEF, FLAG_FLUSHBEFOREONCHANGE, DIRTY_MATSPECULAR },
// Light parameters
{ GE_CMD_LX0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LY0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LZ0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LX1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LY1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LZ1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LX2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LY2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LZ2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LX3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LY3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LZ3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDX0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDY0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDZ0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDX1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDY1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDZ1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDX2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDY2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDZ2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDX3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDY3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDZ3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKA0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKB0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKA1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKB1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKA2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKB2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKA3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKB3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKS0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKS1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKS2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKS3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LKO0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LKO1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LKO2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LKO3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LAC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LDC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LSC0, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT0 },
{ GE_CMD_LAC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LDC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LSC1, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT1 },
{ GE_CMD_LAC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LDC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LSC2, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT2 },
{ GE_CMD_LAC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LDC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
{ GE_CMD_LSC3, FLAG_FLUSHBEFOREONCHANGE, DIRTY_LIGHT3 },
// Ignored commands
{ GE_CMD_TEXFLUSH, 0 },
{ GE_CMD_TEXSYNC, 0 },
// These are just nop or part of other later commands.
{ GE_CMD_NOP, 0 },
{ GE_CMD_BASE, 0 },
{ GE_CMD_TRANSFERSRC, 0 },
{ GE_CMD_TRANSFERSRCW, 0 },
{ GE_CMD_TRANSFERDST, 0 },
{ GE_CMD_TRANSFERDSTW, 0 },
{ GE_CMD_TRANSFERSRCPOS, 0 },
{ GE_CMD_TRANSFERDSTPOS, 0 },
{ GE_CMD_TRANSFERSIZE, 0 },
// We don't use the dither table.
{ GE_CMD_DITH0 },
{ GE_CMD_DITH1 },
{ GE_CMD_DITH2 },
{ GE_CMD_DITH3 },
// These handle their own flushing.
{ GE_CMD_WORLDMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_WorldMtxNum },
{ GE_CMD_WORLDMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommon::Execute_WorldMtxData },
{ GE_CMD_VIEWMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_ViewMtxNum },
{ GE_CMD_VIEWMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommon::Execute_ViewMtxData },
{ GE_CMD_PROJMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_ProjMtxNum },
{ GE_CMD_PROJMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommon::Execute_ProjMtxData },
{ GE_CMD_TGENMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_TgenMtxNum },
{ GE_CMD_TGENMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommon::Execute_TgenMtxData },
{ GE_CMD_BONEMATRIXNUMBER, FLAG_EXECUTE | FLAG_READS_PC | FLAG_WRITES_PC, 0, &GPUCommon::Execute_BoneMtxNum },
{ GE_CMD_BONEMATRIXDATA, FLAG_EXECUTE, 0, &GPUCommon::Execute_BoneMtxData },
// Vertex Screen/Texture/Color
{ GE_CMD_VSCX, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VSCY, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VSCZ, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VTCS, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VTCT, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VTCQ, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VCV, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VAP, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VFC, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_VSCV, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
// "Missing" commands (gaps in the sequence)
{ GE_CMD_UNKNOWN_03, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_0D, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_11, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_29, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_34, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_35, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_39, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_4E, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_4F, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_52, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_59, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_5A, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_B6, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_B7, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_D1, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_ED, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_EF, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FA, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FB, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FC, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FD, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
{ GE_CMD_UNKNOWN_FE, FLAG_EXECUTE, 0, &GPUCommon::Execute_Unknown },
// Appears to be debugging related or something? Hit a lot in GoW.
{ GE_CMD_NOP_FF, 0 },
};
size_t commonCommandTableSize = ARRAY_SIZE(commonCommandTable);
void GPUCommon::Flush() {
drawEngineCommon_->DispatchFlush();
}
GPUCommon::GPUCommon(GraphicsContext *gfxCtx, Draw::DrawContext *draw) :
dumpNextFrame_(false),
dumpThisFrame_(false),
framebufferManager_(nullptr),
resized_(false),
gfxCtx_(gfxCtx),
draw_(draw)
{
// This assert failed on GCC x86 32-bit (but not MSVC 32-bit!) before adding the
// "padding" field at the end. This is important for save state compatibility.
// The compiler was not rounding the struct size up to an 8 byte boundary, which
// you'd expect due to the int64 field, but the Linux ABI apparently does not require that.
static_assert(sizeof(DisplayList) == 456, "Bad DisplayList size");
listLock.set_enabled(g_Config.bSeparateCPUThread);
Reinitialize();
SetupColorConv();
SetThreadEnabled(g_Config.bSeparateCPUThread);
gstate.Reset();
gstate_c.Reset();
gpuStats.Reset();
}
GPUCommon::~GPUCommon() {
}
void GPUCommon::BeginHostFrame() {
ReapplyGfxState();
// TODO: Assume config may have changed - maybe move to resize.
gstate_c.Dirty(DIRTY_ALL);
}
void GPUCommon::EndHostFrame() {
}
void GPUCommon::InitClear() {
ScheduleEvent(GPU_EVENT_INIT_CLEAR);
}
void GPUCommon::CopyDisplayToOutput() {
ScheduleEvent(GPU_EVENT_COPY_DISPLAY_TO_OUTPUT);
}
void GPUCommon::Reinitialize() {
easy_guard guard(listLock);
memset(dls, 0, sizeof(dls));
for (int i = 0; i < DisplayListMaxCount; ++i) {
dls[i].state = PSP_GE_DL_STATE_NONE;
dls[i].waitTicks = 0;
}
nextListID = 0;
currentList = NULL;
isbreak = false;
drawCompleteTicks = 0;
busyTicks = 0;
timeSpentStepping_ = 0.0;
interruptsEnabled_ = true;
UpdateTickEstimate(0);
ScheduleEvent(GPU_EVENT_REINITIALIZE);
}
int GPUCommon::EstimatePerVertexCost() {
// TODO: This is transform cost, also account for rasterization cost somehow... although it probably
// runs in parallel with transform.
// Also, this is all pure guesswork. If we can find a way to do measurements, that would be great.
// GTA wants a low value to run smooth, GoW wants a high value (otherwise it thinks things
// went too fast and starts doing all the work over again).
int cost = 20;
if (gstate.isLightingEnabled()) {
cost += 10;
for (int i = 0; i < 4; i++) {
if (gstate.isLightChanEnabled(i))
cost += 10;
}
}
if (gstate.getUVGenMode() != GE_TEXMAP_TEXTURE_COORDS) {
cost += 20;
}
int morphCount = gstate.getNumMorphWeights();
if (morphCount > 1) {
cost += 5 * morphCount;
}
return cost;
}
void GPUCommon::PopDLQueue() {
easy_guard guard(listLock);
if(!dlQueue.empty()) {
dlQueue.pop_front();
if(!dlQueue.empty()) {
bool running = currentList->state == PSP_GE_DL_STATE_RUNNING;
currentList = &dls[dlQueue.front()];
if (running)
currentList->state = PSP_GE_DL_STATE_RUNNING;
} else {
currentList = NULL;
}
}
}
bool GPUCommon::BusyDrawing() {
u32 state = DrawSync(1);
if (state == PSP_GE_LIST_DRAWING || state == PSP_GE_LIST_STALLING) {
easy_guard guard(listLock);
if (currentList && currentList->state != PSP_GE_DL_STATE_PAUSED) {
return true;
}
}
return false;
}
void GPUCommon::Resized() {
resized_ = true;
}
void GPUCommon::DumpNextFrame() {
dumpNextFrame_ = true;
}
u32 GPUCommon::DrawSync(int mode) {
if (ThreadEnabled()) {
// Sync first, because the CPU is usually faster than the emulated GPU.
SyncThread();
}
easy_guard guard(listLock);
if (mode < 0 || mode > 1)
return SCE_KERNEL_ERROR_INVALID_MODE;
if (mode == 0) {
if (!__KernelIsDispatchEnabled()) {
return SCE_KERNEL_ERROR_CAN_NOT_WAIT;
}
if (__IsInInterrupt()) {
return SCE_KERNEL_ERROR_ILLEGAL_CONTEXT;
}
if (drawCompleteTicks > CoreTiming::GetTicks()) {
__GeWaitCurrentThread(GPU_SYNC_DRAW, 1, "GeDrawSync");
} else {
for (int i = 0; i < DisplayListMaxCount; ++i) {
if (dls[i].state == PSP_GE_DL_STATE_COMPLETED) {
dls[i].state = PSP_GE_DL_STATE_NONE;
}
}
}
return 0;
}
// If there's no current list, it must be complete.
DisplayList *top = NULL;
for (auto it = dlQueue.begin(), end = dlQueue.end(); it != end; ++it) {
if (dls[*it].state != PSP_GE_DL_STATE_COMPLETED) {
top = &dls[*it];
break;
}
}
if (!top || top->state == PSP_GE_DL_STATE_COMPLETED)
return PSP_GE_LIST_COMPLETED;
if (currentList->pc == currentList->stall)
return PSP_GE_LIST_STALLING;
return PSP_GE_LIST_DRAWING;
}
void GPUCommon::CheckDrawSync() {
easy_guard guard(listLock);
if (dlQueue.empty()) {
for (int i = 0; i < DisplayListMaxCount; ++i)
dls[i].state = PSP_GE_DL_STATE_NONE;
}
}
int GPUCommon::ListSync(int listid, int mode) {
if (ThreadEnabled()) {
// Sync first, because the CPU is usually faster than the emulated GPU.
