ppsspp/Core/Core.cpp

516 lines
14 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "ppsspp_config.h"
#include <set>
#include <chrono>
#include <cstdint>
#include <mutex>
#include <condition_variable>
#include "Common/System/NativeApp.h"
#include "Common/System/System.h"
#include "Common/System/Display.h"
#include "Common/TimeUtil.h"
#include "Common/Thread/ThreadUtil.h"
#include "Common/Profiler/Profiler.h"
#include "Common/GraphicsContext.h"
#include "Common/Log.h"
#include "Core/Core.h"
#include "Core/Config.h"
#include "Core/Host.h"
#include "Core/MemMap.h"
#include "Core/SaveState.h"
#include "Core/System.h"
#include "Core/Debugger/Breakpoints.h"
#include "Core/HW/Display.h"
#include "Core/MIPS/MIPS.h"
#include "GPU/Debugger/Stepping.h"
#ifdef _WIN32
#include "Common/CommonWindows.h"
#include "Windows/InputDevice.h"
#endif
// Time until we stop considering the core active without user input.
// Should this be configurable? 2 hours currently.
static const double ACTIVITY_IDLE_TIMEOUT = 2.0 * 3600.0;
static std::condition_variable m_StepCond;
static std::mutex m_hStepMutex;
static std::condition_variable m_InactiveCond;
static std::mutex m_hInactiveMutex;
static bool singleStepPending = false;
static int steppingCounter = 0;
static const char *steppingReason = "";
static uint32_t steppingAddress = 0;
static std::set<CoreLifecycleFunc> lifecycleFuncs;
static std::set<CoreStopRequestFunc> stopFuncs;
static bool windowHidden = false;
static double lastActivity = 0.0;
static double lastKeepAwake = 0.0;
static GraphicsContext *graphicsContext;
static bool powerSaving = false;
static ExceptionInfo g_exceptionInfo;
void Core_SetGraphicsContext(GraphicsContext *ctx) {
graphicsContext = ctx;
PSP_CoreParameter().graphicsContext = graphicsContext;
}
void Core_NotifyWindowHidden(bool hidden) {
windowHidden = hidden;
// TODO: Wait until we can react?
}
void Core_NotifyActivity() {
lastActivity = time_now_d();
}
void Core_ListenLifecycle(CoreLifecycleFunc func) {
lifecycleFuncs.insert(func);
}
void Core_NotifyLifecycle(CoreLifecycle stage) {
if (stage == CoreLifecycle::STARTING) {
Core_ResetException();
}
for (auto func : lifecycleFuncs) {
func(stage);
}
}
void Core_ListenStopRequest(CoreStopRequestFunc func) {
stopFuncs.insert(func);
}
void Core_Stop() {
Core_ResetException();
Core_UpdateState(CORE_POWERDOWN);
for (auto func : stopFuncs) {
func();
}
}
bool Core_IsStepping() {
return coreState == CORE_STEPPING || coreState == CORE_POWERDOWN;
}
bool Core_IsActive() {
return coreState == CORE_RUNNING || coreState == CORE_NEXTFRAME || coreStatePending;
}
bool Core_IsInactive() {
return coreState != CORE_RUNNING && coreState != CORE_NEXTFRAME && !coreStatePending;
}
static inline void Core_StateProcessed() {
if (coreStatePending) {
std::lock_guard<std::mutex> guard(m_hInactiveMutex);
coreStatePending = false;
m_InactiveCond.notify_all();
}
}
void Core_WaitInactive() {
while (Core_IsActive()) {
std::unique_lock<std::mutex> guard(m_hInactiveMutex);
m_InactiveCond.wait(guard);
}
}
void Core_WaitInactive(int milliseconds) {
if (Core_IsActive()) {
std::unique_lock<std::mutex> guard(m_hInactiveMutex);
m_InactiveCond.wait_for(guard, std::chrono::milliseconds(milliseconds));
}
}
void Core_SetPowerSaving(bool mode) {
powerSaving = mode;
}
bool Core_GetPowerSaving() {
return powerSaving;
}
static bool IsWindowSmall(int pixelWidth, int pixelHeight) {
// Can't take this from config as it will not be set if windows is maximized.
