ppsspp/GPU/Common/VertexDecoderCommon.cpp
2016-01-03 15:07:36 -08:00

1191 lines
34 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <stdio.h>
#include "base/basictypes.h"
#include "base/logging.h"
#include "Common/CPUDetect.h"
#include "Common/ColorConv.h"
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "Core/HDRemaster.h"
#include "Core/Reporting.h"
#include "Core/MIPS/JitCommon/JitCommon.h"
#include "GPU/Common/ShaderCommon.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Math3D.h"
#include "GPU/Common/VertexDecoderCommon.h"
static const u8 tcsize[4] = { 0, 2, 4, 8 }, tcalign[4] = { 0, 1, 2, 4 };
static const u8 colsize[8] = { 0, 0, 0, 0, 2, 2, 2, 4 }, colalign[8] = { 0, 0, 0, 0, 2, 2, 2, 4 };
static const u8 nrmsize[4] = { 0, 3, 6, 12 }, nrmalign[4] = { 0, 1, 2, 4 };
static const u8 possize[4] = { 3, 3, 6, 12 }, posalign[4] = { 1, 1, 2, 4 };
static const u8 wtsize[4] = { 0, 1, 2, 4 }, wtalign[4] = { 0, 1, 2, 4 };
// When software skinning. This array is only used when non-jitted - when jitted, the matrix
// is kept in registers.
static float MEMORY_ALIGNED16(skinMatrix[12]);
inline int align(int n, int align) {
return (n + (align - 1)) & ~(align - 1);
}
int TranslateNumBones(int bones) {
if (!bones) return 0;
if (bones < 4) return 4;
// if (bones < 8) return 8; I get drawing problems in FF:CC with this!
return bones;
}
int DecFmtSize(u8 fmt) {
switch (fmt) {
case DEC_NONE: return 0;
case DEC_FLOAT_1: return 4;
case DEC_FLOAT_2: return 8;
case DEC_FLOAT_3: return 12;
case DEC_FLOAT_4: return 16;
case DEC_S8_3: return 4;
case DEC_S16_3: return 8;
case DEC_U8_1: return 4;
case DEC_U8_2: return 4;
case DEC_U8_3: return 4;
case DEC_U8_4: return 4;
case DEC_U16_1: return 4;
case DEC_U16_2: return 4;
case DEC_U16_3: return 8;
case DEC_U16_4: return 8;
case DEC_U8A_2: return 4;
case DEC_U16A_2: return 4;
default:
return 0;
}
}
void GetIndexBounds(const void *inds, int count, u32 vertType, u16 *indexLowerBound, u16 *indexUpperBound) {
// Find index bounds. Could cache this in display lists.
// Also, this could be greatly sped up with SSE2/NEON, although rarely a bottleneck.
int lowerBound = 0x7FFFFFFF;
int upperBound = 0;
u32 idx = vertType & GE_VTYPE_IDX_MASK;
if (idx == GE_VTYPE_IDX_8BIT) {
const u8 *ind8 = (const u8 *)inds;
for (int i = 0; i < count; i++) {
u8 value = ind8[i];
if (value > upperBound)
upperBound = value;
if (value < lowerBound)
lowerBound = value;
}
} else if (idx == GE_VTYPE_IDX_16BIT) {
const u16 *ind16 = (const u16*)inds;
for (int i = 0; i < count; i++) {
u16 value = ind16[i];
if (value > upperBound)
upperBound = value;
if (value < lowerBound)
lowerBound = value;
}
} else {
lowerBound = 0;
upperBound = count - 1;
}
*indexLowerBound = (u16)lowerBound;
*indexUpperBound = (u16)upperBound;
}
void PrintDecodedVertex(VertexReader &vtx) {
if (vtx.hasNormal()) {
float nrm[3];
vtx.ReadNrm(nrm);
printf("N: %f %f %f\n", nrm[0], nrm[1], nrm[2]);
}
if (vtx.hasUV()) {
float uv[2];
vtx.ReadUV(uv);
printf("TC: %f %f\n", uv[0], uv[1]);
}
if (vtx.hasColor0()) {
float col0[4];
vtx.ReadColor0(col0);
printf("C0: %f %f %f %f\n", col0[0], col0[1], col0[2], col0[3]);
}
if (vtx.hasColor1()) {
float col1[3];
vtx.ReadColor1(col1);
printf("C1: %f %f %f\n", col1[0], col1[1], col1[2]);
}
// Etc..
float pos[3];
vtx.ReadPos(pos);
printf("P: %f %f %f\n", pos[0], pos[1], pos[2]);
}
VertexDecoder::VertexDecoder() : jitted_(0), jittedSize_(0), decoded_(nullptr), ptr_(nullptr) {
}
void VertexDecoder::Step_WeightsU8() const
{
u8 *wt = (u8 *)(decoded_ + decFmt.w0off);
const u8 *wdata = (const u8*)(ptr_);
int j;
for (j = 0; j < nweights; j++)
wt[j] = wdata[j];
while (j & 3) // Zero additional weights rounding up to 4.
wt[j++] = 0;
}
void VertexDecoder::Step_WeightsU16() const
{
u16 *wt = (u16 *)(decoded_ + decFmt.w0off);
const u16 *wdata = (const u16*)(ptr_);
int j;
for (j = 0; j < nweights; j++)
wt[j] = wdata[j];
while (j & 3) // Zero additional weights rounding up to 4.