SyncThread();
}
easy_guard guard(listLock);
if (listid < 0 || listid >= DisplayListMaxCount)
return SCE_KERNEL_ERROR_INVALID_ID;
if (mode < 0 || mode > 1)
return SCE_KERNEL_ERROR_INVALID_MODE;
DisplayList& dl = dls[listid];
if (mode == 1) {
switch (dl.state) {
case PSP_GE_DL_STATE_QUEUED:
if (dl.interrupted)
return PSP_GE_LIST_PAUSED;
return PSP_GE_LIST_QUEUED;
case PSP_GE_DL_STATE_RUNNING:
if (dl.pc == dl.stall)
return PSP_GE_LIST_STALLING;
return PSP_GE_LIST_DRAWING;
case PSP_GE_DL_STATE_COMPLETED:
return PSP_GE_LIST_COMPLETED;
case PSP_GE_DL_STATE_PAUSED:
return PSP_GE_LIST_PAUSED;
default:
return SCE_KERNEL_ERROR_INVALID_ID;
}
}
if (!__KernelIsDispatchEnabled()) {
return SCE_KERNEL_ERROR_CAN_NOT_WAIT;
}
if (__IsInInterrupt()) {
return SCE_KERNEL_ERROR_ILLEGAL_CONTEXT;
}
if (dl.waitTicks > CoreTiming::GetTicks()) {
__GeWaitCurrentThread(GPU_SYNC_LIST, listid, "GeListSync");
}
return PSP_GE_LIST_COMPLETED;
}
int GPUCommon::GetStack(int index, u32 stackPtr) {
easy_guard guard(listLock);
if (currentList == NULL) {
// Seems like it doesn't return an error code?
return 0;
}
if (currentList->stackptr <= index) {
return SCE_KERNEL_ERROR_INVALID_INDEX;
}
if (index >= 0) {
auto stack = PSPPointer<u32>::Create(stackPtr);
if (stack.IsValid()) {
auto entry = currentList->stack[index];
// Not really sure what most of these values are.
stack[0] = 0;
stack[1] = entry.pc + 4;
stack[2] = entry.offsetAddr;
stack[7] = entry.baseAddr;
}
}
return currentList->stackptr;
}
u32 GPUCommon::EnqueueList(u32 listpc, u32 stall, int subIntrBase, PSPPointer<PspGeListArgs> args, bool head) {
easy_guard guard(listLock);
// TODO Check the stack values in missing arg and ajust the stack depth
// Check alignment
// TODO Check the context and stack alignement too
if (((listpc | stall) & 3) != 0)
return SCE_KERNEL_ERROR_INVALID_POINTER;
int id = -1;
u64 currentTicks = CoreTiming::GetTicks();
u32_le stackAddr = args.IsValid() ? args->stackAddr : 0;
// Check compatibility
if (sceKernelGetCompiledSdkVersion() > 0x01FFFFFF) {
//numStacks = 0;
//stack = NULL;
for (int i = 0; i < DisplayListMaxCount; ++i) {
if (dls[i].state != PSP_GE_DL_STATE_NONE && dls[i].state != PSP_GE_DL_STATE_COMPLETED) {
// Logically, if the CPU has not interrupted yet, it hasn't seen the latest pc either.
// Exit enqueues right after an END, which fails without ignoring pendingInterrupt lists.
if (dls[i].pc == listpc && !dls[i].pendingInterrupt) {
ERROR_LOG(G3D, "sceGeListEnqueue: can't enqueue, list address %08X already used", listpc);
return 0x80000021;
} else if (stackAddr != 0 && dls[i].stackAddr == stackAddr && !dls[i].pendingInterrupt) {
ERROR_LOG(G3D, "sceGeListEnqueue: can't enqueue, stack address %08X already used", stackAddr);
return 0x80000021;
}
}
}
}
// TODO Check if list stack dls[i].stack already used then return 0x80000021 as above
for (int i = 0; i < DisplayListMaxCount; ++i) {
int possibleID = (i + nextListID) % DisplayListMaxCount;
auto possibleList = dls[possibleID];
if (possibleList.pendingInterrupt) {
continue;
}
if (possibleList.state == PSP_GE_DL_STATE_NONE) {
id = possibleID;
break;
}
if (possibleList.state == PSP_GE_DL_STATE_COMPLETED && possibleList.waitTicks < currentTicks) {
id = possibleID;
}
}
if (id < 0) {
ERROR_LOG_REPORT(G3D, "No DL ID available to enqueue");
for (auto it = dlQueue.begin(); it != dlQueue.end(); ++it) {
DisplayList &dl = dls[*it];
DEBUG_LOG(G3D, "DisplayList %d status %d pc %08x stall %08x", *it, dl.state, dl.pc, dl.stall);
}
return SCE_KERNEL_ERROR_OUT_OF_MEMORY;
}
nextListID = id + 1;
DisplayList &dl = dls[id];
dl.id = id;
dl.startpc = listpc & 0x0FFFFFFF;
dl.pc = listpc & 0x0FFFFFFF;
dl.stall = stall & 0x0FFFFFFF;
dl.subIntrBase = std::max(subIntrBase, -1);
dl.stackptr = 0;
dl.signal = PSP_GE_SIGNAL_NONE;
dl.interrupted = false;
dl.waitTicks = (u64)-1;
dl.interruptsEnabled = interruptsEnabled_;
dl.started = false;
dl.offsetAddr = 0;
dl.bboxResult = false;
dl.stackAddr = stackAddr;
if (args.IsValid() && args->context.IsValid())
dl.context = args->context;
else
dl.context = 0;
if (head) {
if (currentList) {
if (currentList->state != PSP_GE_DL_STATE_PAUSED)
return SCE_KERNEL_ERROR_INVALID_VALUE;
currentList->state = PSP_GE_DL_STATE_QUEUED;
}
dl.state = PSP_GE_DL_STATE_PAUSED;
currentList = &dl;
dlQueue.push_front(id);
} else if (currentList) {
dl.state = PSP_GE_DL_STATE_QUEUED;
dlQueue.push_back(id);
} else {
dl.state = PSP_GE_DL_STATE_RUNNING;
currentList = &dl;
dlQueue.push_front(id);
drawCompleteTicks = (u64)-1;
// TODO save context when starting the list if param is set
guard.unlock();
ProcessDLQueue();
}
return id;
}
u32 GPUCommon::DequeueList(int listid) {
easy_guard guard(listLock);
if (listid < 0 || listid >= DisplayListMaxCount || dls[listid].state == PSP_GE_DL_STATE_NONE)
return SCE_KERNEL_ERROR_INVALID_ID;
auto &dl = dls[listid];
if (dl.started)
return SCE_KERNEL_ERROR_BUSY;
dl.state = PSP_GE_DL_STATE_NONE;
if (listid == dlQueue.front())
PopDLQueue();
else
dlQueue.remove(listid);
dl.waitTicks = 0;
__GeTriggerWait(GPU_SYNC_LIST, listid);
CheckDrawSync();
return 0;
}
u32 GPUCommon::UpdateStall(int listid, u32 newstall) {
easy_guard guard(listLock);
if (listid < 0 || listid >= DisplayListMaxCount || dls[listid].state == PSP_GE_DL_STATE_NONE)
return SCE_KERNEL_ERROR_INVALID_ID;
auto &dl = dls[listid];
if (dl.state == PSP_GE_DL_STATE_COMPLETED)
return SCE_KERNEL_ERROR_ALREADY;
dl.stall = newstall & 0x0FFFFFFF;
guard.unlock();
ProcessDLQueue();
return 0;
}
u32 GPUCommon::Continue() {
easy_guard guard(listLock);
if (!currentList)
return 0;
if (currentList->state == PSP_GE_DL_STATE_PAUSED)
{
if (!isbreak)
{
// TODO: Supposedly this returns SCE_KERNEL_ERROR_BUSY in some case, previously it had
// currentList->signal == PSP_GE_SIGNAL_HANDLER_PAUSE, but it doesn't reproduce.
currentList->state = PSP_GE_DL_STATE_RUNNING;
currentList->signal = PSP_GE_SIGNAL_NONE;
// TODO Restore context of DL is necessary
// TODO Restore BASE
// We have a list now, so it's not complete.
drawCompleteTicks = (u64)-1;
}
else
currentList->state = PSP_GE_DL_STATE_QUEUED;
}
else if (currentList->state == PSP_GE_DL_STATE_RUNNING)
{
if (sceKernelGetCompiledSdkVersion() >= 0x02000000)
return 0x80000020;
return -1;
}
else
{
if (sceKernelGetCompiledSdkVersion() >= 0x02000000)
return 0x80000004;
return -1;
}
guard.unlock();
ProcessDLQueue();
return 0;
}
u32 GPUCommon::Break(int mode) {
easy_guard guard(listLock);
if (mode < 0 || mode > 1)
return SCE_KERNEL_ERROR_INVALID_MODE;
if (!currentList)
return SCE_KERNEL_ERROR_ALREADY;
if (mode == 1)
{
// Clear the queue
dlQueue.clear();
for (int i = 0; i < DisplayListMaxCount; ++i)
{
dls[i].state = PSP_GE_DL_STATE_NONE;
dls[i].signal = PSP_GE_SIGNAL_NONE;
}
nextListID = 0;
currentList = NULL;
return 0;
}
if (currentList->state == PSP_GE_DL_STATE_NONE || currentList->state == PSP_GE_DL_STATE_COMPLETED)
{
if (sceKernelGetCompiledSdkVersion() >= 0x02000000)
return 0x80000004;
return -1;
}
if (currentList->state == PSP_GE_DL_STATE_PAUSED)
{
if (sceKernelGetCompiledSdkVersion() > 0x02000010)
{
if (currentList->signal == PSP_GE_SIGNAL_HANDLER_PAUSE)
{
ERROR_LOG_REPORT(G3D, "sceGeBreak: can't break signal-pausing list");
}
else
return SCE_KERNEL_ERROR_ALREADY;
}
return SCE_KERNEL_ERROR_BUSY;
}
if (currentList->state == PSP_GE_DL_STATE_QUEUED)
{
currentList->state = PSP_GE_DL_STATE_PAUSED;
return currentList->id;
}
// TODO Save BASE
// TODO Adjust pc to be just before SIGNAL/END
// TODO: Is this right?
