ppsspp/GPU/Common/VertexDecoderX86.cpp
Unknown W. Brackets 49f6c461ad Reporting: Fix some header includes.
Particularly in Common, avoid including Core/Reporting.h.
2022-12-27 14:58:20 -08:00

1699 lines
54 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#if PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)
#include <emmintrin.h>
#include "Common/CPUDetect.h"
#include "Core/Config.h"
#include "GPU/GPUState.h"
#include "GPU/Common/VertexDecoderCommon.h"
// We start out by converting the active matrices into 4x4 which are easier to multiply with
// using SSE / NEON and store them here.
alignas(16) static float bones[16 * 8];
using namespace Gen;
alignas(16) static const float by128[4] = {
1.0f / 128.0f, 1.0f / 128.0f, 1.0f / 128.0f, 1.0f / 128.0f
};
alignas(16) static const float by32768[4] = {
1.0f / 32768.0f, 1.0f / 32768.0f, 1.0f / 32768.0f, 1.0f / 32768.0f,
};
alignas(16) static const float by128_11[4] = {
1.0f / 128.0f, 1.0f / 128.0f, 1.0f, 1.0f,
};
alignas(16) static const float by32768_11[4] = {
1.0f / 32768.0f, 1.0f / 32768.0f, 1.0f, 1.0f,
};
alignas(16) static const u32 threeMasks[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 };
alignas(16) static const u32 aOne[4] = {0, 0, 0, 0x3F800000};
alignas(16) static const float by16384[4] = {
1.0f / 16384.0f, 1.0f / 16384.0f, 1.0f / 16384.0f, 1.0f / 16384.0f,
};
#if PPSSPP_ARCH(AMD64)
#ifdef _WIN32
static const X64Reg tempReg1 = RAX;
static const X64Reg tempReg2 = R9;
static const X64Reg tempReg3 = R10;
static const X64Reg srcReg = RCX;
static const X64Reg dstReg = RDX;
static const X64Reg counterReg = R8;
#else
static const X64Reg tempReg1 = RAX;
static const X64Reg tempReg2 = R9;
static const X64Reg tempReg3 = R10;
static const X64Reg srcReg = RDI;
static const X64Reg dstReg = RSI;
static const X64Reg counterReg = RDX;
#endif
#else
static const X64Reg tempReg1 = EAX;
static const X64Reg tempReg2 = EBX;
static const X64Reg tempReg3 = EDX;
static const X64Reg srcReg = ESI;
static const X64Reg dstReg = EDI;
static const X64Reg counterReg = ECX;
#endif
// XMM0-XMM5 are volatile on Windows X64
// XMM0-XMM7 are arguments (and thus volatile) on System V ABI (other x64 platforms)
static const X64Reg fpScaleOffsetReg = XMM0;
static const X64Reg fpScratchReg = XMM1;
static const X64Reg fpScratchReg2 = XMM2;
static const X64Reg fpScratchReg3 = XMM3;
static const X64Reg fpScratchReg4 = XMM4;
// We're gonna keep the current skinning matrix in 4 XMM regs. Fortunately we easily
// have space for that now.
// To debug, just comment them out one at a time until it works. We fall back
// on the interpreter if the compiler fails.
static const JitLookup jitLookup[] = {
{&VertexDecoder::Step_WeightsU8, &VertexDecoderJitCache::Jit_WeightsU8},
{&VertexDecoder::Step_WeightsU16, &VertexDecoderJitCache::Jit_WeightsU16},
{&VertexDecoder::Step_WeightsFloat, &VertexDecoderJitCache::Jit_WeightsFloat},
{&VertexDecoder::Step_WeightsU8Skin, &VertexDecoderJitCache::Jit_WeightsU8Skin},
{&VertexDecoder::Step_WeightsU16Skin, &VertexDecoderJitCache::Jit_WeightsU16Skin},
{&VertexDecoder::Step_WeightsFloatSkin, &VertexDecoderJitCache::Jit_WeightsFloatSkin},
{&VertexDecoder::Step_WeightsU8ToFloat, &VertexDecoderJitCache::Jit_WeightsU8ToFloat},
{&VertexDecoder::Step_WeightsU16ToFloat, &VertexDecoderJitCache::Jit_WeightsU16ToFloat},
{&VertexDecoder::Step_TcFloat, &VertexDecoderJitCache::Jit_TcFloat},
{&VertexDecoder::Step_TcU8ToFloat, &VertexDecoderJitCache::Jit_TcU8ToFloat},
{&VertexDecoder::Step_TcU16ToFloat, &VertexDecoderJitCache::Jit_TcU16ToFloat},
{&VertexDecoder::Step_TcU8Prescale, &VertexDecoderJitCache::Jit_TcU8Prescale},
{&VertexDecoder::Step_TcU16Prescale, &VertexDecoderJitCache::Jit_TcU16Prescale},
{&VertexDecoder::Step_TcFloatPrescale, &VertexDecoderJitCache::Jit_TcFloatPrescale},
{&VertexDecoder::Step_TcU16ThroughToFloat, &VertexDecoderJitCache::Jit_TcU16ThroughToFloat},
{&VertexDecoder::Step_TcFloatThrough, &VertexDecoderJitCache::Jit_TcFloatThrough},
{&VertexDecoder::Step_TcU8MorphToFloat, &VertexDecoderJitCache::Jit_TcU8MorphToFloat},
{&VertexDecoder::Step_TcU16MorphToFloat, &VertexDecoderJitCache::Jit_TcU16MorphToFloat},
{&VertexDecoder::Step_TcFloatMorph, &VertexDecoderJitCache::Jit_TcFloatMorph},
{&VertexDecoder::Step_TcU8PrescaleMorph, &VertexDecoderJitCache::Jit_TcU8PrescaleMorph},
{&VertexDecoder::Step_TcU16PrescaleMorph, &VertexDecoderJitCache::Jit_TcU16PrescaleMorph},
{&VertexDecoder::Step_TcFloatPrescaleMorph, &VertexDecoderJitCache::Jit_TcFloatPrescaleMorph},
{&VertexDecoder::Step_NormalS8, &VertexDecoderJitCache::Jit_NormalS8},
{&VertexDecoder::Step_NormalS8ToFloat, &VertexDecoderJitCache::Jit_NormalS8ToFloat},
{&VertexDecoder::Step_NormalS16, &VertexDecoderJitCache::Jit_NormalS16},
{&VertexDecoder::Step_NormalFloat, &VertexDecoderJitCache::Jit_NormalFloat},
{&VertexDecoder::Step_NormalS8Skin, &VertexDecoderJitCache::Jit_NormalS8Skin},
{&VertexDecoder::Step_NormalS16Skin, &VertexDecoderJitCache::Jit_NormalS16Skin},
{&VertexDecoder::Step_NormalFloatSkin, &VertexDecoderJitCache::Jit_NormalFloatSkin},
{&VertexDecoder::Step_Color8888, &VertexDecoderJitCache::Jit_Color8888},
{&VertexDecoder::Step_Color4444, &VertexDecoderJitCache::Jit_Color4444},
{&VertexDecoder::Step_Color565, &VertexDecoderJitCache::Jit_Color565},
{&VertexDecoder::Step_Color5551, &VertexDecoderJitCache::Jit_Color5551},
{&VertexDecoder::Step_PosS8Through, &VertexDecoderJitCache::Jit_PosS8Through},
{&VertexDecoder::Step_PosS16Through, &VertexDecoderJitCache::Jit_PosS16Through},
{&VertexDecoder::Step_PosFloatThrough, &VertexDecoderJitCache::Jit_PosFloatThrough},
{&VertexDecoder::Step_PosS8, &VertexDecoderJitCache::Jit_PosS8},
{&VertexDecoder::Step_PosS16, &VertexDecoderJitCache::Jit_PosS16},
{&VertexDecoder::Step_PosFloat, &VertexDecoderJitCache::Jit_PosFloat},
{&VertexDecoder::Step_PosS8Skin, &VertexDecoderJitCache::Jit_PosS8Skin},
{&VertexDecoder::Step_PosS16Skin, &VertexDecoderJitCache::Jit_PosS16Skin},
{&VertexDecoder::Step_PosFloatSkin, &VertexDecoderJitCache::Jit_PosFloatSkin},
{&VertexDecoder::Step_NormalS8Morph, &VertexDecoderJitCache::Jit_NormalS8Morph},
{&VertexDecoder::Step_NormalS16Morph, &VertexDecoderJitCache::Jit_NormalS16Morph},
{&VertexDecoder::Step_NormalFloatMorph, &VertexDecoderJitCache::Jit_NormalFloatMorph},
{&VertexDecoder::Step_PosS8Morph, &VertexDecoderJitCache::Jit_PosS8Morph},
{&VertexDecoder::Step_PosS16Morph, &VertexDecoderJitCache::Jit_PosS16Morph},
{&VertexDecoder::Step_PosFloatMorph, &VertexDecoderJitCache::Jit_PosFloatMorph},
{&VertexDecoder::Step_Color8888Morph, &VertexDecoderJitCache::Jit_Color8888Morph},
{&VertexDecoder::Step_Color4444Morph, &VertexDecoderJitCache::Jit_Color4444Morph},
{&VertexDecoder::Step_Color565Morph, &VertexDecoderJitCache::Jit_Color565Morph},
{&VertexDecoder::Step_Color5551Morph, &VertexDecoderJitCache::Jit_Color5551Morph},
};
JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec, int32_t *jittedSize) {
dec_ = &dec;
BeginWrite(4096);
const u8 *start = this->AlignCode16();
#if PPSSPP_ARCH(X86)
// Store register values
PUSH(ESI);
PUSH(EDI);
PUSH(EBX);
PUSH(EBP);
// Read parameters
int offset = 4;
MOV(32, R(srcReg), MDisp(ESP, 16 + offset + 0));
MOV(32, R(dstReg), MDisp(ESP, 16 + offset + 4));
MOV(32, R(counterReg), MDisp(ESP, 16 + offset + 8));
const uint8_t STACK_FIXED_ALLOC = 64;
#else
// Parameters automatically fall into place.
