ppsspp/GPU/Software/Rasterizer.cpp
2016-01-17 23:33:59 -08:00

1626 lines
48 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/basictypes.h"
#include "profiler/profiler.h"
#include "Common/ThreadPools.h"
#include "Common/ColorConv.h"
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "GPU/GPUState.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Software/SoftGpu.h"
#include "GPU/Software/Rasterizer.h"
#include <algorithm>
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
extern FormatBuffer fb;
extern FormatBuffer depthbuf;
extern u32 clut[4096];
namespace Rasterizer {
//static inline int orient2d(const DrawingCoords& v0, const DrawingCoords& v1, const DrawingCoords& v2)
static inline int orient2d(const ScreenCoords& v0, const ScreenCoords& v1, const ScreenCoords& v2)
{
return ((int)v1.x-(int)v0.x)*((int)v2.y-(int)v0.y) - ((int)v1.y-(int)v0.y)*((int)v2.x-(int)v0.x);
}
static inline int orient2dIncX(int dY01)
{
return dY01;
}
static inline int orient2dIncY(int dX01)
{
return -dX01;
}
template <unsigned int texel_size_bits>
static inline int GetPixelDataOffset(unsigned int row_pitch_bits, unsigned int u, unsigned int v)
{
if (!gstate.isTextureSwizzled())
return (v * (row_pitch_bits * texel_size_bits >> 6)) + (u * texel_size_bits >> 3);
const int tile_size_bits = 32;
const int tiles_in_block_horizontal = 4;
const int tiles_in_block_vertical = 8;
int texels_per_tile = tile_size_bits / texel_size_bits;
int tile_u = u / texels_per_tile;
int tile_idx = (v % tiles_in_block_vertical) * (tiles_in_block_horizontal) +
// TODO: not sure if the *texel_size_bits/8 factor is correct
(v / tiles_in_block_vertical) * ((row_pitch_bits*texel_size_bits/(8*tile_size_bits))*tiles_in_block_vertical) +
(tile_u % tiles_in_block_horizontal) +
(tile_u / tiles_in_block_horizontal) * (tiles_in_block_horizontal*tiles_in_block_vertical);
return tile_idx * (tile_size_bits / 8) + ((u % texels_per_tile) * texel_size_bits) / 8;
}
static inline u32 LookupColor(unsigned int index, unsigned int level)
{
const bool mipmapShareClut = gstate.isClutSharedForMipmaps();
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
switch (gstate.getClutPaletteFormat()) {
case GE_CMODE_16BIT_BGR5650:
return RGB565ToRGBA8888(reinterpret_cast<u16*>(clut)[index + clutSharingOffset]);
case GE_CMODE_16BIT_ABGR5551:
return RGBA5551ToRGBA8888(reinterpret_cast<u16*>(clut)[index + clutSharingOffset]);
case GE_CMODE_16BIT_ABGR4444:
return RGBA4444ToRGBA8888(reinterpret_cast<u16*>(clut)[index + clutSharingOffset]);
case GE_CMODE_32BIT_ABGR8888:
return clut[index + clutSharingOffset];
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported palette format: %x", gstate.getClutPaletteFormat());
return 0;
}
}
static inline u8 ClampFogDepth(float fogdepth) {
if (fogdepth <= 0.0f)
return 0;
else if (fogdepth >= 1.0f)
return 255;
else
return (u8)(u32)(fogdepth * 255.0f);
}
static inline void GetTexelCoordinates(int level, float s, float t, int& out_u, int& out_v)
{
int width = gstate.getTextureWidth(level);
int height = gstate.getTextureHeight(level);
int u = (int)(s * width + 0.375f);
int v = (int)(t * height + 0.375f);
if (gstate.isTexCoordClampedS()) {
if (u >= width - 1)
u = width - 1;
else if (u < 0)
u = 0;
} else {
u &= width - 1;
}
if (gstate.isTexCoordClampedT()) {
if (v >= height - 1)
v = height - 1;
else if (v < 0)
v = 0;
} else {
v &= height - 1;
}
out_u = u;
out_v = v;
}
static inline void GetTexelCoordinatesQuad(int level, float in_s, float in_t, int u[4], int v[4], int &frac_u, int &frac_v)
{
// 8 bits of fractional UV
int width = gstate.getTextureWidth(level);
int height = gstate.getTextureHeight(level);
int base_u = in_s * width * 256;
int base_v = in_t * height * 256;
frac_u = (int)(base_u) & 0xff;
frac_v = (int)(base_v) & 0xff;
base_u >>= 8;
base_v >>= 8;
// Need to generate and individually wrap/clamp the four sample coordinates. Ugh.