if (currentList->signal == PSP_GE_SIGNAL_SYNC)
currentList->pc += 8;
currentList->interrupted = true;
currentList->state = PSP_GE_DL_STATE_PAUSED;
currentList->signal = PSP_GE_SIGNAL_HANDLER_SUSPEND;
isbreak = true;
return currentList->id;
}
void GPUCommon::NotifySteppingEnter() {
if (coreCollectDebugStats) {
time_update();
timeSteppingStarted_ = time_now_d();
}
}
void GPUCommon::NotifySteppingExit() {
if (coreCollectDebugStats) {
if (timeSteppingStarted_ <= 0.0) {
ERROR_LOG(G3D, "Mismatched stepping enter/exit.");
}
time_update();
timeSpentStepping_ += time_now_d() - timeSteppingStarted_;
timeSteppingStarted_ = 0.0;
}
}
bool GPUCommon::InterpretList(DisplayList &list) {
// Initialized to avoid a race condition with bShowDebugStats changing.
double start = 0.0;
if (coreCollectDebugStats) {
time_update();
start = time_now_d();
}
easy_guard guard(listLock);
if (list.state == PSP_GE_DL_STATE_PAUSED)
return false;
currentList = &list;
if (!list.started && list.context.IsValid()) {
gstate.Save(list.context);
}
list.started = true;
gstate_c.offsetAddr = list.offsetAddr;
if (!Memory::IsValidAddress(list.pc)) {
ERROR_LOG_REPORT(G3D, "DL PC = %08x WTF!!!!", list.pc);
return true;
}
cycleLastPC = list.pc;
cyclesExecuted += 60;
downcount = list.stall == 0 ? 0x0FFFFFFF : (list.stall - list.pc) / 4;
list.state = PSP_GE_DL_STATE_RUNNING;
list.interrupted = false;
gpuState = list.pc == list.stall ? GPUSTATE_STALL : GPUSTATE_RUNNING;
guard.unlock();
debugRecording_ = GPURecord::IsActive();
const bool useDebugger = host->GPUDebuggingActive() || debugRecording_;
const bool useFastRunLoop = !dumpThisFrame_ && !useDebugger;
while (gpuState == GPUSTATE_RUNNING) {
{
easy_guard innerGuard(listLock);
if (list.pc == list.stall) {
gpuState = GPUSTATE_STALL;
downcount = 0;
}
}
if (useFastRunLoop) {
FastRunLoop(list);
} else {
SlowRunLoop(list);
}
{
easy_guard innerGuard(listLock);
downcount = list.stall == 0 ? 0x0FFFFFFF : (list.stall - list.pc) / 4;
if (gpuState == GPUSTATE_STALL && list.stall != list.pc) {
// Unstalled.
gpuState = GPUSTATE_RUNNING;
}
}
}
FinishDeferred();
// We haven't run the op at list.pc, so it shouldn't count.
if (cycleLastPC != list.pc) {
UpdatePC(list.pc - 4, list.pc);
}
list.offsetAddr = gstate_c.offsetAddr;
if (coreCollectDebugStats) {
time_update();
double total = time_now_d() - start - timeSpentStepping_;
hleSetSteppingTime(timeSpentStepping_);
timeSpentStepping_ = 0.0;
gpuStats.msProcessingDisplayLists += total;
}
return gpuState == GPUSTATE_DONE || gpuState == GPUSTATE_ERROR;
}
void GPUCommon::BeginFrame() {
ScheduleEvent(GPU_EVENT_BEGIN_FRAME);
}
void GPUCommon::BeginFrameInternal() {
if (dumpNextFrame_) {
NOTICE_LOG(G3D, "DUMPING THIS FRAME");
dumpThisFrame_ = true;
dumpNextFrame_ = false;
} else if (dumpThisFrame_) {
dumpThisFrame_ = false;
}
GPURecord::NotifyFrame();
}
void GPUCommon::SlowRunLoop(DisplayList &list)
{
const bool dumpThisFrame = dumpThisFrame_;
while (downcount > 0)
{
host->GPUNotifyCommand(list.pc);
GPURecord::NotifyCommand(list.pc);
u32 op = Memory::ReadUnchecked_U32(list.pc);
u32 cmd = op >> 24;
u32 diff = op ^ gstate.cmdmem[cmd];
PreExecuteOp(op, diff);
if (dumpThisFrame) {
char temp[256];
u32 prev;
if (Memory::IsValidAddress(list.pc - 4)) {
prev = Memory::ReadUnchecked_U32(list.pc - 4);
} else {
prev = 0;
}
GeDisassembleOp(list.pc, op, prev, temp, 256);
NOTICE_LOG(G3D, "%08x: %s", op, temp);
}
gstate.cmdmem[cmd] = op;
ExecuteOp(op, diff);
list.pc += 4;
--downcount;
}
}
// The newPC parameter is used for jumps, we don't count cycles between.
void GPUCommon::UpdatePC(u32 currentPC, u32 newPC) {
// Rough estimate, 2 CPU ticks (it's double the clock rate) per GPU instruction.
u32 executed = (currentPC - cycleLastPC) / 4;
cyclesExecuted += 2 * executed;
cycleLastPC = newPC;
if (coreCollectDebugStats) {
gpuStats.otherGPUCycles += 2 * executed;
gpuStats.gpuCommandsAtCallLevel[std::min(currentList->stackptr, 3)] += executed;
}
// Exit the runloop and recalculate things. This happens a lot in some games.
// No need to lock, this function is always called under listLock.
if (currentList)
downcount = currentList->stall == 0 ? 0x0FFFFFFF : (currentList->stall - newPC) / 4;
else
downcount = 0;
}
void GPUCommon::ReapplyGfxState() {
if (IsOnSeparateCPUThread()) {
ScheduleEvent(GPU_EVENT_REAPPLY_GFX_STATE);
} else {
ReapplyGfxStateInternal();
}
}
void GPUCommon::ReapplyGfxStateInternal() {
// The commands are embedded in the command memory so we can just reexecute the words. Convenient.
// To be safe we pass 0xFFFFFFFF as the diff.
for (int i = GE_CMD_VERTEXTYPE; i < GE_CMD_BONEMATRIXNUMBER; i++) {
if (i != GE_CMD_ORIGIN && i != GE_CMD_OFFSETADDR) {
ExecuteOp(gstate.cmdmem[i], 0xFFFFFFFF);
}
}
// Can't write to bonematrixnumber here
for (int i = GE_CMD_MORPHWEIGHT0; i <= GE_CMD_PATCHFACING; i++) {
ExecuteOp(gstate.cmdmem[i], 0xFFFFFFFF);
}
// There are a few here in the middle that we shouldn't execute...
for (int i = GE_CMD_VIEWPORTXSCALE; i < GE_CMD_TRANSFERSTART; i++) {
ExecuteOp(gstate.cmdmem[i], 0xFFFFFFFF);
}
// Let's just skip the transfer size stuff, it's just values.
}
inline void GPUCommon::UpdateState(GPURunState state) {
gpuState = state;
if (state != GPUSTATE_RUNNING)
downcount = 0;
}
void GPUCommon::ProcessEvent(GPUEvent ev) {
switch (ev.type) {
case GPU_EVENT_PROCESS_QUEUE:
ProcessDLQueueInternal();
break;
case GPU_EVENT_REAPPLY_GFX_STATE:
ReapplyGfxStateInternal();
break;
case GPU_EVENT_INIT_CLEAR:
InitClearInternal();
break;
case GPU_EVENT_BEGIN_FRAME:
BeginFrameInternal();
break;
case GPU_EVENT_COPY_DISPLAY_TO_OUTPUT:
CopyDisplayToOutputInternal();
break;
case GPU_EVENT_INVALIDATE_CACHE:
InvalidateCacheInternal(ev.invalidate_cache.addr, ev.invalidate_cache.size, ev.invalidate_cache.type);
break;
case GPU_EVENT_FB_MEMCPY:
PerformMemoryCopyInternal(ev.fb_memcpy.dst, ev.fb_memcpy.src, ev.fb_memcpy.size);
break;
case GPU_EVENT_FB_MEMSET:
PerformMemorySetInternal(ev.fb_memset.dst, ev.fb_memset.v, ev.fb_memset.size);
break;
case GPU_EVENT_FB_STENCIL_UPLOAD:
PerformStencilUploadInternal(ev.fb_stencil_upload.dst, ev.fb_stencil_upload.size);
break;
case GPU_EVENT_REINITIALIZE:
break;
default:
ERROR_LOG_REPORT(G3D, "Unexpected GPU event type: %d", (int)ev);
break;
}
}
int GPUCommon::GetNextListIndex() {
easy_guard guard(listLock);
auto iter = dlQueue.begin();
if (iter != dlQueue.end()) {
return *iter;
} else {
return -1;
}
}
bool GPUCommon::ProcessDLQueue() {
ScheduleEvent(GPU_EVENT_PROCESS_QUEUE);
return true;
}
void GPUCommon::ProcessDLQueueInternal() {
startingTicks = CoreTiming::GetTicks();
cyclesExecuted = 0;
UpdateTickEstimate(std::max(busyTicks, startingTicks + cyclesExecuted));
// Seems to be correct behaviour to process the list anyway?
if (startingTicks < busyTicks) {
DEBUG_LOG(G3D, "Can't execute a list yet, still busy for %lld ticks", busyTicks - startingTicks);
//return;
}
for (int listIndex = GetNextListIndex(); listIndex != -1; listIndex = GetNextListIndex()) {
DisplayList &l = dls[listIndex];
DEBUG_LOG(G3D, "Starting DL execution at %08x - stall = %08x", l.pc, l.stall);
if (!InterpretList(l)) {
return;
} else {
easy_guard guard(listLock);
// Some other list could've taken the spot while we dilly-dallied around.
if (l.state != PSP_GE_DL_STATE_QUEUED) {
// At the end, we can remove it from the queue and continue.
dlQueue.erase(std::remove(dlQueue.begin(), dlQueue.end(), listIndex), dlQueue.end());
}
UpdateTickEstimate(std::max(busyTicks, startingTicks + cyclesExecuted));
}
}
easy_guard guard(listLock);
currentList = NULL;
drawCompleteTicks = startingTicks + cyclesExecuted;
busyTicks = std::max(busyTicks, drawCompleteTicks);
__GeTriggerSync(GPU_SYNC_DRAW, 1, drawCompleteTicks);
// Since the event is in CoreTiming, we're in sync. Just set 0 now.