// This will align the stack properly to 16 bytes (the call of this function pushed RIP, which is 8 bytes).
const uint8_t STACK_FIXED_ALLOC = 96 + 8;
#endif
// Allocate temporary storage on the stack.
SUB(PTRBITS, R(ESP), Imm8(STACK_FIXED_ALLOC));
// Save XMM4/XMM5 which apparently can be problematic?
// Actually, if they are, it must be a compiler bug because they SHOULD be ok.
// So I won't bother.
MOVUPS(MDisp(ESP, 0), XMM4);
MOVUPS(MDisp(ESP, 16), XMM5);
MOVUPS(MDisp(ESP, 32), XMM6);
MOVUPS(MDisp(ESP, 48), XMM7);
#if PPSSPP_ARCH(AMD64)
MOVUPS(MDisp(ESP, 64), XMM8);
MOVUPS(MDisp(ESP, 80), XMM9);
#endif
bool prescaleStep = false;
// Look for prescaled texcoord steps
for (int i = 0; i < dec.numSteps_; i++) {
if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale ||
dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) {
prescaleStep = true;
}
if (dec.steps_[i] == &VertexDecoder::Step_TcU8PrescaleMorph ||
dec.steps_[i] == &VertexDecoder::Step_TcU16PrescaleMorph ||
dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescaleMorph) {
prescaleStep = true;
}
}
// Add code to convert matrices to 4x4.
// Later we might want to do this when the matrices are loaded instead.
if (dec.skinInDecode) {
MOV(PTRBITS, R(tempReg1), ImmPtr(&threeMasks));
MOVAPS(XMM4, MatR(tempReg1));
MOV(PTRBITS, R(tempReg1), ImmPtr(&aOne));
MOVUPS(XMM5, MatR(tempReg1));
MOV(PTRBITS, R(tempReg1), ImmPtr(gstate.boneMatrix));
MOV(PTRBITS, R(tempReg2), ImmPtr(bones));
for (int i = 0; i < dec.nweights; i++) {
MOVUPS(XMM0, MDisp(tempReg1, (12 * i) * 4));
MOVUPS(XMM1, MDisp(tempReg1, (12 * i + 3) * 4));
MOVUPS(XMM2, MDisp(tempReg1, (12 * i + 3 * 2) * 4));
MOVUPS(XMM3, MDisp(tempReg1, (12 * i + 3 * 3) * 4));
ANDPS(XMM0, R(XMM4));
ANDPS(XMM1, R(XMM4));
ANDPS(XMM2, R(XMM4));
ANDPS(XMM3, R(XMM4));
ORPS(XMM3, R(XMM5));
MOVAPS(MDisp(tempReg2, (16 * i) * 4), XMM0);
MOVAPS(MDisp(tempReg2, (16 * i + 4) * 4), XMM1);
MOVAPS(MDisp(tempReg2, (16 * i + 8) * 4), XMM2);
MOVAPS(MDisp(tempReg2, (16 * i + 12) * 4), XMM3);
}
}
// Keep the scale/offset in a few fp registers if we need it.
if (prescaleStep) {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.uv));
MOVUPS(fpScaleOffsetReg, MatR(tempReg1));
if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) {
MOV(PTRBITS, R(tempReg2), ImmPtr(&by128_11));
MULPS(fpScaleOffsetReg, MatR(tempReg2));
} else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) {
MOV(PTRBITS, R(tempReg2), ImmPtr(&by32768_11));
MULPS(fpScaleOffsetReg, MatR(tempReg2));
}
}
// Let's not bother with a proper stack frame. We just grab the arguments and go.
JumpTarget loopStart = GetCodePtr();
for (int i = 0; i < dec.numSteps_; i++) {
if (!CompileStep(dec, i)) {
EndWrite();
// Reset the code ptr and return zero to indicate that we failed.
ResetCodePtr(GetOffset(start));
return 0;
}
}
ADD(PTRBITS, R(srcReg), Imm32(dec.VertexSize()));
ADD(PTRBITS, R(dstReg), Imm32(dec.decFmt.stride));
SUB(32, R(counterReg), Imm8(1));
J_CC(CC_NZ, loopStart, true);
MOVUPS(XMM4, MDisp(ESP, 0));
MOVUPS(XMM5, MDisp(ESP, 16));
MOVUPS(XMM6, MDisp(ESP, 32));
MOVUPS(XMM7, MDisp(ESP, 48));
#if PPSSPP_ARCH(AMD64)
MOVUPS(XMM8, MDisp(ESP, 64));
MOVUPS(XMM9, MDisp(ESP, 80));
#endif
ADD(PTRBITS, R(ESP), Imm8(STACK_FIXED_ALLOC));
#if PPSSPP_ARCH(X86)
// Restore register values
POP(EBP);
POP(EBX);
POP(EDI);
POP(ESI);
#endif
RET();
*jittedSize = GetCodePtr() - start;
EndWrite();
return (JittedVertexDecoder)start;
}
void VertexDecoderJitCache::Jit_WeightsU8() {
switch (dec_->nweights) {
case 1:
MOVZX(32, 8, tempReg1, MDisp(srcReg, dec_->weightoff));
break;
case 2:
MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->weightoff));
break;
case 3:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
AND(32, R(tempReg1), Imm32(0x00FFFFFF));
break;
case 4:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
break;
case 5:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOVZX(32, 8, tempReg2, MDisp(srcReg, dec_->weightoff + 4));
break;
case 6:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->weightoff + 4));
break;
case 7:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->weightoff + 4));
AND(32, R(tempReg2), Imm32(0x00FFFFFF));
break;
case 8:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->weightoff + 4));
break;
}
if (dec_->nweights <= 4) {
MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1));
} else {
MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.w1off), R(tempReg2));
}
}
void VertexDecoderJitCache::Jit_WeightsU16() {
switch (dec_->nweights) {
case 1:
MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->weightoff));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), Imm32(0));
return;
case 2:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), Imm32(0));
return;
case 3:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->weightoff + 4));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), R(tempReg2));
return;
case 4:
// Anything above 4 will do 4 here, and then the rest after.