int w = (int)(pixelWidth * g_dpi_scale_x);
int h = (int)(pixelHeight * g_dpi_scale_y);
return g_Config.IsPortrait() ? (h < 480 + 80) : (w < 480 + 80);
}
// TODO: Feels like this belongs elsewhere.
bool UpdateScreenScale(int width, int height) {
bool smallWindow;
#if defined(USING_QT_UI)
g_dpi = System_GetPropertyFloat(SYSPROP_DISPLAY_DPI);
float g_logical_dpi = System_GetPropertyFloat(SYSPROP_DISPLAY_LOGICAL_DPI);
g_dpi_scale_x = g_logical_dpi / g_dpi;
g_dpi_scale_y = g_logical_dpi / g_dpi;
#elif PPSSPP_PLATFORM(WINDOWS) && !PPSSPP_PLATFORM(UWP)
g_dpi = System_GetPropertyFloat(SYSPROP_DISPLAY_DPI);
g_dpi_scale_x = 96.0f / g_dpi;
g_dpi_scale_y = 96.0f / g_dpi;
#else
g_dpi = 96.0f;
g_dpi_scale_x = 1.0f;
g_dpi_scale_y = 1.0f;
#endif
g_dpi_scale_real_x = g_dpi_scale_x;
g_dpi_scale_real_y = g_dpi_scale_y;
smallWindow = IsWindowSmall(width, height);
if (smallWindow) {
g_dpi /= 2.0f;
g_dpi_scale_x *= 2.0f;
g_dpi_scale_y *= 2.0f;
}
pixel_in_dps_x = 1.0f / g_dpi_scale_x;
pixel_in_dps_y = 1.0f / g_dpi_scale_y;
int new_dp_xres = (int)(width * g_dpi_scale_x);
int new_dp_yres = (int)(height * g_dpi_scale_y);
bool dp_changed = new_dp_xres != dp_xres || new_dp_yres != dp_yres;
bool px_changed = pixel_xres != width || pixel_yres != height;
if (dp_changed || px_changed) {
dp_xres = new_dp_xres;
dp_yres = new_dp_yres;
pixel_xres = width;
pixel_yres = height;
INFO_LOG(G3D, "pixel_res: %dx%d. Calling NativeResized()", pixel_xres, pixel_yres);
NativeResized();
return true;
}
return false;
}
// Note: not used on Android.
void UpdateRunLoop() {
if (windowHidden && g_Config.bPauseWhenMinimized) {
sleep_ms(16);
return;
}
NativeUpdate();
NativeRender(graphicsContext);
}
void KeepScreenAwake() {
#if defined(_WIN32) && !PPSSPP_PLATFORM(UWP)
SetThreadExecutionState(ES_SYSTEM_REQUIRED | ES_DISPLAY_REQUIRED);
#endif
}
void Core_RunLoop(GraphicsContext *ctx) {
graphicsContext = ctx;
while ((GetUIState() != UISTATE_INGAME || !PSP_IsInited()) && GetUIState() != UISTATE_EXIT) {
// In case it was pending, we're not in game anymore. We won't get to Core_Run().
Core_StateProcessed();
double startTime = time_now_d();
UpdateRunLoop();
// Simple throttling to not burn the GPU in the menu.
double diffTime = time_now_d() - startTime;
int sleepTime = (int)(1000.0 / 60.0) - (int)(diffTime * 1000.0);
if (sleepTime > 0)
sleep_ms(sleepTime);
if (!windowHidden) {
ctx->SwapBuffers();
}
}
while ((coreState == CORE_RUNNING || coreState == CORE_STEPPING) && GetUIState() == UISTATE_INGAME) {
UpdateRunLoop();
if (!windowHidden && !Core_IsStepping()) {
ctx->SwapBuffers();
// Keep the system awake for longer than normal for cutscenes and the like.
const double now = time_now_d();
if (now < lastActivity + ACTIVITY_IDLE_TIMEOUT) {
// Only resetting it ever prime number seconds in case the call is expensive.