UpdateTickEstimate(0);
}
void GPUCommon::PreExecuteOp(u32 op, u32 diff) {
// Nothing to do
}
void GPUCommon::Execute_OffsetAddr(u32 op, u32 diff) {
gstate_c.offsetAddr = op << 8;
}
void GPUCommon::Execute_Vaddr(u32 op, u32 diff) {
gstate_c.vertexAddr = gstate_c.getRelativeAddress(op & 0x00FFFFFF);
}
void GPUCommon::Execute_Iaddr(u32 op, u32 diff) {
gstate_c.indexAddr = gstate_c.getRelativeAddress(op & 0x00FFFFFF);
}
void GPUCommon::Execute_Origin(u32 op, u32 diff) {
easy_guard guard(listLock);
gstate_c.offsetAddr = currentList->pc;
}
void GPUCommon::Execute_Jump(u32 op, u32 diff) {
easy_guard guard(listLock);
const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC);
#ifdef _DEBUG
if (!Memory::IsValidAddress(target)) {
ERROR_LOG_REPORT(G3D, "JUMP to illegal address %08x - ignoring! data=%06x", target, op & 0x00FFFFFF);
return;
}
#endif
UpdatePC(currentList->pc, target - 4);
currentList->pc = target - 4; // pc will be increased after we return, counteract that
}
void GPUCommon::Execute_BJump(u32 op, u32 diff) {
if (!currentList->bboxResult) {
// bounding box jump.
easy_guard guard(listLock);
const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC);
if (Memory::IsValidAddress(target)) {
UpdatePC(currentList->pc, target - 4);
currentList->pc = target - 4; // pc will be increased after we return, counteract that
} else {
ERROR_LOG_REPORT(G3D, "BJUMP to illegal address %08x - ignoring! data=%06x", target, op & 0x00FFFFFF);
}
}
}
void GPUCommon::Execute_Call(u32 op, u32 diff) {
easy_guard guard(listLock);
// Saint Seiya needs correct support for relative calls.
const u32 retval = currentList->pc + 4;
const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC);
#ifdef _DEBUG
if (!Memory::IsValidAddress(target)) {
ERROR_LOG_REPORT(G3D, "CALL to illegal address %08x - ignoring! data=%06x", target, op & 0x00FFFFFF);
return;
}
#endif
// Bone matrix optimization - many games will CALL a bone matrix (!).
// We don't optimize during recording - so the matrix data gets recorded.
if (!debugRecording_ && (Memory::ReadUnchecked_U32(target) >> 24) == GE_CMD_BONEMATRIXDATA) {
// Check for the end
if ((Memory::ReadUnchecked_U32(target + 11 * 4) >> 24) == GE_CMD_BONEMATRIXDATA &&
(Memory::ReadUnchecked_U32(target + 12 * 4) >> 24) == GE_CMD_RET) {
// Yep, pretty sure this is a bone matrix call. Double check stall first.
if (target > currentList->stall || target + 12 * 4 < currentList->stall) {
FastLoadBoneMatrix(target);
return;
}
}
}
if (currentList->stackptr == ARRAY_SIZE(currentList->stack)) {
ERROR_LOG_REPORT(G3D, "CALL: Stack full!");
} else {
auto &stackEntry = currentList->stack[currentList->stackptr++];
stackEntry.pc = retval;
stackEntry.offsetAddr = gstate_c.offsetAddr;
// The base address is NOT saved/restored for a regular call.
UpdatePC(currentList->pc, target - 4);
currentList->pc = target - 4; // pc will be increased after we return, counteract that
}
}
void GPUCommon::Execute_Ret(u32 op, u32 diff) {
easy_guard guard(listLock);
if (currentList->stackptr == 0) {
DEBUG_LOG_REPORT(G3D, "RET: Stack empty!");
} else {
auto &stackEntry = currentList->stack[--currentList->stackptr];
gstate_c.offsetAddr = stackEntry.offsetAddr;
// We always clear the top (uncached/etc.) bits
const u32 target = stackEntry.pc & 0x0FFFFFFF;
UpdatePC(currentList->pc, target - 4);
currentList->pc = target - 4;
#ifdef _DEBUG
if (!Memory::IsValidAddress(currentList->pc)) {
ERROR_LOG_REPORT(G3D, "Invalid DL PC %08x on return", currentList->pc);
UpdateState(GPUSTATE_ERROR);
}
#endif
}
}
void GPUCommon::Execute_End(u32 op, u32 diff) {
easy_guard guard(listLock);
const u32 prev = Memory::ReadUnchecked_U32(currentList->pc - 4);
UpdatePC(currentList->pc, currentList->pc);
// Count in a few extra cycles on END.
cyclesExecuted += 60;
switch (prev >> 24) {
case GE_CMD_SIGNAL:
{
// TODO: see http://code.google.com/p/jpcsp/source/detail?r=2935#
SignalBehavior behaviour = static_cast<SignalBehavior>((prev >> 16) & 0xFF);
const int signal = prev & 0xFFFF;
const int enddata = op & 0xFFFF;
bool trigger = true;
currentList->subIntrToken = signal;
switch (behaviour) {
case PSP_GE_SIGNAL_HANDLER_SUSPEND:
// Suspend the list, and call the signal handler. When it's done, resume.
// Before sdkver 0x02000010, listsync should return paused.
if (sceKernelGetCompiledSdkVersion() <= 0x02000010)
currentList->state = PSP_GE_DL_STATE_PAUSED;
currentList->signal = behaviour;
DEBUG_LOG(G3D, "Signal with wait. signal/end: %04x %04x", signal, enddata);
break;
case PSP_GE_SIGNAL_HANDLER_CONTINUE:
// Resume the list right away, then call the handler.
currentList->signal = behaviour;
DEBUG_LOG(G3D, "Signal without wait. signal/end: %04x %04x", signal, enddata);
break;
case PSP_GE_SIGNAL_HANDLER_PAUSE:
// Pause the list instead of ending at the next FINISH.
// Call the handler with the PAUSE signal value at that FINISH.
// Technically, this ought to trigger an interrupt, but it won't do anything.
// But right now, signal is always reset by interrupts, so that causes pause to not work.
trigger = false;
currentList->signal = behaviour;
DEBUG_LOG(G3D, "Signal with Pause. signal/end: %04x %04x", signal, enddata);
break;
case PSP_GE_SIGNAL_SYNC:
// Acts as a memory barrier, never calls any user code.
// Technically, this ought to trigger an interrupt, but it won't do anything.
// Triggering here can cause incorrect rescheduling, which breaks 3rd Birthday.
// However, this is likely a bug in how GE signal interrupts are handled.
trigger = false;
currentList->signal = behaviour;
DEBUG_LOG(G3D, "Signal with Sync. signal/end: %04x %04x", signal, enddata);
break;
case PSP_GE_SIGNAL_JUMP:
{
trigger = false;
currentList->signal = behaviour;
// pc will be increased after we return, counteract that.
u32 target = ((signal << 16) | enddata) - 4;
if (!Memory::IsValidAddress(target)) {
ERROR_LOG_REPORT(G3D, "Signal with Jump: bad address. signal/end: %04x %04x", signal, enddata);
} else {
UpdatePC(currentList->pc, target);
currentList->pc = target;
DEBUG_LOG(G3D, "Signal with Jump. signal/end: %04x %04x", signal, enddata);
}
}
break;
case PSP_GE_SIGNAL_CALL:
{
trigger = false;
currentList->signal = behaviour;
// pc will be increased after we return, counteract that.
u32 target = ((signal << 16) | enddata) - 4;
if (currentList->stackptr == ARRAY_SIZE(currentList->stack)) {
ERROR_LOG_REPORT(G3D, "Signal with Call: stack full. signal/end: %04x %04x", signal, enddata);
} else if (!Memory::IsValidAddress(target)) {
ERROR_LOG_REPORT(G3D, "Signal with Call: bad address. signal/end: %04x %04x", signal, enddata);
} else {
// TODO: This might save/restore other state...
auto &stackEntry = currentList->stack[currentList->stackptr++];
stackEntry.pc = currentList->pc;
stackEntry.offsetAddr = gstate_c.offsetAddr;
stackEntry.baseAddr = gstate.base;
UpdatePC(currentList->pc, target);
currentList->pc = target;
DEBUG_LOG(G3D, "Signal with Call. signal/end: %04x %04x", signal, enddata);
}
}
break;
case PSP_GE_SIGNAL_RET:
{
trigger = false;
currentList->signal = behaviour;
if (currentList->stackptr == 0) {
ERROR_LOG_REPORT(G3D, "Signal with Return: stack empty. signal/end: %04x %04x", signal, enddata);
} else {
// TODO: This might save/restore other state...
auto &stackEntry = currentList->stack[--currentList->stackptr];
gstate_c.offsetAddr = stackEntry.offsetAddr;
gstate.base = stackEntry.baseAddr;
UpdatePC(currentList->pc, stackEntry.pc);
currentList->pc = stackEntry.pc;
DEBUG_LOG(G3D, "Signal with Return. signal/end: %04x %04x", signal, enddata);
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "UNKNOWN Signal UNIMPLEMENTED %i ! signal/end: %04x %04x", behaviour, signal, enddata);
break;
}
// TODO: Technically, jump/call/ret should generate an interrupt, but before the pc change maybe?