case 5:
case 6:
case 7:
case 8:
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->weightoff + 4));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off + 4), R(tempReg2));
break;
}
// Basic implementation - a short at a time. TODO: Optimize
int j;
for (j = 4; j < dec_->nweights; j++) {
MOV(16, R(tempReg1), MDisp(srcReg, dec_->weightoff + j * 2));
MOV(16, MDisp(dstReg, dec_->decFmt.w0off + j * 2), R(tempReg1));
}
while (j & 3) {
MOV(16, MDisp(dstReg, dec_->decFmt.w0off + j * 2), Imm16(0));
j++;
}
}
void VertexDecoderJitCache::Jit_WeightsU8ToFloat() {
if (dec_->nweights >= 4) {
Jit_AnyU8ToFloat(dec_->weightoff, 32);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
if (dec_->nweights > 4) {
Jit_AnyU8ToFloat(dec_->weightoff + 4, (dec_->nweights - 4) * 8);
MOVUPS(MDisp(dstReg, dec_->decFmt.w1off), XMM3);
}
} else {
Jit_AnyU8ToFloat(dec_->weightoff, dec_->nweights * 8);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
}
}
void VertexDecoderJitCache::Jit_WeightsU16ToFloat() {
if (dec_->nweights >= 4) {
Jit_AnyU16ToFloat(dec_->weightoff, 64);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
if (dec_->nweights > 4) {
Jit_AnyU16ToFloat(dec_->weightoff + 4 * 2, (dec_->nweights - 4) * 16);
MOVUPS(MDisp(dstReg, dec_->decFmt.w1off), XMM3);
}
} else {
Jit_AnyU16ToFloat(dec_->weightoff, dec_->nweights * 16);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
}
}
void VertexDecoderJitCache::Jit_WeightsFloat() {
int j;
switch (dec_->nweights) {
case 1:
// MOVSS: When the source operand is a memory location and destination operand is an XMM register, the three high-order doublewords of the destination operand are cleared to all 0s.
MOVSS(XMM3, MDisp(srcReg, dec_->weightoff));
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
break;
case 2:
MOVQ_xmm(XMM3, MDisp(srcReg, dec_->weightoff));
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
break;
case 4:
MOVUPS(XMM3, MDisp(srcReg, dec_->weightoff));
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
break;
case 5:
MOVUPS(XMM3, MDisp(srcReg, dec_->weightoff));
MOVSS(XMM4, MDisp(srcReg, dec_->weightoff + 16));
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off + 16), XMM4);
break;
case 6:
MOVUPS(XMM3, MDisp(srcReg, dec_->weightoff));
MOVQ_xmm(XMM4, MDisp(srcReg, dec_->weightoff + 16));
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off + 16), XMM4);
break;
case 8:
MOVUPS(XMM3, MDisp(srcReg, dec_->weightoff));
MOVUPS(XMM4, MDisp(srcReg, dec_->weightoff + 16));
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off), XMM3);
MOVUPS(MDisp(dstReg, dec_->decFmt.w0off + 16), XMM4);
break;
default:
for (j = 0; j < dec_->nweights; j++) {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->weightoff + j * 4));
MOV(32, MDisp(dstReg, dec_->decFmt.w0off + j * 4), R(tempReg1));
}
while (j & 3) { // Zero additional weights rounding up to 4.
MOV(32, MDisp(dstReg, dec_->decFmt.w0off + j * 4), Imm32(0));
j++;
}
break;
}
}
void VertexDecoderJitCache::Jit_WeightsU8Skin() {
MOV(PTRBITS, R(tempReg2), ImmPtr(&bones));
#if PPSSPP_ARCH(AMD64)
if (dec_->nweights > 4) {
// This reads 8 bytes, we split the top 4 so we can expand each set of 4.
MOVQ_xmm(XMM8, MDisp(srcReg, dec_->weightoff));
PSHUFD(XMM9, R(XMM8), _MM_SHUFFLE(1, 1, 1, 1));
} else {
MOVD_xmm(XMM8, MDisp(srcReg, dec_->weightoff));
}
if (cpu_info.bSSE4_1) {
PMOVZXBD(XMM8, R(XMM8));
} else {
PXOR(fpScratchReg, R(fpScratchReg));
PUNPCKLBW(XMM8, R(fpScratchReg));
PUNPCKLWD(XMM8, R(fpScratchReg));
}
if (dec_->nweights > 4) {
if (cpu_info.bSSE4_1) {
PMOVZXBD(XMM9, R(XMM9));
} else {
PUNPCKLBW(XMM9, R(fpScratchReg));
PUNPCKLWD(XMM9, R(fpScratchReg));
}
}
CVTDQ2PS(XMM8, R(XMM8));
if (dec_->nweights > 4)
CVTDQ2PS(XMM9, R(XMM9));
if (RipAccessible(&by128)) {
MULPS(XMM8, M(&by128)); // rip accessible
if (dec_->nweights > 4)
MULPS(XMM9, M(&by128)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by128));
MULPS(XMM8, MatR(tempReg1));
if (dec_->nweights > 4)
MULPS(XMM9, MatR(tempReg1));
}
auto weightToAllLanes = [this](X64Reg dst, int lane) {
X64Reg src = lane < 4 ? XMM8 : XMM9;
if (dst != INVALID_REG && dst != src) {
MOVAPS(dst, R(src));
} else {
// INVALID_REG means ruin the existing src (it's not needed any more.)
dst = src;
}
SHUFPS(dst, R(dst), _MM_SHUFFLE(lane % 4, lane % 4, lane % 4, lane % 4));
};
#endif
for (int j = 0; j < dec_->nweights; j++) {
X64Reg weight = XMM1;
#if PPSSPP_ARCH(AMD64)
X64Reg weightSrc = j < 4 ? XMM8 : XMM9;
if (j == 3 || j == dec_->nweights - 1) {
// In the previous iteration, we already spread this value to all lanes.
weight = weightSrc;
if (j == 0) {
// If there's only the one weight, no one shuffled it for us yet.
weightToAllLanes(weight, j);
}
// If we're on #3, prepare #4 if it's the last (and only for that reg, in fact.)
if (j == dec_->nweights - 2) {
weightToAllLanes(INVALID_REG, j + 1);
}
} else {
weightToAllLanes(weight, j);
// To improve latency, we shuffle in the last weight of the reg.
// If we're on slot #2, slot #3 will be the last. Otherwise, nweights - 1 is last.
if ((j == 2 && dec_->nweights > 3) || (j == dec_->nweights - 2)) {
// Prepare the last one now for better latency.
weightToAllLanes(INVALID_REG, j + 1);
}
}
#else
MOVZX(32, 8, tempReg1, MDisp(srcReg, dec_->weightoff + j));
CVTSI2SS(weight, R(tempReg1));
MULSS(weight, M(&by128)); // rip accessible (x86)
SHUFPS(weight, R(weight), _MM_SHUFFLE(0, 0, 0, 0));
#endif
if (j == 0) {
MOVAPS(XMM4, MDisp(tempReg2, 0));
MOVAPS(XMM5, MDisp(tempReg2, 16));
MOVAPS(XMM6, MDisp(tempReg2, 32));
MOVAPS(XMM7, MDisp(tempReg2, 48));
MULPS(XMM4, R(weight));
MULPS(XMM5, R(weight));
MULPS(XMM6, R(weight));
MULPS(XMM7, R(weight));
} else {
MOVAPS(XMM2, MDisp(tempReg2, 0));
MOVAPS(XMM3, MDisp(tempReg2, 16));
MULPS(XMM2, R(weight));
MULPS(XMM3, R(weight));
ADDPS(XMM4, R(XMM2));
ADDPS(XMM5, R(XMM3));
MOVAPS(XMM2, MDisp(tempReg2, 32));
MOVAPS(XMM3, MDisp(tempReg2, 48));
MULPS(XMM2, R(weight));
MULPS(XMM3, R(weight));
ADDPS(XMM6, R(XMM2));
ADDPS(XMM7, R(XMM3));
}
ADD(PTRBITS, R(tempReg2), Imm8(4 * 16));
}
}
void VertexDecoderJitCache::Jit_WeightsU16Skin() {
MOV(PTRBITS, R(tempReg2), ImmPtr(&bones));
#if PPSSPP_ARCH(AMD64)
if (dec_->nweights > 6) {
// Since this is probably not aligned, two MOVQs are better than one MOVDQU.
