ppsspp/Core/HLE/sceKernelInterrupt.cpp
Unknown W. Brackets 05ab192c9c Reduce includes in Core/HLE/.
Especially templates.
2014-03-15 11:22:19 -07:00

693 lines
18 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <string>
#include <list>
#include <map>
#include "Core/HLE/HLE.h"
#include "Core/HLE/FunctionWrappers.h"
#include "Core/MIPS/MIPS.h"
#include "Common/ChunkFile.h"
#include "Core/Debugger/Breakpoints.h"
#include "Core/HLE/sceKernel.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/HLE/sceKernelInterrupt.h"
#include "Core/HLE/sceKernelMemory.h"
#include "Core/HLE/sceKernelMutex.h"
#include "GPU/GPUCommon.h"
void __DisableInterrupts();
void __EnableInterrupts();
bool __InterruptsEnabled();
// InterruptsManager
//////////////////////////////////////////////////////////////////////////
// INTERRUPT MANAGEMENT
//////////////////////////////////////////////////////////////////////////
class InterruptState
{
public:
void save();
void restore();
void clear();
void DoState(PointerWrap &p)
{
auto s = p.Section("InterruptState", 1);
if (!s)
return;
p.Do(savedCpu);
}
ThreadContext savedCpu;
};
// STATE
InterruptState intState;
IntrHandler* intrHandlers[PSP_NUMBER_INTERRUPTS];
std::list<PendingInterrupt> pendingInterrupts;
// Yeah, this bit is a bit silly.
static int interruptsEnabled = 1;
static bool inInterrupt;
static SceUID threadBeforeInterrupt;
void sceKernelCpuSuspendIntr()
{
VERBOSE_LOG(SCEINTC, "sceKernelCpuSuspendIntr");
int returnValue;
if (__InterruptsEnabled())
{
returnValue = 1;
__DisableInterrupts();
}
else
{
returnValue = 0;
}
hleEatCycles(15);
RETURN(returnValue);
}
void sceKernelCpuResumeIntr(u32 enable)
{
VERBOSE_LOG(SCEINTC, "sceKernelCpuResumeIntr(%i)", enable);
if (enable)
{
__EnableInterrupts();
hleRunInterrupts();
hleReSchedule("interrupts resumed");
}
else
{
__DisableInterrupts();
}
hleEatCycles(15);
}
void sceKernelIsCpuIntrEnable()
{
u32 retVal = __InterruptsEnabled();
DEBUG_LOG(SCEINTC, "%i=sceKernelIsCpuIntrEnable()", retVal);
RETURN(retVal);
}
int sceKernelIsCpuIntrSuspended(int flag)
{
int retVal = flag == 0 ? 1 : 0;
DEBUG_LOG(SCEINTC, "%i=sceKernelIsCpuIntrSuspended(%d)", retVal, flag);
return retVal;
}
void sceKernelCpuResumeIntrWithSync(u32 enable)
{
sceKernelCpuResumeIntr(enable);
}
bool IntrHandler::run(PendingInterrupt& pend)
{
SubIntrHandler *handler = get(pend.subintr);
if (handler == NULL)
{
WARN_LOG(SCEINTC, "Ignoring interrupt, already been released.");
return false;
}
copyArgsToCPU(pend);
return true;
}
void IntrHandler::copyArgsToCPU(PendingInterrupt& pend)
{
SubIntrHandler* handler = get(pend.subintr);
DEBUG_LOG(CPU, "Entering interrupt handler %08x", handler->handlerAddress);
currentMIPS->pc = handler->handlerAddress;
currentMIPS->r[MIPS_REG_A0] = handler->subIntrNumber;
currentMIPS->r[MIPS_REG_A1] = handler->handlerArg;
// RA is already taken care of
}
void IntrHandler::handleResult(PendingInterrupt& pend)
{
//u32 result = currentMIPS->r[MIPS_REG_V0];
}
SubIntrHandler* IntrHandler::add(int subIntrNum)
{
return &subIntrHandlers[subIntrNum];
}
void IntrHandler::remove(int subIntrNum)
{
if (has(subIntrNum))
{
subIntrHandlers.erase(subIntrNum);
}
}
bool IntrHandler::has(int subIntrNum) const
{
return subIntrHandlers.find(subIntrNum) != subIntrHandlers.end();
}
void IntrHandler::enable(int subIntrNum)
{
subIntrHandlers[subIntrNum].enabled = true;
}
void IntrHandler::disable(int subIntrNum)
{
subIntrHandlers[subIntrNum].enabled = false;
}
SubIntrHandler* IntrHandler::get(int subIntrNum)
{
if (has(subIntrNum))
return &subIntrHandlers[subIntrNum];
else
return NULL;
}
void IntrHandler::clear()
{
subIntrHandlers.clear();
}
void IntrHandler::queueUp(int subintr)
{
if(subintr == PSP_INTR_SUB_NONE)
{
pendingInterrupts.push_back(PendingInterrupt(intrNumber, subintr));
}
else
{
// Just call execute on all the subintr handlers for this interrupt.