// Using a prime number to ensure there's no interaction with other periodic events.
if (now - lastKeepAwake > 89.0 || now < lastKeepAwake) {
KeepScreenAwake();
lastKeepAwake = now;
}
}
}
}
}
void Core_DoSingleStep() {
std::lock_guard<std::mutex> guard(m_hStepMutex);
singleStepPending = true;
m_StepCond.notify_all();
}
void Core_UpdateSingleStep() {
std::lock_guard<std::mutex> guard(m_hStepMutex);
m_StepCond.notify_all();
}
void Core_SingleStep() {
Core_ResetException();
currentMIPS->SingleStep();
if (coreState == CORE_STEPPING)
steppingCounter++;
}
static inline bool Core_WaitStepping() {
std::unique_lock<std::mutex> guard(m_hStepMutex);
// We only wait 16ms so that we can still draw UI or react to events.
double sleepStart = time_now_d();
if (!singleStepPending && coreState == CORE_STEPPING)
m_StepCond.wait_for(guard, std::chrono::milliseconds(16));
double sleepEnd = time_now_d();
DisplayNotifySleep(sleepEnd - sleepStart);
bool result = singleStepPending;
singleStepPending = false;
return result;
}
void Core_ProcessStepping() {
Core_StateProcessed();
// Check if there's any pending save state actions.
SaveState::Process();
if (coreState != CORE_STEPPING) {
return;
}
// Or any GPU actions.
GPUStepping::SingleStep();
// We're not inside jit now, so it's safe to clear the breakpoints.
static int lastSteppingCounter = -1;
if (lastSteppingCounter != steppingCounter) {
CBreakPoints::ClearTemporaryBreakPoints();
host->UpdateDisassembly();
host->UpdateMemView();
lastSteppingCounter = steppingCounter;
}
// Need to check inside the lock to avoid races.
bool doStep = Core_WaitStepping();
// We may still be stepping without singleStepPending to process a save state.
if (doStep && coreState == CORE_STEPPING) {
Core_SingleStep();
// Update disasm dialog.
host->UpdateDisassembly();
host->UpdateMemView();
}
}
// Many platforms, like Android, do not call this function but handle things on their own.
// Instead they simply call NativeRender and NativeUpdate directly.
void Core_Run(GraphicsContext *ctx) {
host->UpdateDisassembly();
while (true) {
if (GetUIState() != UISTATE_INGAME) {
Core_StateProcessed();
if (GetUIState() == UISTATE_EXIT) {
UpdateRunLoop();
return;
}
Core_RunLoop(ctx);
continue;
}
switch (coreState) {
case CORE_RUNNING:
case CORE_STEPPING:
// enter a fast runloop
Core_RunLoop(ctx);
if (coreState == CORE_POWERDOWN) {
Core_StateProcessed();
return;
}
break;
case CORE_POWERUP:
case CORE_POWERDOWN:
case CORE_BOOT_ERROR:
case CORE_RUNTIME_ERROR:
// Exit loop!!
Core_StateProcessed();
return;
case CORE_NEXTFRAME:
return;
}
}
}
void Core_EnableStepping(bool step, const char *reason, u32 relatedAddress) {
if (step) {
host->SetDebugMode(true);
Core_UpdateState(CORE_STEPPING);
steppingCounter++;
_assert_msg_(reason != nullptr, "No reason specified for break");
steppingReason = reason;
steppingAddress = relatedAddress;
} else {
host->SetDebugMode(false);
// Clear the exception if we resume.