MOVQ_xmm(XMM8, MDisp(srcReg, dec_->weightoff));
MOVQ_xmm(XMM9, MDisp(srcReg, dec_->weightoff + 8));
} else if (dec_->nweights > 4) {
// Since this is probably not aligned, two MOVQs are better than one MOVDQU.
MOVQ_xmm(XMM8, MDisp(srcReg, dec_->weightoff));
MOVD_xmm(XMM9, MDisp(srcReg, dec_->weightoff + 8));
} else if (dec_->nweights > 2) {
MOVQ_xmm(XMM8, MDisp(srcReg, dec_->weightoff));
} else {
MOVD_xmm(XMM8, MDisp(srcReg, dec_->weightoff));
}
if (cpu_info.bSSE4_1) {
PMOVZXWD(XMM8, R(XMM8));
} else {
PXOR(fpScratchReg, R(fpScratchReg));
PUNPCKLWD(XMM8, R(fpScratchReg));
}
if (dec_->nweights > 4) {
if (cpu_info.bSSE4_1) {
PMOVZXWD(XMM9, R(XMM9));
} else {
PUNPCKLWD(XMM9, R(fpScratchReg));
}
}
CVTDQ2PS(XMM8, R(XMM8));
if (dec_->nweights > 4)
CVTDQ2PS(XMM9, R(XMM9));
if (RipAccessible(&by32768)) {
MULPS(XMM8, M(&by32768)); // rip accessible
if (dec_->nweights > 4)
MULPS(XMM9, M(&by32768)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by32768));
MULPS(XMM8, MatR(tempReg1));
if (dec_->nweights > 4)
MULPS(XMM9, MatR(tempReg1));
}
auto weightToAllLanes = [this](X64Reg dst, int lane) {
X64Reg src = lane < 4 ? XMM8 : XMM9;
if (dst != INVALID_REG && dst != src) {
MOVAPS(dst, R(src));
} else {
// INVALID_REG means ruin the existing src (it's not needed any more.)
dst = src;
}
SHUFPS(dst, R(dst), _MM_SHUFFLE(lane % 4, lane % 4, lane % 4, lane % 4));
};
#endif
for (int j = 0; j < dec_->nweights; j++) {
X64Reg weight = XMM1;
#if PPSSPP_ARCH(AMD64)
X64Reg weightSrc = j < 4 ? XMM8 : XMM9;
if (j == 3 || j == dec_->nweights - 1) {
// In the previous iteration, we already spread this value to all lanes.
weight = weightSrc;
if (j == 0) {
// If there's only the one weight, no one shuffled it for us yet.
weightToAllLanes(weight, j);
}
// If we're on #3, prepare #4 if it's the last (and only for that reg, in fact.)
if (j == dec_->nweights - 2) {
weightToAllLanes(INVALID_REG, j + 1);
}
} else {
weightToAllLanes(weight, j);
// To improve latency, we shuffle in the last weight of the reg.
// If we're on slot #2, slot #3 will be the last. Otherwise, nweights - 1 is last.
if ((j == 2 && dec_->nweights > 3) || (j == dec_->nweights - 2)) {
// Prepare the last one now for better latency.
weightToAllLanes(INVALID_REG, j + 1);
}
}
#else
MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->weightoff + j * 2));
CVTSI2SS(weight, R(tempReg1));
MULSS(weight, M(&by32768)); // rip accessible (x86)
SHUFPS(weight, R(weight), _MM_SHUFFLE(0, 0, 0, 0));
#endif
if (j == 0) {
MOVAPS(XMM4, MDisp(tempReg2, 0));
MOVAPS(XMM5, MDisp(tempReg2, 16));
MOVAPS(XMM6, MDisp(tempReg2, 32));
MOVAPS(XMM7, MDisp(tempReg2, 48));
MULPS(XMM4, R(weight));
MULPS(XMM5, R(weight));
MULPS(XMM6, R(weight));
MULPS(XMM7, R(weight));
} else {
MOVAPS(XMM2, MDisp(tempReg2, 0));
MOVAPS(XMM3, MDisp(tempReg2, 16));
MULPS(XMM2, R(weight));
MULPS(XMM3, R(weight));
ADDPS(XMM4, R(XMM2));
ADDPS(XMM5, R(XMM3));
MOVAPS(XMM2, MDisp(tempReg2, 32));
MOVAPS(XMM3, MDisp(tempReg2, 48));
MULPS(XMM2, R(weight));
MULPS(XMM3, R(weight));
ADDPS(XMM6, R(XMM2));
ADDPS(XMM7, R(XMM3));
}
ADD(PTRBITS, R(tempReg2), Imm8(4 * 16));
}
}
void VertexDecoderJitCache::Jit_WeightsFloatSkin() {
MOV(PTRBITS, R(tempReg2), ImmPtr(&bones));
for (int j = 0; j < dec_->nweights; j++) {
MOVSS(XMM1, MDisp(srcReg, dec_->weightoff + j * 4));
SHUFPS(XMM1, R(XMM1), _MM_SHUFFLE(0, 0, 0, 0));
if (j == 0) {
MOVAPS(XMM4, MDisp(tempReg2, 0));
MOVAPS(XMM5, MDisp(tempReg2, 16));
MOVAPS(XMM6, MDisp(tempReg2, 32));
MOVAPS(XMM7, MDisp(tempReg2, 48));
MULPS(XMM4, R(XMM1));
MULPS(XMM5, R(XMM1));
MULPS(XMM6, R(XMM1));
MULPS(XMM7, R(XMM1));
} else {
MOVAPS(XMM2, MDisp(tempReg2, 0));
MOVAPS(XMM3, MDisp(tempReg2, 16));
MULPS(XMM2, R(XMM1));
MULPS(XMM3, R(XMM1));
ADDPS(XMM4, R(XMM2));
ADDPS(XMM5, R(XMM3));
MOVAPS(XMM2, MDisp(tempReg2, 32));
MOVAPS(XMM3, MDisp(tempReg2, 48));
MULPS(XMM2, R(XMM1));
MULPS(XMM3, R(XMM1));
ADDPS(XMM6, R(XMM2));
ADDPS(XMM7, R(XMM3));
}
ADD(PTRBITS, R(tempReg2), Imm8(4 * 16));
}
}
void VertexDecoderJitCache::Jit_TcU8ToFloat() {
Jit_AnyU8ToFloat(dec_->tcoff, 16);
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), XMM3);
}
void VertexDecoderJitCache::Jit_TcU16ToFloat() {
Jit_AnyU16ToFloat(dec_->tcoff, 32);
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), XMM3);
}
void VertexDecoderJitCache::Jit_TcFloat() {
#if PPSSPP_ARCH(AMD64)
MOV(64, R(tempReg1), MDisp(srcReg, dec_->tcoff));
MOV(64, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1));
#else
MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->tcoff + 4));
MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.uvoff + 4), R(tempReg2));
#endif
}
void VertexDecoderJitCache::Jit_TcU8Prescale() {
// TODO: The first five instructions could be done in 1 or 2 in SSE4
MOVZX(32, 8, tempReg1, MDisp(srcReg, dec_->tcoff));
MOVZX(32, 8, tempReg2, MDisp(srcReg, dec_->tcoff + 1));
CVTSI2SS(fpScratchReg, R(tempReg1));
CVTSI2SS(fpScratchReg2, R(tempReg2));
UNPCKLPS(fpScratchReg, R(fpScratchReg2));
MULPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
ADDPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcU16Prescale() {
PXOR(fpScratchReg2, R(fpScratchReg2));
MOVD_xmm(fpScratchReg, MDisp(srcReg, dec_->tcoff));
PUNPCKLWD(fpScratchReg, R(fpScratchReg2));
CVTDQ2PS(fpScratchReg, R(fpScratchReg));
MULPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
ADDPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcFloatPrescale() {
MOVQ_xmm(fpScratchReg, MDisp(srcReg, dec_->tcoff));
MULPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
ADDPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcAnyMorph(int bits) {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
if (!cpu_info.bSSE4_1) {
PXOR(fpScratchReg4, R(fpScratchReg4));
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg2;
const OpArg src = MDisp(srcReg, dec_->onesize_ * n + dec_->tcoff);
// Load the actual values and convert to float.
if (bits == 32) {
// Two floats: just load as a MOVQ.