if (gstate.isTexCoordClampedS()) {
for (int i = 0; i < 4; i++) {
int temp_u = base_u + (i & 1);
if (temp_u > width - 1)
temp_u = width - 1;
else if (temp_u < 0)
temp_u = 0;
u[i] = temp_u;
}
} else {
for (int i = 0; i < 4; i++) {
u[i] = (base_u + (i & 1)) & (width - 1);
}
}
if (gstate.isTexCoordClampedT()) {
for (int i = 0; i < 4; i++) {
int temp_v = base_v + ((i & 2) >> 1);
if (temp_v > height - 1)
temp_v = height - 1;
else if (temp_v < 0)
temp_v = 0;
v[i] = temp_v;
}
} else {
for (int i = 0; i < 4; i++) {
v[i] = (base_v + ((i & 2) >> 1)) & (height - 1);
}
}
}
static inline void GetTexelCoordinatesThrough(int level, int s, int t, int& u, int& v)
{
// TODO: Not actually sure which clamp/wrap modes should be applied. Let's just wrap for now.
int width = gstate.getTextureWidth(level);
int height = gstate.getTextureHeight(level);
// Wrap!
u = ((unsigned int)(s) & (width - 1));
v = ((unsigned int)(t) & (height - 1));
}
static inline void GetTexelCoordinatesThroughQuad(int level, int s, int t, int *u, int *v)
{
// Not actually sure which clamp/wrap modes should be applied. Let's just wrap for now.
int width = gstate.getTextureWidth(level);
int height = gstate.getTextureHeight(level);
// Wrap!
for (int i = 0; i < 4; i++) {
u[i] = (s + (i & 1)) & (width - 1);
v[i] = (t + ((i & 2) >> 1)) & (height - 1);
}
}
static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const VertexData& v2, int w0, int w1, int w2, float& s, float& t)
{
switch (gstate.getUVGenMode()) {
case GE_TEXMAP_TEXTURE_COORDS:
case GE_TEXMAP_UNKNOWN:
case GE_TEXMAP_ENVIRONMENT_MAP:
{
// TODO: What happens if vertex has no texture coordinates?
// Note that for environment mapping, texture coordinates have been calculated during lighting
float q0 = 1.f / v0.clippos.w;
float q1 = 1.f / v1.clippos.w;
float q2 = 1.f / v2.clippos.w;
float q_recip = 1.0f / (q0 * w0 + q1 * w1 + q2 * w2);
s = (v0.texturecoords.s() * q0 * w0 + v1.texturecoords.s() * q1 * w1 + v2.texturecoords.s() * q2 * w2) * q_recip;
t = (v0.texturecoords.t() * q0 * w0 + v1.texturecoords.t() * q1 * w1 + v2.texturecoords.t() * q2 * w2) * q_recip;
}
break;
case GE_TEXMAP_TEXTURE_MATRIX:
{
// projection mapping, TODO: Move this code to TransformUnit!
Vec3<float> source;
switch (gstate.getUVProjMode()) {
case GE_PROJMAP_POSITION:
source = (v0.modelpos * w0 + v1.modelpos * w1 + v2.modelpos * w2) / (w0 + w1 + w2);
break;
case GE_PROJMAP_UV:
source = Vec3f((v0.texturecoords * w0 + v1.texturecoords * w1 + v2.texturecoords * w2) / (w0 + w1 + w2), 0.0f);
break;
case GE_PROJMAP_NORMALIZED_NORMAL:
source = (v0.normal.Normalized() * w0 + v1.normal.Normalized() * w1 + v2.normal.Normalized() * w2) / (w0 + w1 + w2);
break;
case GE_PROJMAP_NORMAL:
source = (v0.normal * w0 + v1.normal * w1 + v2.normal * w2) / (w0 + w1 + w2);
break;
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported UV projection mode %x", gstate.getUVProjMode());
break;
}
Mat3x3<float> tgen(gstate.tgenMatrix);
Vec3<float> stq = tgen * source + Vec3<float>(gstate.tgenMatrix[9], gstate.tgenMatrix[10], gstate.tgenMatrix[11]);
float z_recip = 1.0f / stq.z;
s = stq.x * z_recip;
t = stq.y * z_recip;
}
break;
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture mapping mode %x!", gstate.getUVGenMode());
break;
}
}
struct Nearest4 {
MEMORY_ALIGNED16(u32 v[4]);
operator u32() const {
return v[0];
}
};
template <int N>
inline static Nearest4 SampleNearest(int level, int u[N], int v[N], const u8 *srcptr, int texbufwidthbits)
{
Nearest4 res;
if (!srcptr) {
memset(res.v, 0, sizeof(res.v));
return res;
}
GETextureFormat texfmt = gstate.getTextureFormat();
// TODO: Should probably check if textures are aligned properly...