if (currentList->interruptsEnabled && trigger) {
if (__GeTriggerInterrupt(currentList->id, currentList->pc, startingTicks + cyclesExecuted)) {
currentList->pendingInterrupt = true;
UpdateState(GPUSTATE_INTERRUPT);
}
}
}
break;
case GE_CMD_FINISH:
switch (currentList->signal) {
case PSP_GE_SIGNAL_HANDLER_PAUSE:
currentList->state = PSP_GE_DL_STATE_PAUSED;
if (currentList->interruptsEnabled) {
if (__GeTriggerInterrupt(currentList->id, currentList->pc, startingTicks + cyclesExecuted)) {
currentList->pendingInterrupt = true;
UpdateState(GPUSTATE_INTERRUPT);
}
}
break;
case PSP_GE_SIGNAL_SYNC:
currentList->signal = PSP_GE_SIGNAL_NONE;
// TODO: Technically this should still cause an interrupt. Probably for memory sync.
break;
default:
currentList->subIntrToken = prev & 0xFFFF;
UpdateState(GPUSTATE_DONE);
if (currentList->interruptsEnabled && __GeTriggerInterrupt(currentList->id, currentList->pc, startingTicks + cyclesExecuted)) {
currentList->pendingInterrupt = true;
} else {
currentList->state = PSP_GE_DL_STATE_COMPLETED;
currentList->waitTicks = startingTicks + cyclesExecuted;
busyTicks = std::max(busyTicks, currentList->waitTicks);
__GeTriggerSync(GPU_SYNC_LIST, currentList->id, currentList->waitTicks);
if (currentList->started && currentList->context.IsValid()) {
gstate.Restore(currentList->context);
ReapplyGfxStateInternal();
}
}
break;
}
break;
default:
DEBUG_LOG(G3D,"Ah, not finished: %06x", prev & 0xFFFFFF);
break;
}
}
void GPUCommon::Execute_TexScaleU(u32 op, u32 diff) {
gstate_c.uv.uScale = getFloat24(op);
}
void GPUCommon::Execute_TexScaleV(u32 op, u32 diff) {
gstate_c.uv.vScale = getFloat24(op);
}
void GPUCommon::Execute_TexOffsetU(u32 op, u32 diff) {
gstate_c.uv.uOff = getFloat24(op);
}
void GPUCommon::Execute_TexOffsetV(u32 op, u32 diff) {
gstate_c.uv.vOff = getFloat24(op);
}
void GPUCommon::Execute_TexLevel(u32 op, u32 diff) {
if (diff == 0xFFFFFFFF) return;
gstate.texlevel ^= diff;
if (gstate.getTexLevelMode() != GE_TEXLEVEL_MODE_AUTO && (0x00FF0000 & gstate.texlevel) != 0) {
Flush();
}
gstate.texlevel ^= diff;
gstate_c.Dirty(DIRTY_TEXTURE_PARAMS);
}
void GPUCommon::Execute_Bezier(u32 op, u32 diff) {
// This also make skipping drawing very effective.
framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason);
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
indices = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) {
DEBUG_LOG_REPORT(G3D, "Bezier + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(G3D, "Bezier + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType));
}
GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType();
int bz_ucount = op & 0xFF;
int bz_vcount = (op >> 8) & 0xFF;
bool computeNormals = gstate.isLightingEnabled();
bool patchFacing = gstate.patchfacing & 1;
int bytesRead = 0;
drawEngineCommon_->SubmitBezier(control_points, indices, gstate.getPatchDivisionU(), gstate.getPatchDivisionV(), bz_ucount, bz_vcount, patchPrim, computeNormals, patchFacing, gstate.vertType, &bytesRead);
// After drawing, we advance pointers - see SubmitPrim which does the same.
int count = bz_ucount * bz_vcount;
AdvanceVerts(gstate.vertType, count, bytesRead);
}
void GPUCommon::Execute_Spline(u32 op, u32 diff) {
// This also make skipping drawing very effective.
framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason);
if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) {
// TODO: Should this eat some cycles? Probably yes. Not sure if important.
return;
}
if (!Memory::IsValidAddress(gstate_c.vertexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad vertex address %08x!", gstate_c.vertexAddr);
return;
}
void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr);
void *indices = NULL;
if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
if (!Memory::IsValidAddress(gstate_c.indexAddr)) {
ERROR_LOG_REPORT(G3D, "Bad index address %08x!", gstate_c.indexAddr);
return;
}
indices = Memory::GetPointerUnchecked(gstate_c.indexAddr);
}
if (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) {
DEBUG_LOG_REPORT(G3D, "Spline + morph: %i", (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) >> GE_VTYPE_MORPHCOUNT_SHIFT);
}
if (vertTypeIsSkinningEnabled(gstate.vertType)) {
DEBUG_LOG_REPORT(G3D, "Spline + skinning: %i", vertTypeGetNumBoneWeights(gstate.vertType));
}
int sp_ucount = op & 0xFF;
int sp_vcount = (op >> 8) & 0xFF;
int sp_utype = (op >> 16) & 0x3;
int sp_vtype = (op >> 18) & 0x3;
GEPatchPrimType patchPrim = gstate.getPatchPrimitiveType();
bool computeNormals = gstate.isLightingEnabled();
bool patchFacing = gstate.patchfacing & 1;
u32 vertType = gstate.vertType;
int bytesRead = 0;
drawEngineCommon_->SubmitSpline(control_points, indices, gstate.getPatchDivisionU(), gstate.getPatchDivisionV(), sp_ucount, sp_vcount, sp_utype, sp_vtype, patchPrim, computeNormals, patchFacing, vertType, &bytesRead);
// After drawing, we advance pointers - see SubmitPrim which does the same.
int count = sp_ucount * sp_vcount;
AdvanceVerts(gstate.vertType, count, bytesRead);
}
void GPUCommon::Execute_BoundingBox(u32 op, u32 diff) {
// Just resetting, nothing to check bounds for.
const u32 data = op & 0x00FFFFFF;
if (data == 0) {
// TODO: Should this set the bboxResult? Let's set it true for now.
currentList->bboxResult = true;
return;
}
if (((data & 7) == 0) && data <= 64) { // Sanity check
void *control_points = Memory::GetPointer(gstate_c.vertexAddr);
if (gstate.vertType & GE_VTYPE_IDX_MASK) {
ERROR_LOG_REPORT_ONCE(boundingbox, G3D, "Indexed bounding box data not supported.");
// Data seems invalid. Let's assume the box test passed.
currentList->bboxResult = true;
return;
}
// Test if the bounding box is within the drawing region.
if (control_points) {
currentList->bboxResult = drawEngineCommon_->TestBoundingBox(control_points, data, gstate.vertType);
}
} else {
ERROR_LOG_REPORT_ONCE(boundingbox, G3D, "Bad bounding box data: %06x", data);
// Data seems invalid. Let's assume the box test passed.
currentList->bboxResult = true;
}
}
void GPUCommon::Execute_BlockTransferStart(u32 op, u32 diff) {
// and take appropriate action. This is a block transfer between RAM and VRAM, or vice versa.
// Can we skip this on SkipDraw?
DoBlockTransfer(gstate_c.skipDrawReason);
}
void GPUCommon::Execute_WorldMtxNum(u32 op, u32 diff) {
// This is almost always followed by GE_CMD_WORLDMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.worldMatrix + (op & 0xF));
const int end = 12 - (op & 0xF);
int i = 0;
// We must record the individual data commands while debugRecording_.
bool fastLoad = !debugRecording_;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_WORLDMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_WORLDMATRIX);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.worldmtxnum = (GE_CMD_WORLDMATRIXNUMBER << 24) | ((op + count) & 0xF);
// Skip over the loaded data, it's done now.
easy_guard innerGuard(listLock);
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommon::Execute_WorldMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.worldmtxnum & 0xF;
u32 newVal = op << 8;
if (num < 12 && newVal != ((const u32 *)gstate.worldMatrix)[num]) {
Flush();
((u32 *)gstate.worldMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_WORLDMATRIX);
}
num++;
gstate.worldmtxnum = (GE_CMD_WORLDMATRIXNUMBER << 24) | (num & 0xF);
}
void GPUCommon::Execute_ViewMtxNum(u32 op, u32 diff) {
// This is almost always followed by GE_CMD_VIEWMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.viewMatrix + (op & 0xF));
const int end = 12 - (op & 0xF);
int i = 0;
bool fastLoad = !debugRecording_;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_VIEWMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_VIEWMATRIX);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.viewmtxnum = (GE_CMD_VIEWMATRIXNUMBER << 24) | ((op + count) & 0xF);
// Skip over the loaded data, it's done now.
easy_guard innerGuard(listLock);
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommon::Execute_ViewMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.viewmtxnum & 0xF;
u32 newVal = op << 8;
if (num < 12 && newVal != ((const u32 *)gstate.viewMatrix)[num]) {
Flush();
((u32 *)gstate.viewMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_VIEWMATRIX);
}
num++;
gstate.viewmtxnum = (GE_CMD_VIEWMATRIXNUMBER << 24) | (num & 0xF);
}
void GPUCommon::Execute_ProjMtxNum(u32 op, u32 diff) {
// This is almost always followed by GE_CMD_PROJMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.projMatrix + (op & 0xF));
const int end = 16 - (op & 0xF);
int i = 0;
bool fastLoad = !debugRecording_;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_PROJMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_PROJMATRIX);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.projmtxnum = (GE_CMD_PROJMATRIXNUMBER << 24) | ((op + count) & 0x1F);
// Skip over the loaded data, it's done now.