// They will get queued up.
for (std::map<int, SubIntrHandler>::iterator iter = subIntrHandlers.begin(); iter != subIntrHandlers.end(); ++iter)
{
if ((subintr == PSP_INTR_SUB_ALL || iter->first == subintr) && iter->second.enabled)
pendingInterrupts.push_back(PendingInterrupt(intrNumber, iter->first));
}
}
}
void IntrHandler::DoState(PointerWrap &p)
{
auto s = p.Section("IntrHandler", 1);
if (!s)
return;
p.Do(intrNumber);
p.Do<int, SubIntrHandler>(subIntrHandlers);
}
void PendingInterrupt::DoState(PointerWrap &p)
{
auto s = p.Section("PendingInterrupt", 1);
if (!s)
return;
p.Do(intr);
p.Do(subintr);
}
void __InterruptsInit()
{
interruptsEnabled = 1;
inInterrupt = false;
for (int i = 0; i < (int)ARRAY_SIZE(intrHandlers); ++i)
intrHandlers[i] = new IntrHandler(i);
intState.clear();
threadBeforeInterrupt = 0;
}
void __InterruptsDoState(PointerWrap &p)
{
auto s = p.Section("sceKernelInterrupt", 1);
if (!s)
return;
int numInterrupts = PSP_NUMBER_INTERRUPTS;
p.Do(numInterrupts);
if (numInterrupts != PSP_NUMBER_INTERRUPTS)
{
p.SetError(p.ERROR_FAILURE);
ERROR_LOG(SCEINTC, "Savestate failure: wrong number of interrupts, can't load.");
return;
}
intState.DoState(p);
PendingInterrupt pi(0, 0);
p.Do(pendingInterrupts, pi);
p.Do(interruptsEnabled);
p.Do(inInterrupt);
p.Do(threadBeforeInterrupt);
}
void __InterruptsDoStateLate(PointerWrap &p)
{
// We do these later to ensure the handlers have been registered.
for (int i = 0; i < PSP_NUMBER_INTERRUPTS; ++i)
intrHandlers[i]->DoState(p);
p.DoMarker("sceKernelInterrupt Late");
}
void __InterruptsShutdown()
{
for (size_t i = 0; i < ARRAY_SIZE(intrHandlers); ++i)
intrHandlers[i]->clear();
for (size_t i = 0; i < ARRAY_SIZE(intrHandlers); ++i)
{
if (intrHandlers[i])
{
delete intrHandlers[i];
intrHandlers[i] = 0;
}
}
pendingInterrupts.clear();
}
void __DisableInterrupts()
{
interruptsEnabled = 0;
}
void __EnableInterrupts()
{
interruptsEnabled = 1;
}
bool __InterruptsEnabled()
{
return interruptsEnabled != 0;
}
bool __IsInInterrupt()
{
return inInterrupt;
}
bool __CanExecuteInterrupt()
{
return !inInterrupt;
}
void InterruptState::save()
{
__KernelSaveContext(&savedCpu, true);
}
void InterruptState::restore()
{
__KernelLoadContext(&savedCpu, true);
}
void InterruptState::clear()
{
}
// http://forums.ps2dev.org/viewtopic.php?t=5687
// http://www.google.se/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&ved=0CFYQFjAG&url=http%3A%2F%2Fdev.psnpt.com%2Fredmine%2Fprojects%2Fuofw%2Frepository%2Frevisions%2F65%2Fraw%2Ftrunk%2Finclude%2Finterruptman.h&ei=J4pCUKvyK4nl4QSu-YC4Cg&usg=AFQjCNFxJcgzQnv6dK7aiQlht_BM9grfQQ&sig2=GGk5QUEWI6qouYDoyE07YQ
// Returns true if anything was executed.