MOVQ_xmm(reg, src);
} else {
if (bits == 8) {
MOVZX(32, 16, tempReg2, src);
MOVD_xmm(reg, R(tempReg2));
} else {
MOVD_xmm(reg, src);
}
if (cpu_info.bSSE4_1) {
if (bits == 8) {
PMOVZXBD(reg, R(reg));
} else {
PMOVZXWD(reg, R(reg));
}
} else {
if (bits == 8) {
PUNPCKLBW(reg, R(fpScratchReg4));
}
PUNPCKLWD(reg, R(fpScratchReg4));
}
CVTDQ2PS(reg, R(reg));
}
// And now scale by the weight.
MOVSS(fpScratchReg3, MDisp(tempReg1, n * sizeof(float)));
SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg3));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg2));
} else {
first = false;
}
}
}
void VertexDecoderJitCache::Jit_TcU8MorphToFloat() {
Jit_TcAnyMorph(8);
// They were all added (weighted) pre-normalize, we normalize once here.
if (RipAccessible(&by128)) {
MULPS(fpScratchReg, M(&by128)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by128));
MULPS(fpScratchReg, MatR(tempReg1));
}
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcU16MorphToFloat() {
Jit_TcAnyMorph(16);
// They were all added (weighted) pre-normalize, we normalize once here.
if (RipAccessible(&by32768)) {
MULPS(fpScratchReg, M(&by32768)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by32768));
MULPS(fpScratchReg, MatR(tempReg1));
}
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcFloatMorph() {
Jit_TcAnyMorph(32);
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcU8PrescaleMorph() {
Jit_TcAnyMorph(8);
// The scale takes into account the u8 normalization.
MULPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
ADDPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcU16PrescaleMorph() {
Jit_TcAnyMorph(16);
// The scale takes into account the u16 normalization.
MULPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
ADDPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcFloatPrescaleMorph() {
Jit_TcAnyMorph(32);
MULPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
ADDPS(fpScratchReg, R(fpScaleOffsetReg));
SHUFPS(fpScaleOffsetReg, R(fpScaleOffsetReg), _MM_SHUFFLE(1, 0, 3, 2));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_TcU16ThroughToFloat() {
PXOR(fpScratchReg2, R(fpScratchReg2));
MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff));
MOVD_xmm(fpScratchReg, R(tempReg1));
PUNPCKLWD(fpScratchReg, R(fpScratchReg2));
CVTDQ2PS(fpScratchReg, R(fpScratchReg));
MOVQ_xmm(MDisp(dstReg, dec_->decFmt.uvoff), fpScratchReg);
MOV(32, R(tempReg2), R(tempReg1));
SHR(32, R(tempReg2), Imm8(16));
MOV(PTRBITS, R(tempReg3), ImmPtr(&gstate_c.vertBounds));
auto updateSide = [&](X64Reg r, CCFlags skipCC, int offset) {
CMP(16, R(r), MDisp(tempReg3, offset));
FixupBranch skip = J_CC(skipCC);
MOV(16, MDisp(tempReg3, offset), R(r));
SetJumpTarget(skip);
};
// TODO: Can this actually be fast? Hmm, floats aren't better.
updateSide(tempReg1, CC_GE, offsetof(KnownVertexBounds, minU));
updateSide(tempReg1, CC_LE, offsetof(KnownVertexBounds, maxU));
updateSide(tempReg2, CC_GE, offsetof(KnownVertexBounds, minV));
updateSide(tempReg2, CC_LE, offsetof(KnownVertexBounds, maxV));
}
void VertexDecoderJitCache::Jit_TcFloatThrough() {
#if PPSSPP_ARCH(AMD64)
MOV(64, R(tempReg1), MDisp(srcReg, dec_->tcoff));
MOV(64, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1));
#else
MOV(32, R(tempReg1), MDisp(srcReg, dec_->tcoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->tcoff + 4));
MOV(32, MDisp(dstReg, dec_->decFmt.uvoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.uvoff + 4), R(tempReg2));
#endif
}
void VertexDecoderJitCache::Jit_Color8888() {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->coloff));
MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg1));
CMP(32, R(tempReg1), Imm32(0xFF000000));
FixupBranch skip = J_CC(CC_AE, false);
if (RipAccessible(&gstate_c.vertexFullAlpha)) {
MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.vertexFullAlpha));
MOV(8, MatR(tempReg1), Imm8(0));
}
SetJumpTarget(skip);
}
alignas(16) static const u32 color4444mask[4] = { 0xf00ff00f, 0xf00ff00f, 0xf00ff00f, 0xf00ff00f, };
void VertexDecoderJitCache::Jit_Color4444() {
// This over-reads slightly, but we assume pos or another component follows anyway.
MOVD_xmm(fpScratchReg, MDisp(srcReg, dec_->coloff));
// Spread to RGBA -> R00GB00A.
PUNPCKLBW(fpScratchReg, R(fpScratchReg));
if (RipAccessible(&color4444mask[0])) {
PAND(fpScratchReg, M(&color4444mask[0])); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&color4444mask));
PAND(fpScratchReg, MatR(tempReg1));
}
MOVSS(fpScratchReg2, R(fpScratchReg));
MOVSS(fpScratchReg3, R(fpScratchReg));
// Create 0R000B00 and 00G000A0.
PSRLW(fpScratchReg2, 4);
PSLLW(fpScratchReg3, 4);
// Combine for the complete set: RRGGBBAA.
POR(fpScratchReg, R(fpScratchReg2));
POR(fpScratchReg, R(fpScratchReg3));
MOVD_xmm(R(tempReg1), fpScratchReg);
MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg1));
CMP(32, R(tempReg1), Imm32(0xFF000000));
FixupBranch skip = J_CC(CC_AE, false);
if (RipAccessible(&gstate_c.vertexFullAlpha)) {
MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.vertexFullAlpha));
MOV(8, MatR(tempReg1), Imm8(0));
}
SetJumpTarget(skip);
}
void VertexDecoderJitCache::Jit_Color565() {
MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->coloff));
MOV(32, R(tempReg2), R(tempReg1));
AND(32, R(tempReg2), Imm32(0x0000001F));
// B (we do R and B at the same time, they're both 5.)
MOV(32, R(tempReg3), R(tempReg1));
AND(32, R(tempReg3), Imm32(0x0000F800));
SHL(32, R(tempReg3), Imm8(5));
OR(32, R(tempReg2), R(tempReg3));
// Expand 5 -> 8. At this point we have 00BB00RR.
MOV(32, R(tempReg3), R(tempReg2));
SHL(32, R(tempReg2), Imm8(3));
SHR(32, R(tempReg3), Imm8(2));
OR(32, R(tempReg2), R(tempReg3));
AND(32, R(tempReg2), Imm32(0x00FF00FF));
// Now's as good a time to put in A as any.
OR(32, R(tempReg2), Imm32(0xFF000000));
// Last, we need to align, extract, and expand G.
// 3 to align to G, and then 2 to expand to 8.
SHL(32, R(tempReg1), Imm8(3 + 2));
AND(32, R(tempReg1), Imm32(0x0000FC00));
MOV(32, R(tempReg3), R(tempReg1));
// 2 to account for tempReg1 being preshifted, 4 for expansion.
SHR(32, R(tempReg3), Imm8(2 + 4));
OR(32, R(tempReg1), R(tempReg3));
AND(32, R(tempReg1), Imm32(0x0000FF00));
OR(32, R(tempReg2), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg2));
// Never has alpha, no need to update fullAlphaArg.
}
void VertexDecoderJitCache::Jit_Color5551() {
MOVZX(32, 16, tempReg1, MDisp(srcReg, dec_->coloff));
MOV(32, R(tempReg2), R(tempReg1));
MOV(32, R(tempReg3), R(tempReg1));
AND(32, R(tempReg2), Imm32(0x0000001F));
AND(32, R(tempReg3), Imm32(0x000003E0));
SHL(32, R(tempReg3), Imm8(3));
OR(32, R(tempReg2), R(tempReg3));
// This mask intentionally keeps alpha, but it's all the same bit so we can keep it.
AND(32, R(tempReg1), Imm32(0x0000FC00));
SHL(32, R(tempReg1), Imm8(6));
// At this point, 0x003F1F1F are potentially set in tempReg2.