easy_guard innerGuard(listLock);
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommon::Execute_ProjMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.projmtxnum & 0x1F; // NOTE: Changed from 0xF to catch overflows
u32 newVal = op << 8;
if (num < 0x10 && newVal != ((const u32 *)gstate.projMatrix)[num]) {
Flush();
((u32 *)gstate.projMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_PROJMATRIX);
}
num++;
if (num <= 16)
gstate.projmtxnum = (GE_CMD_PROJMATRIXNUMBER << 24) | (num & 0xF);
}
void GPUCommon::Execute_TgenMtxNum(u32 op, u32 diff) {
// This is almost always followed by GE_CMD_TGENMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.tgenMatrix + (op & 0xF));
const int end = 12 - (op & 0xF);
int i = 0;
bool fastLoad = !debugRecording_;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
while ((src[i] >> 24) == GE_CMD_TGENMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
gstate_c.Dirty(DIRTY_TEXMATRIX);
}
if (++i >= end) {
break;
}
}
}
const int count = i;
gstate.texmtxnum = (GE_CMD_TGENMATRIXNUMBER << 24) | ((op + count) & 0xF);
// Skip over the loaded data, it's done now.
easy_guard innerGuard(listLock);
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommon::Execute_TgenMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.texmtxnum & 0xF;
u32 newVal = op << 8;
if (num < 12 && newVal != ((const u32 *)gstate.tgenMatrix)[num]) {
Flush();
((u32 *)gstate.tgenMatrix)[num] = newVal;
gstate_c.Dirty(DIRTY_TEXMATRIX);
}
num++;
gstate.texmtxnum = (GE_CMD_TGENMATRIXNUMBER << 24) | (num & 0xF);
}
void GPUCommon::Execute_BoneMtxNum(u32 op, u32 diff) {
// This is almost always followed by GE_CMD_BONEMATRIXDATA.
const u32_le *src = (const u32_le *)Memory::GetPointerUnchecked(currentList->pc + 4);
u32 *dst = (u32 *)(gstate.boneMatrix + (op & 0x7F));
const int end = 12 * 8 - (op & 0x7F);
int i = 0;
bool fastLoad = !debugRecording_;
if (currentList->pc < currentList->stall && currentList->pc + end * 4 >= currentList->stall) {
fastLoad = false;
}
if (fastLoad) {
// If we can't use software skinning, we have to flush and dirty.
if (!g_Config.bSoftwareSkinning || (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) != 0) {
while ((src[i] >> 24) == GE_CMD_BONEMATRIXDATA) {
const u32 newVal = src[i] << 8;
if (dst[i] != newVal) {
Flush();
dst[i] = newVal;
}
if (++i >= end) {
break;
}
}
const int numPlusCount = (op & 0x7F) + i;
for (int num = op & 0x7F; num < numPlusCount; num += 12) {
gstate_c.Dirty(DIRTY_BONEMATRIX0 << (num / 12));
}
} else {
while ((src[i] >> 24) == GE_CMD_BONEMATRIXDATA) {
dst[i] = src[i] << 8;
if (++i >= end) {
break;
}
}
const int numPlusCount = (op & 0x7F) + i;
for (int num = op & 0x7F; num < numPlusCount; num += 12) {
gstate_c.deferredVertTypeDirty |= DIRTY_BONEMATRIX0 << (num / 12);
}
}
}
const int count = i;
gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | ((op + count) & 0x7F);
// Skip over the loaded data, it's done now.
easy_guard innerGuard(listLock);
UpdatePC(currentList->pc, currentList->pc + count * 4);
currentList->pc += count * 4;
}
void GPUCommon::Execute_BoneMtxData(u32 op, u32 diff) {
// Note: it's uncommon to get here now, see above.
int num = gstate.boneMatrixNumber & 0x7F;
u32 newVal = op << 8;
if (num < 96 && newVal != ((const u32 *)gstate.boneMatrix)[num]) {
// Bone matrices should NOT flush when software skinning is enabled!
if (!g_Config.bSoftwareSkinning || (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) != 0) {
Flush();
gstate_c.Dirty(DIRTY_BONEMATRIX0 << (num / 12));
} else {
gstate_c.deferredVertTypeDirty |= DIRTY_BONEMATRIX0 << (num / 12);
}
((u32 *)gstate.boneMatrix)[num] = newVal;
}
num++;
gstate.boneMatrixNumber = (GE_CMD_BONEMATRIXNUMBER << 24) | (num & 0x7F);
}
void GPUCommon::Execute_MorphWeight(u32 op, u32 diff) {
gstate_c.morphWeights[(op >> 24) - GE_CMD_MORPHWEIGHT0] = getFloat24(op);
}
void GPUCommon::ExecuteOp(u32 op, u32 diff) {
const u32 cmd = op >> 24;
// Handle control and drawing commands here directly. The others we delegate.
switch (cmd) {
case GE_CMD_NOP:
break;
case GE_CMD_OFFSETADDR:
Execute_OffsetAddr(op, diff);
break;
case GE_CMD_ORIGIN:
Execute_Origin(op, diff);
break;
case GE_CMD_JUMP:
Execute_Jump(op, diff);
break;
case GE_CMD_BJUMP:
Execute_BJump(op, diff);
break;
case GE_CMD_CALL:
Execute_Call(op, diff);
break;
case GE_CMD_RET:
Execute_Ret(op, diff);
break;
case GE_CMD_SIGNAL:
case GE_CMD_FINISH:
// Processed in GE_END.
break;
case GE_CMD_END:
Execute_End(op, diff);
break;
default:
DEBUG_LOG(G3D, "DL Unknown: %08x @ %08x", op, currentList == NULL ? 0 : currentList->pc);
break;
}
}
void GPUCommon::Execute_Unknown(u32 op, u32 diff) {
switch (op >> 24) {
case GE_CMD_VSCX:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vscx, G3D, "Unsupported Vertex Screen Coordinate X : %06x", op);
break;
case GE_CMD_VSCY:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vscy, G3D, "Unsupported Vertex Screen Coordinate Y : %06x", op);
break;
case GE_CMD_VSCZ:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vscz, G3D, "Unsupported Vertex Screen Coordinate Z : %06x", op);
break;
case GE_CMD_VTCS:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vtcs, G3D, "Unsupported Vertex Texture Coordinate S : %06x", op);
break;
case GE_CMD_VTCT:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vtct, G3D, "Unsupported Vertex Texture Coordinate T : %06x", op);
break;
case GE_CMD_VTCQ:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vtcq, G3D, "Unsupported Vertex Texture Coordinate Q : %06x", op);
break;
case GE_CMD_VCV:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vcv, G3D, "Unsupported Vertex Color Value : %06x", op);
break;
case GE_CMD_VAP:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vap, G3D, "Unsupported Vertex Alpha and Primitive : %06x", op);
break;
case GE_CMD_VFC:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vfc, G3D, "Unsupported Vertex Fog Coefficient : %06x", op);
break;
case GE_CMD_VSCV:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(vscv, G3D, "Unsupported Vertex Secondary Color Value : %06x", op);
break;
case GE_CMD_UNKNOWN_03:
case GE_CMD_UNKNOWN_0D:
case GE_CMD_UNKNOWN_11:
case GE_CMD_UNKNOWN_29:
case GE_CMD_UNKNOWN_34:
case GE_CMD_UNKNOWN_35:
case GE_CMD_UNKNOWN_39:
case GE_CMD_UNKNOWN_4E:
case GE_CMD_UNKNOWN_4F:
case GE_CMD_UNKNOWN_52:
case GE_CMD_UNKNOWN_59:
case GE_CMD_UNKNOWN_5A:
case GE_CMD_UNKNOWN_B6:
case GE_CMD_UNKNOWN_B7:
case GE_CMD_UNKNOWN_D1:
case GE_CMD_UNKNOWN_ED:
case GE_CMD_UNKNOWN_EF:
case GE_CMD_UNKNOWN_FA:
case GE_CMD_UNKNOWN_FB:
case GE_CMD_UNKNOWN_FC:
case GE_CMD_UNKNOWN_FD:
case GE_CMD_UNKNOWN_FE:
if ((op & 0xFFFFFF) != 0)
WARN_LOG_REPORT_ONCE(unknowncmd, G3D, "Unknown GE command : %08x ", op);
break;
default:
break;
}
}
void GPUCommon::FastLoadBoneMatrix(u32 target) {
const int num = gstate.boneMatrixNumber & 0x7F;
const int mtxNum = num / 12;
uint32_t uniformsToDirty = DIRTY_BONEMATRIX0 << mtxNum;
if ((num - 12 * mtxNum) != 0) {
uniformsToDirty |= DIRTY_BONEMATRIX0 << ((mtxNum + 1) & 7);
}
if (!g_Config.bSoftwareSkinning || (gstate.vertType & GE_VTYPE_MORPHCOUNT_MASK) != 0) {
Flush();
gstate_c.Dirty(uniformsToDirty);
} else {
gstate_c.deferredVertTypeDirty |= uniformsToDirty;
}
gstate.FastLoadBoneMatrix(target);
}
struct DisplayList_v1 {
int id;
u32 startpc;
u32 pc;
u32 stall;
DisplayListState state;
SignalBehavior signal;
int subIntrBase;
u16 subIntrToken;
DisplayListStackEntry stack[32];
int stackptr;
bool interrupted;
u64 waitTicks;
bool interruptsEnabled;
bool pendingInterrupt;
bool started;
size_t contextPtr;
u32 offsetAddr;
bool bboxResult;
};
struct DisplayList_v2 {
int id;
u32 startpc;
u32 pc;
u32 stall;
DisplayListState state;
SignalBehavior signal;
int subIntrBase;
u16 subIntrToken;
DisplayListStackEntry stack[32];
int stackptr;
bool interrupted;
u64 waitTicks;
bool interruptsEnabled;
bool pendingInterrupt;
bool started;
PSPPointer<u32_le> context;
u32 offsetAddr;
bool bboxResult;
};
void GPUCommon::DoState(PointerWrap &p) {
easy_guard guard(listLock);
auto s = p.Section("GPUCommon", 1, 4);
if (!s)
return;
p.Do<int>(dlQueue);
if (s >= 4) {
p.DoArray(dls, ARRAY_SIZE(dls));
} else if (s >= 3) {
// This may have been saved with or without padding, depending on platform.