bool __RunOnePendingInterrupt()
{
bool needsThreadReturn = false;
if (inInterrupt || !interruptsEnabled) {
// Already in an interrupt! We'll keep going when it's done.
return false;
}
// Can easily prioritize between different kinds of interrupts if necessary.
retry:
if (!pendingInterrupts.empty()) {
PendingInterrupt pend = pendingInterrupts.front();
IntrHandler* handler = intrHandlers[pend.intr];
if (handler == NULL) {
WARN_LOG(SCEINTC, "Ignoring interrupt");
pendingInterrupts.pop_front();
goto retry;
}
// If we came from CoreTiming::Advance(), we might've come from a waiting thread's callback.
// To avoid "injecting" return values into our saved state, we context switch here.
SceUID savedThread = __KernelGetCurThread();
if (__KernelSwitchOffThread("interrupt")) {
threadBeforeInterrupt = savedThread;
needsThreadReturn = true;
}
intState.save();
inInterrupt = true;
if (!handler->run(pend)) {
pendingInterrupts.pop_front();
inInterrupt = false;
goto retry;
}
currentMIPS->r[MIPS_REG_RA] = __KernelInterruptReturnAddress();
return true;
} else {
if (needsThreadReturn)
__KernelSwitchToThread(threadBeforeInterrupt, "left interrupt");
// DEBUG_LOG(SCEINTC, "No more interrupts!");
return false;
}
}
void __TriggerRunInterrupts(int type)
{
// If interrupts aren't enabled, we run them later.
if (interruptsEnabled && !inInterrupt)
{
if ((type & PSP_INTR_HLE) != 0)
hleRunInterrupts();
else if ((type & PSP_INTR_ALWAYS_RESCHED) != 0)
{
// "Always" only means if dispatch is enabled.
if (!__RunOnePendingInterrupt() && __KernelIsDispatchEnabled())
{
SceUID savedThread = __KernelGetCurThread();
if (__KernelSwitchOffThread("interrupt"))
threadBeforeInterrupt = savedThread;
}
}
else
__RunOnePendingInterrupt();
}
}
void __TriggerInterrupt(int type, PSPInterrupt intno, int subintr)
{
if (interruptsEnabled || (type & PSP_INTR_ONLY_IF_ENABLED) == 0)
{
intrHandlers[intno]->queueUp(subintr);
VERBOSE_LOG(SCEINTC, "Triggering subinterrupts for interrupt %i sub %i (%i in queue)", intno, subintr, (u32)pendingInterrupts.size());
__TriggerRunInterrupts(type);
}
}
void __KernelReturnFromInterrupt()
{
VERBOSE_LOG(SCEINTC, "Left interrupt handler at %08x", currentMIPS->pc);
hleSkipDeadbeef();
// This is what we just ran.
PendingInterrupt pend = pendingInterrupts.front();
pendingInterrupts.pop_front();
intrHandlers[pend.intr]->handleResult(pend);
inInterrupt = false;
// Restore context after running the interrupt.
intState.restore();
// All should now be back to normal, including PC.