wt[j++] = 0;
}
void VertexDecoder::Step_WeightsU8ToFloat() const
{
float *wt = (float *)(decoded_ + decFmt.w0off);
const u8 *wdata = (const u8*)(ptr_);
int j;
for (j = 0; j < nweights; j++) {
wt[j] = (float)wdata[j] * (1.0f / 128.0f);
}
while (j & 3) // Zero additional weights rounding up to 4.
wt[j++] = 0;
}
void VertexDecoder::Step_WeightsU16ToFloat() const
{
float *wt = (float *)(decoded_ + decFmt.w0off);
const u16 *wdata = (const u16*)(ptr_);
int j;
for (j = 0; j < nweights; j++) {
wt[j] = (float)wdata[j] * (1.0f / 32768.0f);
}
while (j & 3) // Zero additional weights rounding up to 4.
wt[j++] = 0;
}
// Float weights should be uncommon, we can live with having to multiply these by 2.0
// to avoid special checks in the vertex shader generator.
// (PSP uses 0.0-2.0 fixed point numbers for weights)
void VertexDecoder::Step_WeightsFloat() const
{
float *wt = (float *)(decoded_ + decFmt.w0off);
const float *wdata = (const float*)(ptr_);
int j;
for (j = 0; j < nweights; j++) {
wt[j] = wdata[j];
}
while (j & 3) // Zero additional weights rounding up to 4.
wt[j++] = 0.0f;
}
void VertexDecoder::Step_WeightsU8Skin() const
{
memset(skinMatrix, 0, sizeof(skinMatrix));
const u8 *wdata = (const u8*)(ptr_);
for (int j = 0; j < nweights; j++) {
const float *bone = &gstate.boneMatrix[j * 12];
if (wdata[j] != 0) {
float weight = wdata[j] * (1.0f / 128.0f);
for (int i = 0; i < 12; i++) {
skinMatrix[i] += weight * bone[i];
}
}
}
}
void VertexDecoder::Step_WeightsU16Skin() const
{
memset(skinMatrix, 0, sizeof(skinMatrix));
const u16 *wdata = (const u16*)(ptr_);
for (int j = 0; j < nweights; j++) {
const float *bone = &gstate.boneMatrix[j * 12];
if (wdata[j] != 0) {
float weight = wdata[j] * (1.0f / 32768.0f);
for (int i = 0; i < 12; i++) {
skinMatrix[i] += weight * bone[i];
}
}
}
}
// Float weights should be uncommon, we can live with having to multiply these by 2.0
// to avoid special checks in the vertex shader generator.
// (PSP uses 0.0-2.0 fixed point numbers for weights)
void VertexDecoder::Step_WeightsFloatSkin() const
{
memset(skinMatrix, 0, sizeof(skinMatrix));
const float *wdata = (const float*)(ptr_);
for (int j = 0; j < nweights; j++) {
const float *bone = &gstate.boneMatrix[j * 12];
float weight = wdata[j];
if (weight > 0.0) {
for (int i = 0; i < 12; i++) {
skinMatrix[i] += weight * bone[i];
}
}
}
}
void VertexDecoder::Step_TcU8() const
{
// u32 to write two bytes of zeroes for free.
u32 *uv = (u32*)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16*)(ptr_ + tcoff);
*uv = *uvdata;
}
void VertexDecoder::Step_TcU8ToFloat() const
{
// u32 to write two bytes of zeroes for free.
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u8 *uvdata = (const u8*)(ptr_ + tcoff);
uv[0] = uvdata[0] * (1.0f / 128.0f);
uv[1] = uvdata[1] * (1.0f / 128.0f);
}
void VertexDecoder::Step_TcU16() const
{
u32 *uv = (u32 *)(decoded_ + decFmt.uvoff);
// TODO: Fix big-endian without losing the optimization
const u32 *uvdata = (const u32*)(ptr_ + tcoff);
*uv = *uvdata;
}
void VertexDecoder::Step_TcU16ToFloat() const
{
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0] * (1.0f / 32768.0f);
uv[1] = uvdata[1] * (1.0f / 32768.0f);
}
void VertexDecoder::Step_TcU16Double() const
{
u16 *uv = (u16*)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0] * 2;
uv[1] = uvdata[1] * 2;
}
void VertexDecoder::Step_TcU16Through() const
{
u16 *uv = (u16 *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0];
uv[1] = uvdata[1];
gstate_c.vertBounds.minU = std::min(gstate_c.vertBounds.minU, uvdata[0]);
gstate_c.vertBounds.maxU = std::max(gstate_c.vertBounds.maxU, uvdata[0]);
gstate_c.vertBounds.minV = std::min(gstate_c.vertBounds.minV, uvdata[1]);
gstate_c.vertBounds.maxV = std::max(gstate_c.vertBounds.maxV, uvdata[1]);
}
void VertexDecoder::Step_TcU16ThroughDouble() const
{
u16 *uv = (u16 *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0] * 2;
uv[1] = uvdata[1] * 2;
}
void VertexDecoder::Step_TcU16DoubleToFloat() const
{