// We need to upconvert it to our consistently-padded struct.
static const size_t DisplayList_v3_size = 452;
static const size_t DisplayList_v4_size = 456;
static_assert(DisplayList_v4_size == sizeof(DisplayList), "Make sure to change here when updating DisplayList");
p.DoVoid(&dls[0], DisplayList_v3_size);
dls[0].padding = 0;
const u8 *savedPtr = *p.GetPPtr();
const u32 *savedPtr32 = (const u32 *)savedPtr;
// Here's the trick: the first member (id) is always the same as the index.
// The second member (startpc) is always an address, or 0, never 1. So we can see the padding.
const bool hasPadding = savedPtr32[1] == 1;
if (hasPadding) {
u32 padding;
p.Do(padding);
}
for (size_t i = 1; i < ARRAY_SIZE(dls); ++i) {
p.DoVoid(&dls[i], DisplayList_v3_size);
dls[i].padding = 0;
if (hasPadding) {
u32 padding;
p.Do(padding);
}
}
} else if (s >= 2) {
for (size_t i = 0; i < ARRAY_SIZE(dls); ++i) {
DisplayList_v2 oldDL;
p.Do(oldDL);
// Copy over everything except the last, new member (stackAddr.)
memcpy(&dls[i], &oldDL, sizeof(DisplayList_v2));
dls[i].stackAddr = 0;
}
} else {
// Can only be in read mode here.
for (size_t i = 0; i < ARRAY_SIZE(dls); ++i) {
DisplayList_v1 oldDL;
p.Do(oldDL);
// On 32-bit, they're the same, on 64-bit oldDL is bigger.
memcpy(&dls[i], &oldDL, sizeof(DisplayList));
// Fix the other fields. Let's hope context wasn't important, it was a pointer.
dls[i].context = 0;
dls[i].offsetAddr = oldDL.offsetAddr;
dls[i].bboxResult = oldDL.bboxResult;
dls[i].stackAddr = 0;
}
}
int currentID = 0;
if (currentList != nullptr) {
currentID = (int)(currentList - &dls[0]);
}
p.Do(currentID);
if (currentID == 0) {
currentList = nullptr;
} else {
currentList = &dls[currentID];
}
p.Do(interruptRunning);
p.Do(gpuState);
p.Do(isbreak);
p.Do(drawCompleteTicks);
p.Do(busyTicks);
}
void GPUCommon::InterruptStart(int listid) {
interruptRunning = true;
}
void GPUCommon::InterruptEnd(int listid) {
easy_guard guard(listLock);
interruptRunning = false;
isbreak = false;
DisplayList &dl = dls[listid];
dl.pendingInterrupt = false;
// TODO: Unless the signal handler could change it?
if (dl.state == PSP_GE_DL_STATE_COMPLETED || dl.state == PSP_GE_DL_STATE_NONE) {
if (dl.started && dl.context.IsValid()) {
gstate.Restore(dl.context);
ReapplyGfxState();
}
dl.waitTicks = 0;
__GeTriggerWait(GPU_SYNC_LIST, listid);
}
guard.unlock();
ProcessDLQueue();
}
// TODO: Maybe cleaner to keep this in GE and trigger the clear directly?
void GPUCommon::SyncEnd(GPUSyncType waitType, int listid, bool wokeThreads) {
easy_guard guard(listLock);
if (waitType == GPU_SYNC_DRAW && wokeThreads)
{
for (int i = 0; i < DisplayListMaxCount; ++i) {
if (dls[i].state == PSP_GE_DL_STATE_COMPLETED) {
dls[i].state = PSP_GE_DL_STATE_NONE;
}
}
}
}
bool GPUCommon::GetCurrentDisplayList(DisplayList &list) {
easy_guard guard(listLock);
if (!currentList) {
return false;
}
list = *currentList;
return true;
}
std::vector<DisplayList> GPUCommon::ActiveDisplayLists() {
std::vector<DisplayList> result;
easy_guard guard(listLock);
for (auto it = dlQueue.begin(), end = dlQueue.end(); it != end; ++it) {
result.push_back(dls[*it]);
}
return result;
}
void GPUCommon::ResetListPC(int listID, u32 pc) {
if (listID < 0 || listID >= DisplayListMaxCount) {
_dbg_assert_msg_(G3D, false, "listID out of range: %d", listID);
return;
}
easy_guard guard(listLock);
dls[listID].pc = pc;
}
void GPUCommon::ResetListStall(int listID, u32 stall) {
if (listID < 0 || listID >= DisplayListMaxCount) {
_dbg_assert_msg_(G3D, false, "listID out of range: %d", listID);
return;
}
easy_guard guard(listLock);
dls[listID].stall = stall;
}
void GPUCommon::ResetListState(int listID, DisplayListState state) {
if (listID < 0 || listID >= DisplayListMaxCount) {
_dbg_assert_msg_(G3D, false, "listID out of range: %d", listID);
return;
}
easy_guard guard(listLock);
dls[listID].state = state;
}
GPUDebugOp GPUCommon::DissassembleOp(u32 pc, u32 op) {
char buffer[1024];
GeDisassembleOp(pc, op, Memory::Read_U32(pc - 4), buffer, sizeof(buffer));
GPUDebugOp info;
info.pc = pc;
info.cmd = op >> 24;
info.op = op;
info.desc = buffer;
return info;
}
std::vector<GPUDebugOp> GPUCommon::DissassembleOpRange(u32 startpc, u32 endpc) {
char buffer[1024];
std::vector<GPUDebugOp> result;
GPUDebugOp info;
// Don't trigger a pause.
u32 prev = Memory::IsValidAddress(startpc - 4) ? Memory::Read_U32(startpc - 4) : 0;
for (u32 pc = startpc; pc < endpc; pc += 4) {
u32 op = Memory::IsValidAddress(pc) ? Memory::Read_U32(pc) : 0;
GeDisassembleOp(pc, op, prev, buffer, sizeof(buffer));
prev = op;
info.pc = pc;
info.cmd = op >> 24;
info.op = op;
info.desc = buffer;
result.push_back(info);
}
return result;
}
u32 GPUCommon::GetRelativeAddress(u32 data) {
return gstate_c.getRelativeAddress(data);
}
u32 GPUCommon::GetVertexAddress() {
return gstate_c.vertexAddr;
}
u32 GPUCommon::GetIndexAddress() {
return gstate_c.indexAddr;
}
GPUgstate GPUCommon::GetGState() {
return gstate;
}
void GPUCommon::SetCmdValue(u32 op) {
u32 cmd = op >> 24;
u32 diff = op ^ gstate.cmdmem[cmd];
PreExecuteOp(op, diff);
gstate.cmdmem[cmd] = op;
ExecuteOp(op, diff);
}
void GPUCommon::AdvanceVerts(u32 vertType, int count, int bytesRead) {
if ((vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
int indexSize = 1;
if ((vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT)
indexSize = 2;
else if ((vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT)
indexSize = 4;
gstate_c.indexAddr += count * indexSize;
} else {
gstate_c.vertexAddr += bytesRead;
}
}
void GPUCommon::DoBlockTransfer(u32 skipDrawReason) {
// TODO: This is used a lot to copy data around between render targets and textures,
// and also to quickly load textures from RAM to VRAM. So we should do checks like the following:
// * Does dstBasePtr point to an existing texture? If so maybe reload it immediately.
//
// * Does srcBasePtr point to a render target, and dstBasePtr to a texture? If so
// either copy between rt and texture or reassign the texture to point to the render target
//
// etc....
u32 srcBasePtr = gstate.getTransferSrcAddress();
u32 srcStride = gstate.getTransferSrcStride();
u32 dstBasePtr = gstate.getTransferDstAddress();
u32 dstStride = gstate.getTransferDstStride();
int srcX = gstate.getTransferSrcX();
int srcY = gstate.getTransferSrcY();
int dstX = gstate.getTransferDstX();
int dstY = gstate.getTransferDstY();
int width = gstate.getTransferWidth();
int height = gstate.getTransferHeight();
int bpp = gstate.getTransferBpp();
DEBUG_LOG(G3D, "Block transfer: %08x/%x -> %08x/%x, %ix%ix%i (%i,%i)->(%i,%i)", srcBasePtr, srcStride, dstBasePtr, dstStride, width, height, bpp, srcX, srcY, dstX, dstY);
if (!Memory::IsValidAddress(srcBasePtr)) {
ERROR_LOG_REPORT(G3D, "BlockTransfer: Bad source transfer address %08x!", srcBasePtr);
return;
}
if (!Memory::IsValidAddress(dstBasePtr)) {
ERROR_LOG_REPORT(G3D, "BlockTransfer: Bad destination transfer address %08x!", dstBasePtr);
return;
}
// Check that the last address of both source and dest are valid addresses
u32 srcLastAddr = srcBasePtr + ((srcY + height - 1) * srcStride + (srcX + width - 1)) * bpp;
u32 dstLastAddr = dstBasePtr + ((dstY + height - 1) * dstStride + (dstX + width - 1)) * bpp;
if (!Memory::IsValidAddress(srcLastAddr)) {
ERROR_LOG_REPORT(G3D, "Bottom-right corner of source of block transfer is at an invalid address: %08x", srcLastAddr);
return;
}
if (!Memory::IsValidAddress(dstLastAddr)) {
ERROR_LOG_REPORT(G3D, "Bottom-right corner of destination of block transfer is at an invalid address: %08x", srcLastAddr);
return;
}
// Tell the framebuffer manager to take action if possible. If it does the entire thing, let's just return.
if (!framebufferManager_->NotifyBlockTransferBefore(dstBasePtr, dstStride, dstX, dstY, srcBasePtr, srcStride, srcX, srcY, width, height, bpp, skipDrawReason)) {
// Do the copy! (Hm, if we detect a drawn video frame (see below) then we could maybe skip this?)