// Alright, let's see if there's any more interrupts queued...
if (!__RunOnePendingInterrupt())
{
// Otherwise, we reschedule when dispatch was enabled, or switch back otherwise.
if (__KernelIsDispatchEnabled())
__KernelReSchedule("left interrupt");
else
__KernelSwitchToThread(threadBeforeInterrupt, "left interrupt");
}
}
void __RegisterIntrHandler(u32 intrNumber, IntrHandler* handler)
{
if(intrHandlers[intrNumber])
delete intrHandlers[intrNumber];
intrHandlers[intrNumber] = handler;
}
SubIntrHandler *__RegisterSubIntrHandler(u32 intrNumber, u32 subIntrNumber, u32 &error)
{
SubIntrHandler *subIntrHandler = intrHandlers[intrNumber]->add(subIntrNumber);
subIntrHandler->subIntrNumber = subIntrNumber;
subIntrHandler->intrNumber = intrNumber;
error = 0;
return subIntrHandler;
}
int __ReleaseSubIntrHandler(int intrNumber, int subIntrNumber)
{
if (intrNumber >= PSP_NUMBER_INTERRUPTS)
return -1;
if (!intrHandlers[intrNumber]->has(subIntrNumber))
return -1;
for (std::list<PendingInterrupt>::iterator it = pendingInterrupts.begin(); it != pendingInterrupts.end(); )
{
if (it->intr == intrNumber && it->subintr == subIntrNumber)
pendingInterrupts.erase(it++);
else
++it;
}
intrHandlers[intrNumber]->remove(subIntrNumber);
return 0;
}
u32 sceKernelRegisterSubIntrHandler(u32 intrNumber, u32 subIntrNumber, u32 handler, u32 handlerArg)
{
DEBUG_LOG(SCEINTC,"sceKernelRegisterSubIntrHandler(%i, %i, %08x, %08x)", intrNumber, subIntrNumber, handler, handlerArg);
if (intrNumber >= PSP_NUMBER_INTERRUPTS)
return -1;
u32 error;
SubIntrHandler *subIntrHandler = __RegisterSubIntrHandler(intrNumber, subIntrNumber, error);
if (subIntrHandler)
{
subIntrHandler->enabled = false;
subIntrHandler->handlerAddress = handler;
subIntrHandler->handlerArg = handlerArg;
}
return error;
}
int sceKernelReleaseSubIntrHandler(int intrNumber, int subIntrNumber)
{
DEBUG_LOG(SCEINTC, "sceKernelReleaseSubIntrHandler(%i, %i)", intrNumber, subIntrNumber);
if (intrNumber >= PSP_NUMBER_INTERRUPTS)
return -1;
return __ReleaseSubIntrHandler(intrNumber, subIntrNumber);
}
u32 sceKernelEnableSubIntr(u32 intrNumber, u32 subIntrNumber)
{
DEBUG_LOG(SCEINTC, "sceKernelEnableSubIntr(%i, %i)", intrNumber, subIntrNumber);
if (intrNumber >= PSP_NUMBER_INTERRUPTS)
return -1;
if (!intrHandlers[intrNumber]->has(subIntrNumber))
return -1;
intrHandlers[intrNumber]->enable(subIntrNumber);
return 0;
}
u32 sceKernelDisableSubIntr(u32 intrNumber, u32 subIntrNumber)
{
DEBUG_LOG(SCEINTC, "sceKernelDisableSubIntr(%i, %i)", intrNumber, subIntrNumber);
if (intrNumber >= PSP_NUMBER_INTERRUPTS)
return -1;
if (!intrHandlers[intrNumber]->has(subIntrNumber))
return -1;
intrHandlers[intrNumber]->disable(subIntrNumber);
return 0;
}
struct PspIntrHandlerOptionParam {
int size; //+00
u32 entry; //+04
u32 common; //+08
u32 gp; //+0C
u16 intr_code; //+10
u16 sub_count; //+12
u16 intr_level; //+14
u16 enabled; //+16
u32 calls; //+18
u32 field_1C; //+1C
u32 total_clock_lo; //+20
u32 total_clock_hi; //+24
u32 min_clock_lo; //+28
u32 min_clock_hi; //+2C
u32 max_clock_lo; //+30
u32 max_clock_hi; //+34
}; //=38
void QueryIntrHandlerInfo()
{
RETURN(0);
}
u32 sceKernelMemset(u32 addr, u32 fillc, u32 n)
{
u8 c = fillc & 0xff;
DEBUG_LOG(SCEINTC, "sceKernelMemset(ptr = %08x, c = %02x, n = %08x)", addr, c, n);
Memory::Memset(addr, c, n);
return addr;
}
u32 sceKernelMemcpy(u32 dst, u32 src, u32 size)
{
DEBUG_LOG(SCEKERNEL, "sceKernelMemcpy(dest=%08x, src=%08x, size=%i)", dst, src, size);
// Hm, sceDmacMemcpy seems to be the popular one for this. Ignoring for now.