float *uv = (float*)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0] * (1.0f / 16384.0f);
uv[1] = uvdata[1] * (1.0f / 16384.0f);
}
void VertexDecoder::Step_TcU16ThroughToFloat() const
{
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0];
uv[1] = uvdata[1];
gstate_c.vertBounds.minU = std::min(gstate_c.vertBounds.minU, uvdata[0]);
gstate_c.vertBounds.maxU = std::max(gstate_c.vertBounds.maxU, uvdata[0]);
gstate_c.vertBounds.minV = std::min(gstate_c.vertBounds.minV, uvdata[1]);
gstate_c.vertBounds.maxV = std::max(gstate_c.vertBounds.maxV, uvdata[1]);
}
void VertexDecoder::Step_TcU16ThroughDoubleToFloat() const
{
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le*)(ptr_ + tcoff);
uv[0] = uvdata[0] * 2;
uv[1] = uvdata[1] * 2;
}
void VertexDecoder::Step_TcFloat() const
{
float *uv = (float *)(decoded_ + decFmt.uvoff);
const float *uvdata = (const float*)(ptr_ + tcoff);
uv[0] = uvdata[0];
uv[1] = uvdata[1];
}
void VertexDecoder::Step_TcFloatThrough() const
{
float *uv = (float *)(decoded_ + decFmt.uvoff);
const float *uvdata = (const float*)(ptr_ + tcoff);
uv[0] = uvdata[0];
uv[1] = uvdata[1];
gstate_c.vertBounds.minU = std::min(gstate_c.vertBounds.minU, (u16)uvdata[0]);
gstate_c.vertBounds.maxU = std::max(gstate_c.vertBounds.maxU, (u16)uvdata[0]);
gstate_c.vertBounds.minV = std::min(gstate_c.vertBounds.minV, (u16)uvdata[1]);
gstate_c.vertBounds.maxV = std::max(gstate_c.vertBounds.maxV, (u16)uvdata[1]);
}
void VertexDecoder::Step_TcU8Prescale() const {
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u8 *uvdata = (const u8 *)(ptr_ + tcoff);
uv[0] = (float)uvdata[0] * (1.f / 128.f) * gstate_c.uv.uScale + gstate_c.uv.uOff;
uv[1] = (float)uvdata[1] * (1.f / 128.f) * gstate_c.uv.vScale + gstate_c.uv.vOff;
}
void VertexDecoder::Step_TcU16Prescale() const {
float *uv = (float *)(decoded_ + decFmt.uvoff);
const u16 *uvdata = (const u16_le *)(ptr_ + tcoff);
uv[0] = (float)uvdata[0] * (1.f / 32768.f) * gstate_c.uv.uScale + gstate_c.uv.uOff;
uv[1] = (float)uvdata[1] * (1.f / 32768.f) * gstate_c.uv.vScale + gstate_c.uv.vOff;
}
void VertexDecoder::Step_TcFloatPrescale() const {
float *uv = (float *)(decoded_ + decFmt.uvoff);
const float *uvdata = (const float*)(ptr_ + tcoff);
uv[0] = uvdata[0] * gstate_c.uv.uScale + gstate_c.uv.uOff;
uv[1] = uvdata[1] * gstate_c.uv.vScale + gstate_c.uv.vOff;
}
void VertexDecoder::Step_ColorInvalid() const
{
// Do nothing. This is only here to prevent crashes.
}
void VertexDecoder::Step_Color565() const
{
u8 *c = decoded_ + decFmt.c0off;
u16 cdata = *(u16_le *)(ptr_ + coloff);
c[0] = Convert5To8(cdata & 0x1f);
c[1] = Convert6To8((cdata >> 5) & 0x3f);
c[2] = Convert5To8((cdata >> 11) & 0x1f);
c[3] = 255;
// Always full alpha.
}
void VertexDecoder::Step_Color5551() const
{
u8 *c = decoded_ + decFmt.c0off;
u16 cdata = *(u16_le *)(ptr_ + coloff);
c[0] = Convert5To8(cdata & 0x1f);
c[1] = Convert5To8((cdata >> 5) & 0x1f);
c[2] = Convert5To8((cdata >> 10) & 0x1f);
c[3] = (cdata >> 15) ? 255 : 0;
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && c[3] != 0;
}
void VertexDecoder::Step_Color4444() const
{
u8 *c = decoded_ + decFmt.c0off;
u16 cdata = *(u16_le *)(ptr_ + coloff);
for (int j = 0; j < 4; j++)
c[j] = Convert4To8((cdata >> (j * 4)) & 0xF);
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && c[3] == 255;
}
void VertexDecoder::Step_Color8888() const
{
u8 *c = decoded_ + decFmt.c0off;
const u8 *cdata = (const u8*)(ptr_ + coloff);
memcpy(c, cdata, sizeof(u8) * 4);
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && c[3] == 255;
}
void VertexDecoder::Step_Color565Morph() const
{
float col[3] = { 0 };
for (int n = 0; n < morphcount; n++) {
float w = gstate_c.morphWeights[n];
u16 cdata = *(u16_le *)(ptr_ + onesize_*n + coloff);
col[0] += w * (cdata & 0x1f) * (255.0f / 31.0f);
col[1] += w * ((cdata >> 5) & 0x3f) * (255.0f / 63.0f);
col[2] += w * ((cdata >> 11) & 0x1f) * (255.0f / 31.0f);
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 3; i++) {
c[i] = clamp_u8((int)col[i]);
}
c[3] = 255;
// Always full alpha.