Core_ResetException();
coreState = CORE_RUNNING;
coreStatePending = false;
m_StepCond.notify_all();
}
}
bool Core_NextFrame() {
if (coreState == CORE_RUNNING) {
coreState = CORE_NEXTFRAME;
return true;
} else {
return false;
}
}
int Core_GetSteppingCounter() {
return steppingCounter;
}
SteppingReason Core_GetSteppingReason() {
SteppingReason r;
r.reason = steppingReason;
r.relatedAddress = steppingAddress;
return r;
}
const char *ExceptionTypeAsString(ExceptionType type) {
switch (type) {
case ExceptionType::MEMORY: return "Invalid Memory Access";
case ExceptionType::BREAK: return "Break";
case ExceptionType::BAD_EXEC_ADDR: return "Bad Execution Address";
default: return "N/A";
}
}
const char *MemoryExceptionTypeAsString(MemoryExceptionType type) {
switch (type) {
case MemoryExceptionType::UNKNOWN: return "Unknown";
case MemoryExceptionType::READ_WORD: return "Read Word";
case MemoryExceptionType::WRITE_WORD: return "Write Word";
case MemoryExceptionType::READ_BLOCK: return "Read Block";
case MemoryExceptionType::WRITE_BLOCK: return "Read/Write Block";
case MemoryExceptionType::ALIGNMENT: return "Alignment";
default:
return "N/A";
}
}
const char *ExecExceptionTypeAsString(ExecExceptionType type) {
switch (type) {
case ExecExceptionType::JUMP: return "CPU Jump";
case ExecExceptionType::THREAD: return "Thread switch";
default:
return "N/A";
}
}
void Core_MemoryException(u32 address, u32 pc, MemoryExceptionType type) {
const char *desc = MemoryExceptionTypeAsString(type);
// In jit, we only flush PC when bIgnoreBadMemAccess is off.
if (g_Config.iCpuCore == (int)CPUCore::JIT && g_Config.bIgnoreBadMemAccess) {
WARN_LOG(MEMMAP, "%s: Invalid address %08x", desc, address);
} else {
WARN_LOG(MEMMAP, "%s: Invalid address %08x PC %08x LR %08x", desc, address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
}
if (!g_Config.bIgnoreBadMemAccess) {
ExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = ExceptionType::MEMORY;
e.info.clear();
e.memory_type = type;
e.address = address;
e.pc = pc;
Core_EnableStepping(true, "memory.exception", address);
}
}
void Core_MemoryExceptionInfo(u32 address, u32 pc, MemoryExceptionType type, std::string additionalInfo) {
const char *desc = MemoryExceptionTypeAsString(type);
// In jit, we only flush PC when bIgnoreBadMemAccess is off.
if (g_Config.iCpuCore == (int)CPUCore::JIT && g_Config.bIgnoreBadMemAccess) {
WARN_LOG(MEMMAP, "%s: Invalid address %08x. %s", desc, address, additionalInfo.c_str());
} else {
WARN_LOG(MEMMAP, "%s: Invalid address %08x PC %08x LR %08x %s", desc, address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA], additionalInfo.c_str());
}
if (!g_Config.bIgnoreBadMemAccess) {
ExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = ExceptionType::MEMORY;
e.info = additionalInfo;
e.memory_type = type;
e.address = address;
e.pc = pc;
Core_EnableStepping(true, "memory.exception", address);
}
}
void Core_ExecException(u32 address, u32 pc, ExecExceptionType type) {
const char *desc = ExecExceptionTypeAsString(type);
WARN_LOG(MEMMAP, "%s: Invalid destination %08x PC %08x LR %08x", desc, address, pc, currentMIPS->r[MIPS_REG_RA]);
ExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = ExceptionType::BAD_EXEC_ADDR;
e.info.clear();
e.exec_type = type;
e.address = address;
e.pc = pc;
// This just records the closest value that could be useful as reference.
e.ra = currentMIPS->r[MIPS_REG_RA];
Core_EnableStepping(true, "cpu.exception", address);
}
void Core_Break(u32 pc) {
ERROR_LOG(CPU, "BREAK!");
ExceptionInfo &e = g_exceptionInfo;
e = {};
e.type = ExceptionType::BREAK;
e.info.clear();
e.pc = pc;
if (!g_Config.bIgnoreBadMemAccess) {
Core_EnableStepping(true, "cpu.breakInstruction", currentMIPS->pc);
}
}
void Core_ResetException() {
g_exceptionInfo.type = ExceptionType::NONE;
}
const ExceptionInfo &Core_GetExceptionInfo() {
return g_exceptionInfo;
}