OR(32, R(tempReg2), R(tempReg1));
// Expand 5 -> 8. After this is just expanding A.
MOV(32, R(tempReg3), R(tempReg2));
SHL(32, R(tempReg2), Imm8(3));
SHR(32, R(tempReg3), Imm8(2));
// Chop off the bits that were shifted out (and also alpha.)
AND(32, R(tempReg3), Imm32(0x00070707));
OR(32, R(tempReg2), R(tempReg3));
// For A, use sign extend to repeat the bit. B is still here, but it's the same bits.
SHL(32, R(tempReg1), Imm8(10));
SAR(32, R(tempReg1), Imm8(7));
OR(32, R(tempReg2), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.c0off), R(tempReg2));
// Let's AND to avoid a branch, tempReg1 has alpha only in the top 8 bits.
SHR(32, R(tempReg1), Imm8(24));
if (RipAccessible(&gstate_c.vertexFullAlpha)) {
AND(8, M(&gstate_c.vertexFullAlpha), R(tempReg1)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg3), ImmPtr(&gstate_c.vertexFullAlpha));
AND(8, MatR(tempReg3), R(tempReg1));
}
}
void VertexDecoderJitCache::Jit_Color8888Morph() {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
if (!cpu_info.bSSE4_1) {
PXOR(fpScratchReg4, R(fpScratchReg4));
}
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg2;
MOVD_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff));
if (cpu_info.bSSE4_1) {
PMOVZXBD(reg, R(reg));
} else {
PUNPCKLBW(reg, R(fpScratchReg4));
PUNPCKLWD(reg, R(fpScratchReg4));
}
CVTDQ2PS(reg, R(reg));
// And now the weight.
MOVSS(fpScratchReg3, MDisp(tempReg1, n * sizeof(float)));
SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg3));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg2));
} else {
first = false;
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off);
}
alignas(16) static const float byColor4444[4] = { 255.0f / 15.0f, 255.0f / 15.0f, 255.0f / 15.0f, 255.0f / 15.0f, };
void VertexDecoderJitCache::Jit_Color4444Morph() {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
if (!cpu_info.bSSE4_1) {
PXOR(fpScratchReg4, R(fpScratchReg4));
}
MOV(PTRBITS, R(tempReg2), ImmPtr(color4444mask));
MOVDQA(XMM5, MatR(tempReg2));
MOV(PTRBITS, R(tempReg2), ImmPtr(byColor4444));
MOVAPS(XMM6, MatR(tempReg2));
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg2;
MOVD_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff));
PUNPCKLBW(reg, R(reg));
PAND(reg, R(XMM5));
MOVSS(fpScratchReg3, R(reg));
PSLLW(fpScratchReg3, 4);
POR(reg, R(fpScratchReg3));
PSRLW(reg, 4);
if (cpu_info.bSSE4_1) {
PMOVZXBD(reg, R(reg));
} else {
PUNPCKLBW(reg, R(fpScratchReg4));
PUNPCKLWD(reg, R(fpScratchReg4));
}
CVTDQ2PS(reg, R(reg));
MULPS(reg, R(XMM6));
// And now the weight.
MOVSS(fpScratchReg3, MDisp(tempReg1, n * sizeof(float)));
SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg3));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg2));
} else {
first = false;
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off);
}
// The mask is intentionally in reverse order (but skips A.)
alignas(16) static const u32 color565Mask[4] = { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000, };
alignas(16) static const float byColor565[4] = { 255.0f / 31.0f, 255.0f / 63.0f, 255.0f / 31.0f, 255.0f / 1.0f, };
void VertexDecoderJitCache::Jit_Color565Morph() {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
MOV(PTRBITS, R(tempReg2), ImmPtr(color565Mask));
MOVDQA(XMM5, MatR(tempReg2));
MOV(PTRBITS, R(tempReg2), ImmPtr(byColor565));
MOVAPS(XMM6, MatR(tempReg2));
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg3;
MOVD_xmm(fpScratchReg2, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff));
// Spread it out into each lane. We end up with it reversed (R high, A low.)
// Below, we shift out each lane from low to high and reverse them.
PSHUFD(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0));
PAND(fpScratchReg2, R(XMM5));
// Alpha handled in Jit_WriteMorphColor.
// Blue first.
MOVSS(reg, R(fpScratchReg2));
PSRLD(reg, 6);
PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 0, 0, 0));
// Green, let's shift it into the right lane first.
PSRLDQ(fpScratchReg2, 4);
MOVSS(reg, R(fpScratchReg2));
PSRLD(reg, 5);
PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 2, 0, 0));
// Last one, red.
PSRLDQ(fpScratchReg2, 4);
MOVSS(reg, R(fpScratchReg2));
CVTDQ2PS(reg, R(reg));
MULPS(reg, R(XMM6));
// And now the weight.
MOVSS(fpScratchReg2, MDisp(tempReg1, n * sizeof(float)));
SHUFPS(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg2));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg3));
} else {
first = false;
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off, false);
}
// The mask is intentionally in reverse order.
alignas(16) static const u32 color5551Mask[4] = { 0x00008000, 0x00007c00, 0x000003e0, 0x0000001f, };
alignas(16) static const float byColor5551[4] = { 255.0f / 31.0f, 255.0f / 31.0f, 255.0f / 31.0f, 255.0f / 1.0f, };
void VertexDecoderJitCache::Jit_Color5551Morph() {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
MOV(PTRBITS, R(tempReg2), ImmPtr(color5551Mask));
MOVDQA(XMM5, MatR(tempReg2));
MOV(PTRBITS, R(tempReg2), ImmPtr(byColor5551));
MOVAPS(XMM6, MatR(tempReg2));
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg3;
MOVD_xmm(fpScratchReg2, MDisp(srcReg, dec_->onesize_ * n + dec_->coloff));
// Spread it out into each lane.
PSHUFD(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0));
PAND(fpScratchReg2, R(XMM5));
// Alpha first.
MOVSS(reg, R(fpScratchReg2));
PSRLD(reg, 5);
PSHUFD(reg, R(reg), _MM_SHUFFLE(0, 0, 0, 0));
// Blue, let's shift it into the right lane first.
PSRLDQ(fpScratchReg2, 4);
MOVSS(reg, R(fpScratchReg2));
PSRLD(reg, 5);
PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 0, 0, 0));
// Green.
PSRLDQ(fpScratchReg2, 4);
MOVSS(reg, R(fpScratchReg2));
PSRLD(reg, 5);
PSHUFD(reg, R(reg), _MM_SHUFFLE(3, 2, 0, 0));
// Last one, red.
PSRLDQ(fpScratchReg2, 4);
MOVSS(reg, R(fpScratchReg2));
CVTDQ2PS(reg, R(reg));
MULPS(reg, R(XMM6));
// And now the weight.
MOVSS(fpScratchReg2, MDisp(tempReg1, n * sizeof(float)));
SHUFPS(fpScratchReg2, R(fpScratchReg2), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg2));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg3));
} else {
first = false;
}
}
Jit_WriteMorphColor(dec_->decFmt.c0off);
}
void VertexDecoderJitCache::Jit_WriteMorphColor(int outOff, bool checkAlpha) {
// Pack back into a u32, with saturation.
CVTPS2DQ(fpScratchReg, R(fpScratchReg));
PACKSSDW(fpScratchReg, R(fpScratchReg));
PACKUSWB(fpScratchReg, R(fpScratchReg));
MOVD_xmm(R(tempReg1), fpScratchReg);
// TODO: May be a faster way to do this without the MOVD.
if (checkAlpha) {
CMP(32, R(tempReg1), Imm32(0xFF000000));
FixupBranch skip = J_CC(CC_AE, false);
if (RipAccessible(&gstate_c.vertexFullAlpha)) {
MOV(8, M(&gstate_c.vertexFullAlpha), Imm8(0)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg2), ImmPtr(&gstate_c.vertexFullAlpha));
MOV(8, MatR(tempReg2), Imm8(0));
}
SetJumpTarget(skip);
} else {
// Force alpha to full if we're not checking it.