}
void VertexDecoder::Step_Color5551Morph() const
{
float col[4] = { 0 };
for (int n = 0; n < morphcount; n++) {
float w = gstate_c.morphWeights[n];
u16 cdata = *(u16_le *)(ptr_ + onesize_*n + coloff);
col[0] += w * (cdata & 0x1f) * (255.0f / 31.0f);
col[1] += w * ((cdata >> 5) & 0x1f) * (255.0f / 31.0f);
col[2] += w * ((cdata >> 10) & 0x1f) * (255.0f / 31.0f);
col[3] += w * ((cdata >> 15) ? 255.0f : 0.0f);
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 4; i++) {
c[i] = clamp_u8((int)col[i]);
}
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && c[3] == 255;
}
void VertexDecoder::Step_Color4444Morph() const
{
float col[4] = { 0 };
for (int n = 0; n < morphcount; n++) {
float w = gstate_c.morphWeights[n];
u16 cdata = *(u16_le *)(ptr_ + onesize_*n + coloff);
for (int j = 0; j < 4; j++)
col[j] += w * ((cdata >> (j * 4)) & 0xF) * (255.0f / 15.0f);
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 4; i++) {
c[i] = clamp_u8((int)col[i]);
}
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && c[3] == 255;
}
void VertexDecoder::Step_Color8888Morph() const
{
float col[4] = { 0 };
for (int n = 0; n < morphcount; n++) {
float w = gstate_c.morphWeights[n];
const u8 *cdata = (const u8*)(ptr_ + onesize_*n + coloff);
for (int j = 0; j < 4; j++)
col[j] += w * cdata[j];
}
u8 *c = decoded_ + decFmt.c0off;
for (int i = 0; i < 4; i++) {
c[i] = clamp_u8((int)col[i]);
}
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && c[3] == 255;
}
void VertexDecoder::Step_NormalS8() const
{
s8 *normal = (s8 *)(decoded_ + decFmt.nrmoff);
const s8 *sv = (const s8*)(ptr_ + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] = sv[j];
normal[3] = 0;
}
void VertexDecoder::Step_NormalS8ToFloat() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
const s8 *sv = (const s8*)(ptr_ + nrmoff);
normal[0] = sv[0] * (1.0f / 128.0f);
normal[1] = sv[1] * (1.0f / 128.0f);
normal[2] = sv[2] * (1.0f / 128.0f);
}
void VertexDecoder::Step_NormalS16() const
{
s16 *normal = (s16 *)(decoded_ + decFmt.nrmoff);
const s16 *sv = (const s16_le*)(ptr_ + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] = sv[j];
normal[3] = 0;
}
void VertexDecoder::Step_NormalFloat() const
{
u32 *normal = (u32 *)(decoded_ + decFmt.nrmoff);
const u32 *fv = (const u32_le*)(ptr_ + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] = fv[j];
}
void VertexDecoder::Step_NormalS8Skin() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
const s8 *sv = (const s8*)(ptr_ + nrmoff);
const float fn[3] = { sv[0] * (1.0f / 128.0f), sv[1] * (1.0f / 128.0f), sv[2] * (1.0f / 128.0f) };
Norm3ByMatrix43(normal, fn, skinMatrix);
}
void VertexDecoder::Step_NormalS16Skin() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
const s16 *sv = (const s16_le*)(ptr_ + nrmoff);
const float fn[3] = { sv[0] * (1.0f / 32768.0f), sv[1] * (1.0f / 32768.0f), sv[2] * (1.0f / 32768.0f) };
Norm3ByMatrix43(normal, fn, skinMatrix);
}
void VertexDecoder::Step_NormalFloatSkin() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
const float *fn = (const float *)(ptr_ + nrmoff);
Norm3ByMatrix43(normal, fn, skinMatrix);
}
void VertexDecoder::Step_NormalS8Morph() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
memset(normal, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const s8 *bv = (const s8*)(ptr_ + onesize_*n + nrmoff);
const float multiplier = gstate_c.morphWeights[n] * (1.0f / 128.0f);
for (int j = 0; j < 3; j++)
normal[j] += bv[j] * multiplier;
}
}
void VertexDecoder::Step_NormalS16Morph() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
memset(normal, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const s16 *sv = (const s16_le *)(ptr_ + onesize_*n + nrmoff);
const float multiplier = gstate_c.morphWeights[n] * (1.0f / 32768.0f);
for (int j = 0; j < 3; j++)
normal[j] += sv[j] * multiplier;
}
}
void VertexDecoder::Step_NormalFloatMorph() const
{
float *normal = (float *)(decoded_ + decFmt.nrmoff);
memset(normal, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
float multiplier = gstate_c.morphWeights[n];
const float *fv = (const float*)(ptr_ + onesize_*n + nrmoff);
for (int j = 0; j < 3; j++)
normal[j] += fv[j] * multiplier;
}
}
void VertexDecoder::Step_PosS8() const