// gpu->UpdateMemory(dst, src, size);
// Technically should crash if these are invalid and size > 0...
if (Memory::IsValidAddress(dst) && Memory::IsValidAddress(src) && Memory::IsValidAddress(dst + size - 1) && Memory::IsValidAddress(src + size - 1))
{
u8 *dstp = Memory::GetPointer(dst);
u8 *srcp = Memory::GetPointer(src);
// If it's non-overlapping, just do it in one go.
if (dst + size < src || src + size < dst)
memcpy(dstp, srcp, size);
else
{
// Try to handle overlapped copies with similar properties to hardware, just in case.
// Not that anyone ought to rely on it.
for (u32 size64 = size / 8; size64 > 0; --size64)
{
memmove(dstp, srcp, 8);
dstp += 8;
srcp += 8;
}
for (u32 size8 = size % 8; size8 > 0; --size8)
*dstp++ = *srcp++;
}
}
#ifndef MOBILE_DEVICE
CBreakPoints::ExecMemCheck(src, false, size, currentMIPS->pc);
CBreakPoints::ExecMemCheck(dst, true, size, currentMIPS->pc);
#endif
return dst;
}
const HLEFunction Kernel_Library[] =
{
{0x092968F4,sceKernelCpuSuspendIntr, "sceKernelCpuSuspendIntr"},
{0x5F10D406,WrapV_U<sceKernelCpuResumeIntr>, "sceKernelCpuResumeIntr"}, //int oldstat
{0x3b84732d,WrapV_U<sceKernelCpuResumeIntrWithSync>, "sceKernelCpuResumeIntrWithSync"},
{0x47a0b729,WrapI_I<sceKernelIsCpuIntrSuspended>, "sceKernelIsCpuIntrSuspended"}, //flags
{0xb55249d2,sceKernelIsCpuIntrEnable, "sceKernelIsCpuIntrEnable"},
{0xa089eca4,WrapU_UUU<sceKernelMemset>, "sceKernelMemset"},
{0xDC692EE3,WrapI_UI<sceKernelTryLockLwMutex>, "sceKernelTryLockLwMutex"},
{0x37431849,WrapI_UI<sceKernelTryLockLwMutex_600>, "sceKernelTryLockLwMutex_600"},
{0xbea46419,WrapI_UIU<sceKernelLockLwMutex>, "sceKernelLockLwMutex", HLE_NOT_IN_INTERRUPT | HLE_NOT_DISPATCH_SUSPENDED},
{0x1FC64E09,WrapI_UIU<sceKernelLockLwMutexCB>, "sceKernelLockLwMutexCB", HLE_NOT_IN_INTERRUPT | HLE_NOT_DISPATCH_SUSPENDED},
{0x15b6446b,WrapI_UI<sceKernelUnlockLwMutex>, "sceKernelUnlockLwMutex"},
{0xc1734599,WrapI_UU<sceKernelReferLwMutexStatus>, "sceKernelReferLwMutexStatus"},
{0x293b45b8,WrapI_V<sceKernelGetThreadId>, "sceKernelGetThreadId"},
{0xD13BDE95,WrapI_V<sceKernelCheckThreadStack>, "sceKernelCheckThreadStack"},
{0x1839852A,WrapU_UUU<sceKernelMemcpy>, "sceKernelMemcpy"},
{0xfa835cde,WrapI_I<sceKernelGetTlsAddr>, "sceKernelGetTlsAddr"},
};
u32 sysclib_memcpy(u32 dst, u32 src, u32 size) {
ERROR_LOG(SCEKERNEL, "Untested sysclib_memcpy(dest=%08x, src=%08x, size=%i)", dst, src, size);
memcpy(Memory::GetPointer(dst), Memory::GetPointer(src), size);
return dst;
}
u32 sysclib_strcat(u32 dst, u32 src) {