OR(32, R(tempReg1), Imm32(0xFF000000));
}
MOV(32, MDisp(dstReg, outOff), R(tempReg1));
}
// Copy 3 bytes and then a zero. Might as well copy four.
void VertexDecoderJitCache::Jit_NormalS8() {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->nrmoff));
AND(32, R(tempReg1), Imm32(0x00FFFFFF));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1));
}
void VertexDecoderJitCache::Jit_NormalS8ToFloat() {
Jit_AnyS8ToFloat(dec_->nrmoff);
MOVUPS(MDisp(dstReg, dec_->decFmt.nrmoff), XMM3);
}
// Copy 6 bytes and then 2 zeroes.
void VertexDecoderJitCache::Jit_NormalS16() {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->nrmoff));
MOVZX(32, 16, tempReg2, MDisp(srcReg, dec_->nrmoff + 4));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 4), R(tempReg2));
}
void VertexDecoderJitCache::Jit_NormalFloat() {
if (cpu_info.Mode64bit) {
MOV(64, R(tempReg1), MDisp(srcReg, dec_->nrmoff));
MOV(32, R(tempReg3), MDisp(srcReg, dec_->nrmoff + 8));
MOV(64, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 8), R(tempReg3));
} else {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->nrmoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->nrmoff + 4));
MOV(32, R(tempReg3), MDisp(srcReg, dec_->nrmoff + 8));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 4), R(tempReg2));
MOV(32, MDisp(dstReg, dec_->decFmt.nrmoff + 8), R(tempReg3));
}
}
// This could be a bit shorter with AVX 3-operand instructions and FMA.
void VertexDecoderJitCache::Jit_WriteMatrixMul(int outOff, bool pos) {
MOVAPS(XMM1, R(XMM3));
MOVAPS(XMM2, R(XMM3));
SHUFPS(XMM1, R(XMM1), _MM_SHUFFLE(0, 0, 0, 0));
SHUFPS(XMM2, R(XMM2), _MM_SHUFFLE(1, 1, 1, 1));
SHUFPS(XMM3, R(XMM3), _MM_SHUFFLE(2, 2, 2, 2));
MULPS(XMM1, R(XMM4));
MULPS(XMM2, R(XMM5));
MULPS(XMM3, R(XMM6));
ADDPS(XMM1, R(XMM2));
ADDPS(XMM1, R(XMM3));
if (pos) {
ADDPS(XMM1, R(XMM7));
}
MOVUPS(MDisp(dstReg, outOff), XMM1);
}
void VertexDecoderJitCache::Jit_NormalS8Skin() {
Jit_AnyS8ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalS16Skin() {
Jit_AnyS16ToFloat(dec_->nrmoff);
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
void VertexDecoderJitCache::Jit_NormalFloatSkin() {
MOVUPS(XMM3, MDisp(srcReg, dec_->nrmoff));
Jit_WriteMatrixMul(dec_->decFmt.nrmoff, false);
}
// Through expands into floats, always. Might want to look at changing this.
void VertexDecoderJitCache::Jit_PosS8Through() {
// SIMD doesn't really matter since this isn't useful on hardware.
XORPS(fpScratchReg, R(fpScratchReg));
for (int i = 0; i < 3; i++) {
MOVSS(MDisp(dstReg, dec_->decFmt.posoff + i * 4), fpScratchReg);
}
}
// Through expands into floats, always. Might want to look at changing this.
void VertexDecoderJitCache::Jit_PosS16Through() {
if (cpu_info.bSSE4_1) {
MOVD_xmm(fpScratchReg, MDisp(srcReg, dec_->posoff));
MOVZX(32, 16, tempReg3, MDisp(srcReg, dec_->posoff + 4));
MOVD_xmm(fpScratchReg2, R(tempReg3));
PMOVSXWD(fpScratchReg, R(fpScratchReg));
PUNPCKLQDQ(fpScratchReg, R(fpScratchReg2));
CVTDQ2PS(fpScratchReg, R(fpScratchReg));
MOVUPS(MDisp(dstReg, dec_->decFmt.posoff), fpScratchReg);
} else {
MOVSX(32, 16, tempReg1, MDisp(srcReg, dec_->posoff));
MOVSX(32, 16, tempReg2, MDisp(srcReg, dec_->posoff + 2));
MOVZX(32, 16, tempReg3, MDisp(srcReg, dec_->posoff + 4)); // NOTE: MOVZX
CVTSI2SS(fpScratchReg, R(tempReg1));
MOVSS(MDisp(dstReg, dec_->decFmt.posoff), fpScratchReg);
CVTSI2SS(fpScratchReg, R(tempReg2));
MOVSS(MDisp(dstReg, dec_->decFmt.posoff + 4), fpScratchReg);
CVTSI2SS(fpScratchReg, R(tempReg3));
MOVSS(MDisp(dstReg, dec_->decFmt.posoff + 8), fpScratchReg);
}
}
void VertexDecoderJitCache::Jit_PosFloatThrough() {
PXOR(fpScratchReg2, R(fpScratchReg2));
if (cpu_info.Mode64bit) {
MOV(64, R(tempReg1), MDisp(srcReg, dec_->posoff));
MOVSS(fpScratchReg, MDisp(srcReg, dec_->posoff + 8));
MOV(64, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1));
} else {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->posoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->posoff + 4));
MOVSS(fpScratchReg, MDisp(srcReg, dec_->posoff + 8));
MOV(32, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 4), R(tempReg2));
}
CVTTPS2DQ(fpScratchReg, R(fpScratchReg));
// Use pack to saturate to 0,65535.
if (cpu_info.bSSE4_1) {
PACKUSDW(fpScratchReg, R(fpScratchReg));
} else {
PSLLD(fpScratchReg, 16);
PSRAD(fpScratchReg, 16);
PACKSSDW(fpScratchReg, R(fpScratchReg));
}
PUNPCKLWD(fpScratchReg, R(fpScratchReg2));
CVTDQ2PS(fpScratchReg, R(fpScratchReg));
MOVSS(MDisp(dstReg, dec_->decFmt.posoff + 8), fpScratchReg);
}
void VertexDecoderJitCache::Jit_PosS8() {
Jit_AnyS8ToFloat(dec_->posoff);
MOVUPS(MDisp(dstReg, dec_->decFmt.posoff), XMM3);
}
void VertexDecoderJitCache::Jit_PosS16() {
Jit_AnyS16ToFloat(dec_->posoff);
MOVUPS(MDisp(dstReg, dec_->decFmt.posoff), XMM3);
}
// Just copy 12 bytes.