{
float *pos = (float *)(decoded_ + decFmt.posoff);
const s8 *sv = (const s8*)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
pos[j] = sv[j] * (1.0f / 128.0f);
}
void VertexDecoder::Step_PosS16() const
{
float *pos = (float *)(decoded_ + decFmt.posoff);
const s16 *sv = (const s16_le *)(ptr_ + posoff);
for (int j = 0; j < 3; j++)
pos[j] = sv[j] * (1.0f / 32768.0f);
}
void VertexDecoder::Step_PosFloat() const
{
u8 *v = (u8 *)(decoded_ + decFmt.posoff);
const u8 *fv = (const u8*)(ptr_ + posoff);
memcpy(v, fv, 12);
}
void VertexDecoder::Step_PosS8Skin() const
{
float *pos = (float *)(decoded_ + decFmt.posoff);
const s8 *sv = (const s8*)(ptr_ + posoff);
const float fn[3] = { sv[0] * (1.0f / 128.0f), sv[1] * (1.0f / 128.0f), sv[2] * (1.0f / 128.0f) };
Vec3ByMatrix43(pos, fn, skinMatrix);
}
void VertexDecoder::Step_PosS16Skin() const
{
float *pos = (float *)(decoded_ + decFmt.posoff);
const s16_le *sv = (const s16_le *)(ptr_ + posoff);
const float fn[3] = { sv[0] * (1.0f / 32768.0f), sv[1] * (1.0f / 32768.0f), sv[2] * (1.0f / 32768.0f) };
Vec3ByMatrix43(pos, fn, skinMatrix);
}
void VertexDecoder::Step_PosFloatSkin() const
{
float *pos = (float *)(decoded_ + decFmt.posoff);
const float *fn = (const float *)(ptr_ + posoff);
Vec3ByMatrix43(pos, fn, skinMatrix);
}
void VertexDecoder::Step_PosS8Through() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
const s8 *sv = (const s8*)(ptr_ + posoff);
v[0] = sv[0];
v[1] = sv[1];
v[2] = sv[2];
}
void VertexDecoder::Step_PosS16Through() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
const s16_le *sv = (const s16_le *)(ptr_ + posoff);
const u16_le *uv = (const u16_le *)(ptr_ + posoff);
v[0] = sv[0];
v[1] = sv[1];
v[2] = uv[2];
}
void VertexDecoder::Step_PosFloatThrough() const
{
u8 *v = (u8 *)(decoded_ + decFmt.posoff);
const u8 *fv = (const u8 *)(ptr_ + posoff);
memcpy(v, fv, 12);
}
void VertexDecoder::Step_PosS8Morph() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
memset(v, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const float multiplier = 1.0f / 128.0f;
const s8 *sv = (const s8*)(ptr_ + onesize_*n + posoff);
for (int j = 0; j < 3; j++)
v[j] += (float)sv[j] * (multiplier * gstate_c.morphWeights[n]);
}
}
void VertexDecoder::Step_PosS16Morph() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
memset(v, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const float multiplier = 1.0f / 32768.0f;
const s16 *sv = (const s16*)(ptr_ + onesize_*n + posoff);
for (int j = 0; j < 3; j++)
v[j] += (float)sv[j] * (multiplier * gstate_c.morphWeights[n]);
}
}
void VertexDecoder::Step_PosFloatMorph() const
{
float *v = (float *)(decoded_ + decFmt.posoff);
memset(v, 0, sizeof(float) * 3);
for (int n = 0; n < morphcount; n++) {
const float *fv = (const float*)(ptr_ + onesize_*n + posoff);
for (int j = 0; j < 3; j++)
v[j] += fv[j] * gstate_c.morphWeights[n];
}
}
static const StepFunction wtstep[4] = {
0,
&VertexDecoder::Step_WeightsU8,
&VertexDecoder::Step_WeightsU16,
&VertexDecoder::Step_WeightsFloat,
};
static const StepFunction wtstepToFloat[4] = {
0,
&VertexDecoder::Step_WeightsU8ToFloat,
&VertexDecoder::Step_WeightsU16ToFloat,
&VertexDecoder::Step_WeightsFloat,
};
static const StepFunction wtstep_skin[4] = {
0,
&VertexDecoder::Step_WeightsU8Skin,
&VertexDecoder::Step_WeightsU16Skin,
&VertexDecoder::Step_WeightsFloatSkin,
};
static const StepFunction tcstep[4] = {
0,
&VertexDecoder::Step_TcU8,
&VertexDecoder::Step_TcU16,
&VertexDecoder::Step_TcFloat,
};
static const StepFunction tcstepToFloat[4] = {
0,
&VertexDecoder::Step_TcU8ToFloat,
&VertexDecoder::Step_TcU16ToFloat,
&VertexDecoder::Step_TcFloat,
};
static const StepFunction tcstep_prescale[4] = {
0,
&VertexDecoder::Step_TcU8Prescale,
&VertexDecoder::Step_TcU16Prescale,
&VertexDecoder::Step_TcFloatPrescale,
};
static const StepFunction tcstep_through[4] = {
0,
&VertexDecoder::Step_TcU8,
&VertexDecoder::Step_TcU16Through,
&VertexDecoder::Step_TcFloatThrough,
};
static const StepFunction tcstep_throughToFloat[4] = {
0,
&VertexDecoder::Step_TcU8ToFloat,
&VertexDecoder::Step_TcU16ThroughToFloat,
&VertexDecoder::Step_TcFloatThrough,
};
// Some HD Remaster games double the u16 texture coordinates.