// Can use GetPointerUnchecked because we checked the addresses above. We could also avoid them
// entirely by walking a couple of pointers...
if (srcStride == dstStride && (u32)width == srcStride) {
// Common case in God of War, let's do it all in one chunk.
u32 srcLineStartAddr = srcBasePtr + (srcY * srcStride + srcX) * bpp;
u32 dstLineStartAddr = dstBasePtr + (dstY * dstStride + dstX) * bpp;
const u8 *src = Memory::GetPointerUnchecked(srcLineStartAddr);
u8 *dst = Memory::GetPointerUnchecked(dstLineStartAddr);
memcpy(dst, src, width * height * bpp);
} else {
for (int y = 0; y < height; y++) {
u32 srcLineStartAddr = srcBasePtr + ((y + srcY) * srcStride + srcX) * bpp;
u32 dstLineStartAddr = dstBasePtr + ((y + dstY) * dstStride + dstX) * bpp;
const u8 *src = Memory::GetPointerUnchecked(srcLineStartAddr);
u8 *dst = Memory::GetPointerUnchecked(dstLineStartAddr);
memcpy(dst, src, width * bpp);
}
}
// Fixes Gran Turismo's funky text issue, since it overwrites the current texture.
textureCache_->Invalidate(dstBasePtr + (dstY * dstStride + dstX) * bpp, height * dstStride * bpp, GPU_INVALIDATE_HINT);
framebufferManager_->NotifyBlockTransferAfter(dstBasePtr, dstStride, dstX, dstY, srcBasePtr, srcStride, srcX, srcY, width, height, bpp, skipDrawReason);
}
#ifndef MOBILE_DEVICE
CBreakPoints::ExecMemCheck(srcBasePtr + (srcY * srcStride + srcX) * bpp, false, height * srcStride * bpp, currentMIPS->pc);
CBreakPoints::ExecMemCheck(dstBasePtr + (srcY * dstStride + srcX) * bpp, true, height * dstStride * bpp, currentMIPS->pc);
#endif
// TODO: Correct timing appears to be 1.9, but erring a bit low since some of our other timing is inaccurate.
cyclesExecuted += ((height * width * bpp) * 16) / 10;
}
void GPUCommon::PerformMemoryCopyInternal(u32 dest, u32 src, int size) {
if (!framebufferManager_->NotifyFramebufferCopy(src, dest, size, false, gstate_c.skipDrawReason)) {
// We use a little hack for Download/Upload using a VRAM mirror.
// Since they're identical we don't need to copy.
if (!Memory::IsVRAMAddress(dest) || (dest ^ 0x00400000) != src) {
Memory::Memcpy(dest, src, size);
}
}
InvalidateCache(dest, size, GPU_INVALIDATE_HINT);
}
void GPUCommon::PerformMemorySetInternal(u32 dest, u8 v, int size) {
if (!framebufferManager_->NotifyFramebufferCopy(dest, dest, size, true, gstate_c.skipDrawReason)) {
InvalidateCache(dest, size, GPU_INVALIDATE_HINT);
}
}
bool GPUCommon::PerformMemoryCopy(u32 dest, u32 src, int size) {
// Track stray copies of a framebuffer in RAM. MotoGP does this.
if (framebufferManager_->MayIntersectFramebuffer(src) || framebufferManager_->MayIntersectFramebuffer(dest)) {
if (IsOnSeparateCPUThread()) {
GPUEvent ev(GPU_EVENT_FB_MEMCPY);
ev.fb_memcpy.dst = dest;
ev.fb_memcpy.src = src;
ev.fb_memcpy.size = size;
ScheduleEvent(ev);
// This is a memcpy, so we need to wait for it to complete.
SyncThread();
} else {
PerformMemoryCopyInternal(dest, src, size);
}
return true;
}
InvalidateCache(dest, size, GPU_INVALIDATE_HINT);
GPURecord::NotifyMemcpy(dest, src, size);
return false;
}
bool GPUCommon::PerformMemorySet(u32 dest, u8 v, int size) {
// This may indicate a memset, usually to 0, of a framebuffer.
if (framebufferManager_->MayIntersectFramebuffer(dest)) {
Memory::Memset(dest, v, size);
if (IsOnSeparateCPUThread()) {
GPUEvent ev(GPU_EVENT_FB_MEMSET);
ev.fb_memset.dst = dest;
ev.fb_memset.v = v;
ev.fb_memset.size = size;
ScheduleEvent(ev);
// We don't need to wait for the framebuffer to be updated.
} else {
PerformMemorySetInternal(dest, v, size);
}
return true;
}
// Or perhaps a texture, let's invalidate.
InvalidateCache(dest, size, GPU_INVALIDATE_HINT);
GPURecord::NotifyMemset(dest, v, size);
return false;
}
bool GPUCommon::PerformMemoryDownload(u32 dest, int size) {
// Cheat a bit to force a download of the framebuffer.
// VRAM + 0x00400000 is simply a VRAM mirror.
if (Memory::IsVRAMAddress(dest)) {
return PerformMemoryCopy(dest ^ 0x00400000, dest, size);
}
return false;
}
bool GPUCommon::PerformMemoryUpload(u32 dest, int size) {
// Cheat a bit to force an upload of the framebuffer.
// VRAM + 0x00400000 is simply a VRAM mirror.
if (Memory::IsVRAMAddress(dest)) {
GPURecord::NotifyUpload(dest, size);
return PerformMemoryCopy(dest, dest ^ 0x00400000, size);
}
return false;
}
void GPUCommon::InvalidateCache(u32 addr, int size, GPUInvalidationType type) {
GPUEvent ev(GPU_EVENT_INVALIDATE_CACHE);
ev.invalidate_cache.addr = addr;
ev.invalidate_cache.size = size;
ev.invalidate_cache.type = type;
ScheduleEvent(ev);
}
void GPUCommon::InvalidateCacheInternal(u32 addr, int size, GPUInvalidationType type) {
if (size > 0)
textureCache_->Invalidate(addr, size, type);
else
textureCache_->InvalidateAll(type);
if (type != GPU_INVALIDATE_ALL && framebufferManager_->MayIntersectFramebuffer(addr)) {
// If we're doing block transfers, we shouldn't need this, and it'll only confuse us.
// Vempire invalidates (with writeback) after drawing, but before blitting.
if (!g_Config.bBlockTransferGPU || type == GPU_INVALIDATE_SAFE) {
framebufferManager_->UpdateFromMemory(addr, size, type == GPU_INVALIDATE_SAFE);
}
}
}
void GPUCommon::NotifyVideoUpload(u32 addr, int size, int width, int format) {
if (Memory::IsVRAMAddress(addr)) {
framebufferManager_->NotifyVideoUpload(addr, size, width, (GEBufferFormat)format);
}
textureCache_->NotifyVideoUpload(addr, size, width, (GEBufferFormat)format);
InvalidateCache(addr, size, GPU_INVALIDATE_SAFE);
}
bool GPUCommon::PerformStencilUpload(u32 dest, int size) {
if (framebufferManager_->MayIntersectFramebuffer(dest)) {
if (IsOnSeparateCPUThread()) {
GPUEvent ev(GPU_EVENT_FB_STENCIL_UPLOAD);
ev.fb_stencil_upload.dst = dest;
ev.fb_stencil_upload.size = size;
ScheduleEvent(ev);
} else {
PerformStencilUploadInternal(dest, size);
}
return true;
}
return false;
}
void GPUCommon::PerformStencilUploadInternal(u32 dest, int size) {
framebufferManager_->NotifyStencilUpload(dest, size);
}
bool GPUCommon::GetCurrentFramebuffer(GPUDebugBuffer &buffer, GPUDebugFramebufferType type, int maxRes) {
u32 fb_address = type == GPU_DBG_FRAMEBUF_RENDER ? gstate.getFrameBufRawAddress() : framebufferManager_->DisplayFramebufAddr();
int fb_stride = type == GPU_DBG_FRAMEBUF_RENDER ? gstate.FrameBufStride() : framebufferManager_->DisplayFramebufStride();
GEBufferFormat format = type == GPU_DBG_FRAMEBUF_RENDER ? gstate.FrameBufFormat() : framebufferManager_->DisplayFramebufFormat();
return framebufferManager_->GetFramebuffer(fb_address, fb_stride, format, buffer, maxRes);
}
bool GPUCommon::GetCurrentDepthbuffer(GPUDebugBuffer &buffer) {
u32 fb_address = gstate.getFrameBufRawAddress();
int fb_stride = gstate.FrameBufStride();
u32 z_address = gstate.getDepthBufRawAddress();
int z_stride = gstate.DepthBufStride();
return framebufferManager_->GetDepthbuffer(fb_address, fb_stride, z_address, z_stride, buffer);
}
bool GPUCommon::GetCurrentStencilbuffer(GPUDebugBuffer &buffer) {
u32 fb_address = gstate.getFrameBufRawAddress();
int fb_stride = gstate.FrameBufStride();
return framebufferManager_->GetStencilbuffer(fb_address, fb_stride, buffer);
}
bool GPUCommon::GetOutputFramebuffer(GPUDebugBuffer &buffer) {
// framebufferManager_ can be null here when taking screens in software rendering mode.
// TODO: Actually grab the framebuffer anyway.
return framebufferManager_ ? framebufferManager_->GetOutputFramebuffer(buffer) : false;
}
bool GPUCommon::GetCurrentTexture(GPUDebugBuffer &buffer, int level) {
return textureCache_->GetCurrentTextureDebug(buffer, level);
}