void VertexDecoderJitCache::Jit_PosFloat() {
if (cpu_info.Mode64bit) {
MOV(64, R(tempReg1), MDisp(srcReg, dec_->posoff));
MOV(32, R(tempReg3), MDisp(srcReg, dec_->posoff + 8));
MOV(64, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 8), R(tempReg3));
} else {
MOV(32, R(tempReg1), MDisp(srcReg, dec_->posoff));
MOV(32, R(tempReg2), MDisp(srcReg, dec_->posoff + 4));
MOV(32, R(tempReg3), MDisp(srcReg, dec_->posoff + 8));
MOV(32, MDisp(dstReg, dec_->decFmt.posoff), R(tempReg1));
MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 4), R(tempReg2));
MOV(32, MDisp(dstReg, dec_->decFmt.posoff + 8), R(tempReg3));
}
}
void VertexDecoderJitCache::Jit_PosS8Skin() {
Jit_AnyS8ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosS16Skin() {
Jit_AnyS16ToFloat(dec_->posoff);
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_PosFloatSkin() {
MOVUPS(XMM3, MDisp(srcReg, dec_->posoff));
Jit_WriteMatrixMul(dec_->decFmt.posoff, true);
}
void VertexDecoderJitCache::Jit_AnyS8ToFloat(int srcoff) {
if (!cpu_info.bSSE4_1) {
PXOR(XMM3, R(XMM3));
}
MOVD_xmm(XMM1, MDisp(srcReg, srcoff));
if (cpu_info.bSSE4_1) {
PMOVSXBD(XMM1, R(XMM1));
} else {
PUNPCKLBW(XMM1, R(XMM3));
PUNPCKLWD(XMM1, R(XMM3));
PSLLD(XMM1, 24);
PSRAD(XMM1, 24);
}
CVTDQ2PS(XMM3, R(XMM1));
if (RipAccessible(&by128)) {
MULPS(XMM3, M(&by128)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by128));
MULPS(XMM3, MatR(tempReg1));
}
}
void VertexDecoderJitCache::Jit_AnyS16ToFloat(int srcoff) {
if (!cpu_info.bSSE4_1) {
PXOR(XMM3, R(XMM3));
}
MOVQ_xmm(XMM1, MDisp(srcReg, srcoff));
if (cpu_info.bSSE4_1) {
PMOVSXWD(XMM1, R(XMM1));
} else {
PUNPCKLWD(XMM1, R(XMM3));
PSLLD(XMM1, 16);
PSRAD(XMM1, 16);
}
CVTDQ2PS(XMM3, R(XMM1));
if (RipAccessible(&by32768)) {
MULPS(XMM3, M(&by32768)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by32768));
MULPS(XMM3, MatR(tempReg1));
}
}
void VertexDecoderJitCache::Jit_AnyU8ToFloat(int srcoff, u32 bits) {
_dbg_assert_msg_((bits & ~(32 | 16 | 8)) == 0, "Bits must be a multiple of 8.");
_dbg_assert_msg_(bits >= 8 && bits <= 32, "Bits must be a between 8 and 32.");
if (!cpu_info.bSSE4_1) {
PXOR(XMM3, R(XMM3));
}
if (bits == 32) {
MOVD_xmm(XMM1, MDisp(srcReg, srcoff));
} else if (bits == 24) {
MOV(32, R(tempReg1), MDisp(srcReg, srcoff));
AND(32, R(tempReg1), Imm32(0x00FFFFFF));
MOVD_xmm(XMM1, R(tempReg1));
} else {
MOVZX(32, bits, tempReg1, MDisp(srcReg, srcoff));
MOVD_xmm(XMM1, R(tempReg1));
}
if (cpu_info.bSSE4_1) {
PMOVZXBD(XMM1, R(XMM1));
} else {
PUNPCKLBW(XMM1, R(XMM3));
PUNPCKLWD(XMM1, R(XMM3));
}
CVTDQ2PS(XMM3, R(XMM1));
if (RipAccessible(&by128)) {
MULPS(XMM3, M(&by128)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by128));
MULPS(XMM3, MatR(tempReg1));
}
}
void VertexDecoderJitCache::Jit_AnyU16ToFloat(int srcoff, u32 bits) {
_dbg_assert_msg_((bits & ~(64 | 32 | 16)) == 0, "Bits must be a multiple of 16.");
_dbg_assert_msg_(bits >= 16 && bits <= 64, "Bits must be a between 16 and 64.");
if (!cpu_info.bSSE4_1) {
PXOR(XMM3, R(XMM3));
}
if (bits == 64) {
MOVQ_xmm(XMM1, MDisp(srcReg, srcoff));
} else if (bits == 48) {
MOVD_xmm(XMM1, MDisp(srcReg, srcoff));
PINSRW(XMM1, MDisp(srcReg, srcoff + 4), 2);
} else if (bits == 32) {
MOVD_xmm(XMM1, MDisp(srcReg, srcoff));
} else if (bits == 16) {
MOVZX(32, bits, tempReg1, MDisp(srcReg, srcoff));
MOVD_xmm(XMM1, R(tempReg1));
}
if (cpu_info.bSSE4_1) {
PMOVZXWD(XMM1, R(XMM1));
} else {
PUNPCKLWD(XMM1, R(XMM3));
}
CVTDQ2PS(XMM3, R(XMM1));
if (RipAccessible(&by32768)) {
MULPS(XMM3, M(&by32768)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by32768));
MULPS(XMM3, MatR(tempReg1));
}
}
void VertexDecoderJitCache::Jit_AnyS8Morph(int srcoff, int dstoff) {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
if (!cpu_info.bSSE4_1) {
PXOR(fpScratchReg4, R(fpScratchReg4));
}
if (RipAccessible(&by128)) {
MOVAPS(XMM5, M(&by128)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by128));
MOVAPS(XMM5, MatR(tempReg1));
}
// Sum into fpScratchReg.
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg2;
// Okay, first convert to floats.
MOVD_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + srcoff));
if (cpu_info.bSSE4_1) {
PMOVSXBD(reg, R(reg));
} else {
PUNPCKLBW(reg, R(fpScratchReg4));
PUNPCKLWD(reg, R(fpScratchReg4));
PSLLD(reg, 24);
PSRAD(reg, 24);
}
CVTDQ2PS(reg, R(reg));
// Now, It's time to multiply by the weight and 1.0f/128.0f.
MOVSS(fpScratchReg3, MDisp(tempReg1, sizeof(float) * n));
MULSS(fpScratchReg3, R(XMM5));
SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg3));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg2));
} else {
first = false;
}
}
MOVUPS(MDisp(dstReg, dstoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_AnyS16Morph(int srcoff, int dstoff) {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
if (!cpu_info.bSSE4_1) {
PXOR(fpScratchReg4, R(fpScratchReg4));
}
if (RipAccessible(&by32768)) {
MOVAPS(XMM5, M(&by32768)); // rip accessible
} else {
MOV(PTRBITS, R(tempReg1), ImmPtr(&by32768));
MOVAPS(XMM5, MatR(tempReg1));
}
// Sum into fpScratchReg.
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg2;
// Okay, first convert to floats.
MOVQ_xmm(reg, MDisp(srcReg, dec_->onesize_ * n + srcoff));
if (cpu_info.bSSE4_1) {
PMOVSXWD(reg, R(reg));
} else {
PUNPCKLWD(reg, R(fpScratchReg4));
PSLLD(reg, 16);
PSRAD(reg, 16);
}
CVTDQ2PS(reg, R(reg));
// Now, It's time to multiply by the weight and 1.0f/32768.0f.
MOVSS(fpScratchReg3, MDisp(tempReg1, sizeof(float) * n));
MULSS(fpScratchReg3, R(XMM5));
SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg3));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg2));
} else {
first = false;
}
}
MOVUPS(MDisp(dstReg, dstoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_AnyFloatMorph(int srcoff, int dstoff) {
MOV(PTRBITS, R(tempReg1), ImmPtr(&gstate_c.morphWeights[0]));
// Sum into fpScratchReg.
bool first = true;
for (int n = 0; n < dec_->morphcount; ++n) {
const X64Reg reg = first ? fpScratchReg : fpScratchReg2;
MOVUPS(reg, MDisp(srcReg, dec_->onesize_ * n + srcoff));
MOVSS(fpScratchReg3, MDisp(tempReg1, sizeof(float) * n));
SHUFPS(fpScratchReg3, R(fpScratchReg3), _MM_SHUFFLE(0, 0, 0, 0));
MULPS(reg, R(fpScratchReg3));
if (!first) {
ADDPS(fpScratchReg, R(fpScratchReg2));
} else {
first = false;
}
}
MOVUPS(MDisp(dstReg, dstoff), fpScratchReg);
}
void VertexDecoderJitCache::Jit_PosS8Morph() {
Jit_AnyS8Morph(dec_->posoff, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosS16Morph() {
Jit_AnyS16Morph(dec_->posoff, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_PosFloatMorph() {
Jit_AnyFloatMorph(dec_->posoff, dec_->decFmt.posoff);
}
void VertexDecoderJitCache::Jit_NormalS8Morph() {
Jit_AnyS8Morph(dec_->nrmoff, dec_->decFmt.nrmoff);
}
void VertexDecoderJitCache::Jit_NormalS16Morph() {
Jit_AnyS16Morph(dec_->nrmoff, dec_->decFmt.nrmoff);
}
void VertexDecoderJitCache::Jit_NormalFloatMorph() {
Jit_AnyFloatMorph(dec_->nrmoff, dec_->decFmt.nrmoff);
}
bool VertexDecoderJitCache::CompileStep(const VertexDecoder &dec, int step) {
// See if we find a matching JIT function
for (size_t i = 0; i < ARRAY_SIZE(jitLookup); i++) {
if (dec.steps_[step] == jitLookup[i].func) {
((*this).*jitLookup[i].jitFunc)();
return true;
}
}
return false;
}
#endif // PPSSPP_ARCH(X86) || PPSSPP_ARCH(AMD64)