static const StepFunction tcstep_Remaster[4] = {
0,
&VertexDecoder::Step_TcU8,
&VertexDecoder::Step_TcU16Double,
&VertexDecoder::Step_TcFloat,
};
static const StepFunction tcstep_RemasterToFloat[4] = {
0,
&VertexDecoder::Step_TcU8ToFloat,
&VertexDecoder::Step_TcU16DoubleToFloat,
&VertexDecoder::Step_TcFloat,
};
static const StepFunction tcstep_through_Remaster[4] = {
0,
&VertexDecoder::Step_TcU8,
&VertexDecoder::Step_TcU16ThroughDouble,
&VertexDecoder::Step_TcFloatThrough,
};
static const StepFunction tcstep_through_RemasterToFloat[4] = {
0,
&VertexDecoder::Step_TcU8ToFloat,
&VertexDecoder::Step_TcU16ThroughDoubleToFloat,
&VertexDecoder::Step_TcFloatThrough,
};
// TODO: Tc Morph
static const StepFunction colstep[8] = {
0,
&VertexDecoder::Step_ColorInvalid,
&VertexDecoder::Step_ColorInvalid,
&VertexDecoder::Step_ColorInvalid,
&VertexDecoder::Step_Color565,
&VertexDecoder::Step_Color5551,
&VertexDecoder::Step_Color4444,
&VertexDecoder::Step_Color8888,
};
static const StepFunction colstep_morph[8] = {
0,
&VertexDecoder::Step_ColorInvalid,
&VertexDecoder::Step_ColorInvalid,
&VertexDecoder::Step_ColorInvalid,
&VertexDecoder::Step_Color565Morph,
&VertexDecoder::Step_Color5551Morph,
&VertexDecoder::Step_Color4444Morph,
&VertexDecoder::Step_Color8888Morph,
};
static const StepFunction nrmstep[4] = {
0,
&VertexDecoder::Step_NormalS8,
&VertexDecoder::Step_NormalS16,
&VertexDecoder::Step_NormalFloat,
};
static const StepFunction nrmstep8BitToFloat[4] = {
0,
&VertexDecoder::Step_NormalS8ToFloat,
&VertexDecoder::Step_NormalS16,
&VertexDecoder::Step_NormalFloat,
};
static const StepFunction nrmstep_skin[4] = {
0,
&VertexDecoder::Step_NormalS8Skin,
&VertexDecoder::Step_NormalS16Skin,
&VertexDecoder::Step_NormalFloatSkin,
};
static const StepFunction nrmstep_morph[4] = {
0,
&VertexDecoder::Step_NormalS8Morph,
&VertexDecoder::Step_NormalS16Morph,
&VertexDecoder::Step_NormalFloatMorph,
};
static const StepFunction posstep[4] = {
&VertexDecoder::Step_PosS8,
&VertexDecoder::Step_PosS8,
&VertexDecoder::Step_PosS16,
&VertexDecoder::Step_PosFloat,
};
static const StepFunction posstep_skin[4] = {
&VertexDecoder::Step_PosS8Skin,
&VertexDecoder::Step_PosS8Skin,
&VertexDecoder::Step_PosS16Skin,
&VertexDecoder::Step_PosFloatSkin,
};
static const StepFunction posstep_morph[4] = {
&VertexDecoder::Step_PosS8Morph,
&VertexDecoder::Step_PosS8Morph,
&VertexDecoder::Step_PosS16Morph,
&VertexDecoder::Step_PosFloatMorph,
};
static const StepFunction posstep_through[4] = {
&VertexDecoder::Step_PosS8Through,
&VertexDecoder::Step_PosS8Through,
&VertexDecoder::Step_PosS16Through,
&VertexDecoder::Step_PosFloatThrough,
};
void VertexDecoder::SetVertexType(u32 fmt, const VertexDecoderOptions &options, VertexDecoderJitCache *jitCache) {
fmt_ = fmt;
throughmode = (fmt & GE_VTYPE_THROUGH) != 0;
numSteps_ = 0;
int biggest = 0;
size = 0;
tc = fmt & 0x3;
col = (fmt >> 2) & 0x7;
nrm = (fmt >> 5) & 0x3;
pos = (fmt >> 7) & 0x3;
weighttype = (fmt >> 9) & 0x3;
idx = (fmt >> 11) & 0x3;
morphcount = ((fmt >> 18) & 0x7) + 1;
nweights = ((fmt >> 14) & 0x7) + 1;
int decOff = 0;
memset(&decFmt, 0, sizeof(decFmt));
if (morphcount > 1) {
DEBUG_LOG_REPORT_ONCE(vtypeM, G3D, "VTYPE with morph used: THRU=%i TC=%i COL=%i POS=%i NRM=%i WT=%i NW=%i IDX=%i MC=%i", (int)throughmode, tc, col, pos, nrm, weighttype, nweights, idx, morphcount);
} else {
DEBUG_LOG(G3D, "VTYPE: THRU=%i TC=%i COL=%i POS=%i NRM=%i WT=%i NW=%i IDX=%i MC=%i", (int)throughmode, tc, col, pos, nrm, weighttype, nweights, idx, morphcount);
}
bool skinInDecode = weighttype != 0 && g_Config.bSoftwareSkinning && morphcount == 1;
if (weighttype) { // && nweights?
weightoff = size;
//size = align(size, wtalign[weighttype]); unnecessary
size += wtsize[weighttype] * nweights;
if (wtalign[weighttype] > biggest)
biggest = wtalign[weighttype];
if (skinInDecode) {
steps_[numSteps_++] = wtstep_skin[weighttype];
// No visible output, passed in register/external memory to the "pos" step.