ERROR_LOG(SCEKERNEL, "Untested sysclib_strcat(dest=%08x, src=%08x)", dst, src);
strcat((char *)Memory::GetPointer(dst), (char *)Memory::GetPointer(src));
return dst;
}
int sysclib_strcmp(u32 dst, u32 src) {
ERROR_LOG(SCEKERNEL, "Untested sysclib_strcmp(dest=%08x, src=%08x)", dst, src);
return strcmp((char *)Memory::GetPointer(dst), (char *)Memory::GetPointer(src));
}
u32 sysclib_strcpy(u32 dst, u32 src) {
ERROR_LOG(SCEKERNEL, "Untested sysclib_strcpy(dest=%08x, src=%08x)", dst, src);
strcpy((char *)Memory::GetPointer(dst), (char *)Memory::GetPointer(src));
return dst;
}
u32 sysclib_strlen(u32 src) {
ERROR_LOG(SCEKERNEL, "Untested sysclib_strlen(src=%08x)", src);
return (u32)strlen(Memory::GetCharPointer(src));
}
int sysclib_memcmp(u32 dst, u32 src, u32 size) {
ERROR_LOG(SCEKERNEL, "Untested sysclib_memcmp(dest=%08x, src=%08x, size=%i)", dst, src, size);
return memcmp(Memory::GetCharPointer(dst), Memory::GetCharPointer(src), size);
}
int sysclib_sprintf(u32 dst, u32 fmt) {
ERROR_LOG(SCEKERNEL, "Unimpl sysclib_sprintf(dest=%08x, src=%08x)", dst, fmt);
// TODO
return sprintf((char *)Memory::GetPointer(dst), "%s", Memory::GetCharPointer(fmt));
}
const HLEFunction SysclibForKernel[] =
{
{0xAB7592FF, WrapU_UUU<sysclib_memcpy>, "memcpy"},
{0x476FD94A, WrapU_UU<sysclib_strcat>, "strcat"},
{0xC0AB8932, WrapI_UU<sysclib_strcmp>, "strcmp"},
{0xEC6F1CF2, WrapU_UU<sysclib_strcpy>, "strcpy"},
{0x52DF196C, WrapU_U<sysclib_strlen>, "strlen"},
{0x81D0D1F7, WrapI_UUU<sysclib_memcmp>, "memcmp"},
{0x7661e728, WrapI_UU<sysclib_sprintf>, "sprintf"},
};
void Register_Kernel_Library()
{
RegisterModule("Kernel_Library", ARRAY_SIZE(Kernel_Library), Kernel_Library);
}
void Register_SysclibForKernel()
{
RegisterModule("SysclibForKernel", ARRAY_SIZE(SysclibForKernel), SysclibForKernel);
}
const HLEFunction InterruptManager[] =
{
{0xCA04A2B9, WrapU_UUUU<sceKernelRegisterSubIntrHandler>, "sceKernelRegisterSubIntrHandler"},
{0xD61E6961, WrapI_II<sceKernelReleaseSubIntrHandler>, "sceKernelReleaseSubIntrHandler"},
{0xFB8E22EC, WrapU_UU<sceKernelEnableSubIntr>, "sceKernelEnableSubIntr"},
{0x8A389411, WrapU_UU<sceKernelDisableSubIntr>, "sceKernelDisableSubIntr"},
{0x5CB5A78B, 0, "sceKernelSuspendSubIntr"},
{0x7860E0DC, 0, "sceKernelResumeSubIntr"},
{0xFC4374B8, 0, "sceKernelIsSubInterruptOccurred"},
{0xD2E8363F, QueryIntrHandlerInfo, "QueryIntrHandlerInfo"}, // No sce prefix for some reason
{0xEEE43F47, 0, "sceKernelRegisterUserSpaceIntrStack"},
};
void Register_InterruptManager()
{
RegisterModule("InterruptManager", ARRAY_SIZE(InterruptManager), InterruptManager);
}