} else {
int fmtBase = DEC_FLOAT_1;
if (options.expandAllWeightsToFloat) {
steps_[numSteps_++] = wtstepToFloat[weighttype];
fmtBase = DEC_FLOAT_1;
} else {
steps_[numSteps_++] = wtstep[weighttype];
if (weighttype == GE_VTYPE_WEIGHT_8BIT >> GE_VTYPE_WEIGHT_SHIFT) {
fmtBase = DEC_U8_1;
} else if (weighttype == GE_VTYPE_WEIGHT_16BIT >> GE_VTYPE_WEIGHT_SHIFT) {
fmtBase = DEC_U16_1;
} else if (weighttype == GE_VTYPE_WEIGHT_FLOAT >> GE_VTYPE_WEIGHT_SHIFT) {
fmtBase = DEC_FLOAT_1;
}
}
int numWeights = TranslateNumBones(nweights);
if (numWeights <= 4) {
decFmt.w0off = decOff;
decFmt.w0fmt = fmtBase + numWeights - 1;
decOff += DecFmtSize(decFmt.w0fmt);
} else {
decFmt.w0off = decOff;
decFmt.w0fmt = fmtBase + 3;
decOff += DecFmtSize(decFmt.w0fmt);
decFmt.w1off = decOff;
decFmt.w1fmt = fmtBase + numWeights - 5;
decOff += DecFmtSize(decFmt.w1fmt);
}
}
}
if (tc) {
size = align(size, tcalign[tc]);
tcoff = size;
size += tcsize[tc];
if (tcalign[tc] > biggest)
biggest = tcalign[tc];
// NOTE: That we check getUVGenMode here means that we must include it in the decoder ID!
if (g_Config.bPrescaleUV && !throughmode && (gstate.getUVGenMode() == 0 || gstate.getUVGenMode() == 3)) {
steps_[numSteps_++] = tcstep_prescale[tc];
decFmt.uvfmt = DEC_FLOAT_2;
} else {
if (options.expandAllUVtoFloat) {
if (g_DoubleTextureCoordinates)
steps_[numSteps_++] = throughmode ? tcstep_through_RemasterToFloat[tc] : tcstep_RemasterToFloat[tc];
else
steps_[numSteps_++] = throughmode ? tcstep_throughToFloat[tc] : tcstepToFloat[tc];
decFmt.uvfmt = DEC_FLOAT_2;
} else {
if (g_DoubleTextureCoordinates)
steps_[numSteps_++] = throughmode ? tcstep_through_Remaster[tc] : tcstep_Remaster[tc];
else
steps_[numSteps_++] = throughmode ? tcstep_through[tc] : tcstep[tc];
switch (tc) {
case GE_VTYPE_TC_8BIT >> GE_VTYPE_TC_SHIFT:
decFmt.uvfmt = throughmode ? DEC_U8A_2 : DEC_U8_2;
break;
case GE_VTYPE_TC_16BIT >> GE_VTYPE_TC_SHIFT:
decFmt.uvfmt = throughmode ? DEC_U16A_2 : DEC_U16_2;
break;
case GE_VTYPE_TC_FLOAT >> GE_VTYPE_TC_SHIFT:
decFmt.uvfmt = DEC_FLOAT_2;
break;
}
}
}
decFmt.uvoff = decOff;
decOff += DecFmtSize(decFmt.uvfmt);
}
if (col) {
size = align(size, colalign[col]);
coloff = size;
size += colsize[col];
if (colalign[col] > biggest)
biggest = colalign[col];
steps_[numSteps_++] = morphcount == 1 ? colstep[col] : colstep_morph[col];
// All color formats decode to DEC_U8_4 currently.
// They can become floats later during transform though.
decFmt.c0fmt = DEC_U8_4;
decFmt.c0off = decOff;
decOff += DecFmtSize(decFmt.c0fmt);
} else {
coloff = 0;
}
if (nrm) {
size = align(size, nrmalign[nrm]);
nrmoff = size;
size += nrmsize[nrm];
if (nrmalign[nrm] > biggest)
biggest = nrmalign[nrm];
if (skinInDecode) {
steps_[numSteps_++] = nrmstep_skin[nrm];
// After skinning, we always have three floats.
decFmt.nrmfmt = DEC_FLOAT_3;
} else {
if (morphcount == 1) {
// The 8-bit and 16-bit normal formats match GL formats nicely, and the 16-bit normal format matches a D3D format so let's use them where possible.
switch (nrm) {
case GE_VTYPE_NRM_8BIT >> GE_VTYPE_NRM_SHIFT:
if (options.expand8BitNormalsToFloat) {
decFmt.nrmfmt = DEC_FLOAT_3;
steps_[numSteps_++] = nrmstep8BitToFloat[nrm];
} else {
decFmt.nrmfmt = DEC_S8_3;
steps_[numSteps_++] = nrmstep[nrm];
}
break;
case GE_VTYPE_NRM_16BIT >> GE_VTYPE_NRM_SHIFT:
decFmt.nrmfmt = DEC_S16_3;
steps_[numSteps_++] = nrmstep[nrm];
break;
case GE_VTYPE_NRM_FLOAT >> GE_VTYPE_NRM_SHIFT:
decFmt.nrmfmt = DEC_FLOAT_3;
steps_[numSteps_++] = nrmstep[nrm];
break;
}
} else {
decFmt.nrmfmt = DEC_FLOAT_3;
steps_[numSteps_++] = nrmstep_morph[nrm];
}
}
decFmt.nrmoff = decOff;
decOff += DecFmtSize(decFmt.nrmfmt);
}
if (!pos) {
ERROR_LOG_REPORT(G3D, "Vertices without position found");
pos = 1;
}
if (pos) { // there's always a position
size = align(size, posalign[pos]);
posoff = size;
size += possize[pos];
if (posalign[pos] > biggest)
biggest = posalign[pos];
if (throughmode) {
steps_[numSteps_++] = posstep_through[pos];
decFmt.posfmt = DEC_FLOAT_3;
} else {
if (skinInDecode) {
steps_[numSteps_++] = posstep_skin[pos];
decFmt.posfmt = DEC_FLOAT_3;
} else {
steps_[numSteps_++] = morphcount == 1 ? posstep[pos] : posstep_morph[pos];
decFmt.posfmt = DEC_FLOAT_3;
}
}
decFmt.posoff = decOff;
decOff += DecFmtSize(decFmt.posfmt);
}
decFmt.stride = decOff;
size = align(size, biggest);
onesize_ = size;
size *= morphcount;
DEBUG_LOG(G3D, "SVT : size = %i, aligned to biggest %i", size, biggest);
// Attempt to JIT as well
if (jitCache && g_Config.bVertexDecoderJit) {
jitted_ = jitCache->Compile(*this, &jittedSize_);
if (!jitted_) {
WARN_LOG(G3D, "Vertex decoder JIT failed! fmt = %08x", fmt_);
}
}
}
void VertexDecoder::DecodeVerts(u8 *decodedptr, const void *verts, int indexLowerBound, int indexUpperBound) const {
// Decode the vertices within the found bounds, once each
// decoded_ and ptr_ are used in the steps, so can't be turned into locals for speed.
decoded_ = decodedptr;
ptr_ = (const u8*)verts + indexLowerBound * size;
int count = indexUpperBound - indexLowerBound + 1;
int stride = decFmt.stride;
if (jitted_) {
// We've compiled the steps into optimized machine code, so just jump!
jitted_(ptr_, decoded_, count);
} else {
// Interpret the decode steps
for (; count; count--) {
for (int i = 0; i < numSteps_; i++) {
((*this).*steps_[i])();
}
ptr_ += size;
decoded_ += stride;
}
}
}
static const char *posnames[4] = { "?", "s8", "s16", "f" };
static const char *nrmnames[4] = { "", "s8", "s16", "f" };
static const char *tcnames[4] = { "", "u8", "u16", "f" };
static const char *idxnames[4] = { "-", "u8", "u16", "?" };
static const char *weightnames[4] = { "-", "u8", "u16", "f" };
static const char *colnames[8] = { "", "?", "?", "?", "565", "5551", "4444", "8888" };
int VertexDecoder::ToString(char *output) const {
char * start = output;
output += sprintf(output, "P: %s ", posnames[pos]);
if (nrm)
output += sprintf(output, "N: %s ", nrmnames[nrm]);
if (col)
output += sprintf(output, "C: %s ", colnames[col]);
if (tc)
output += sprintf(output, "T: %s ", tcnames[tc]);
if (weighttype)
output += sprintf(output, "W: %s (%ix)", weightnames[weighttype], nweights);
if (idx)
output += sprintf(output, "I: %s ", idxnames[idx]);
if (morphcount > 1)
output += sprintf(output, "Morph: %i ", morphcount);
if (throughmode)
output += sprintf(output, " (through)");
output += sprintf(output, " (size: %i)", VertexSize());
return output - start;
}
std::string VertexDecoder::GetString(DebugShaderStringType stringType) {
char buffer[256];
switch (stringType) {
case SHADER_STRING_SHORT_DESC:
ToString(buffer);
return std::string(buffer);
case SHADER_STRING_SOURCE_CODE:
{
if (!jitted_)
return "Not compiled";
std::vector<std::string> lines;
#if defined(ARM64)
lines = DisassembleArm64((const u8 *)jitted_, jittedSize_);
#elif defined(ARM)
lines = DisassembleArm2((const u8 *)jitted_, jittedSize_);
#elif defined(MIPS)
// No MIPS disassembler defined
#else
lines = DisassembleX86((const u8 *)jitted_, jittedSize_);
#endif
std::string buffer;
for (auto line : lines) {
buffer += line;
buffer += "\n";
}
return buffer;
}
default:
return "N/A";
}
}
VertexDecoderJitCache::VertexDecoderJitCache()
#ifdef ARM64
: fp(this)
#endif
{
// 256k should be enough.
AllocCodeSpace(1024 * 64 * 4);
// Add some random code to "help" MSVC's buggy disassembler :(
#if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
using namespace Gen;
for (int i = 0; i < 100; i++) {
MOV(32, R(EAX), R(EBX));
RET();
}
#elif defined(ARM)
BKPT(0);
BKPT(0);
#endif
}
void VertexDecoderJitCache::Clear() {
ClearCodeSpace();
}