switch (texfmt) {
case GE_TFMT_4444:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
res.v[i] = RGBA4444ToRGBA8888(*(const u16 *)src);
}
return res;
case GE_TFMT_5551:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
res.v[i] = RGBA5551ToRGBA8888(*(const u16 *)src);
}
return res;
case GE_TFMT_5650:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
res.v[i] = RGB565ToRGBA8888(*(const u16 *)src);
}
return res;
case GE_TFMT_8888:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<32>(texbufwidthbits, u[i], v[i]);
res.v[i] = *(const u32 *)src;
}
return res;
case GE_TFMT_CLUT32:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<32>(texbufwidthbits, u[i], v[i]);
u32 val = src[0] + (src[1] << 8) + (src[2] << 16) + (src[3] << 24);
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
}
return res;
case GE_TFMT_CLUT16:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
u16 val = src[0] + (src[1] << 8);
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
}
return res;
case GE_TFMT_CLUT8:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<8>(texbufwidthbits, u[i], v[i]);
u8 val = *src;
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
}
return res;
case GE_TFMT_CLUT4:
for (int i = 0; i < N; ++i) {
const u8 *src = srcptr + GetPixelDataOffset<4>(texbufwidthbits, u[i], v[i]);
u8 val = (u[i] & 1) ? (src[0] >> 4) : (src[0] & 0xF);
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
}
return res;
case GE_TFMT_DXT1:
for (int i = 0; i < N; ++i) {
const DXT1Block *block = (const DXT1Block *)srcptr + (v[i] / 4) * (texbufwidthbits / 8 / 4) + (u[i] / 4);
u32 data[4 * 4];
DecodeDXT1Block(data, block, 4);
res.v[i] = data[4 * (v[i] % 4) + (u[i] % 4)];
}
return res;
case GE_TFMT_DXT3:
for (int i = 0; i < N; ++i) {
const DXT3Block *block = (const DXT3Block *)srcptr + (v[i] / 4) * (texbufwidthbits / 8 / 4) + (u[i] / 4);
u32 data[4 * 4];
DecodeDXT3Block(data, block, 4);
res.v[i] = data[4 * (v[i] % 4) + (u[i] % 4)];
}
return res;
case GE_TFMT_DXT5:
for (int i = 0; i < N; ++i) {
const DXT5Block *block = (const DXT5Block *)srcptr + (v[i] / 4) * (texbufwidthbits / 8 / 4) + (u[i] / 4);
u32 data[4 * 4];
DecodeDXT5Block(data, block, 4);
res.v[i] = data[4 * (v[i] % 4) + (u[i] % 4)];
}
return res;
default:
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture format: %x", texfmt);
memset(res.v, 0, sizeof(res.v));
return res;
}
}
// NOTE: These likely aren't endian safe
static inline u32 GetPixelColor(int x, int y)
{
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_565:
return RGB565ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
case GE_FORMAT_5551:
return RGBA5551ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
case GE_FORMAT_4444:
return RGBA4444ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
case GE_FORMAT_8888:
return fb.Get32(x, y, gstate.FrameBufStride());
case GE_FORMAT_INVALID:
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
}
return 0;
}
static inline void SetPixelColor(int x, int y, u32 value)
{
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_565:
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGB565(value));
break;
case GE_FORMAT_5551:
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGBA5551(value));
break;
case GE_FORMAT_4444:
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGBA4444(value));
break;
case GE_FORMAT_8888:
fb.Set32(x, y, gstate.FrameBufStride(), value);
break;
case GE_FORMAT_INVALID:
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
}
}
static inline u16 GetPixelDepth(int x, int y)
{
return depthbuf.Get16(x, y, gstate.DepthBufStride());
}
static inline void SetPixelDepth(int x, int y, u16 value)
{
depthbuf.Set16(x, y, gstate.DepthBufStride(), value);
}
static inline u8 GetPixelStencil(int x, int y)
{
if (gstate.FrameBufFormat() == GE_FORMAT_565) {
// Always treated as 0 for comparison purposes.
return 0;
} else if (gstate.FrameBufFormat() == GE_FORMAT_5551) {
return ((fb.Get16(x, y, gstate.FrameBufStride()) & 0x8000) != 0) ? 0xFF : 0;
} else if (gstate.FrameBufFormat() == GE_FORMAT_4444) {
return Convert4To8(fb.Get16(x, y, gstate.FrameBufStride()) >> 12);
} else {
return fb.Get32(x, y, gstate.FrameBufStride()) >> 24;
}
}
static inline void SetPixelStencil(int x, int y, u8 value)
{
// TODO: This seems like it maybe respects the alpha mask (at least in some scenarios?)
if (gstate.FrameBufFormat() == GE_FORMAT_565) {
// Do nothing
} else if (gstate.FrameBufFormat() == GE_FORMAT_5551) {
u16 pixel = fb.Get16(x, y, gstate.FrameBufStride()) & ~0x8000;
pixel |= value != 0 ? 0x8000 : 0;
fb.Set16(x, y, gstate.FrameBufStride(), pixel);
} else if (gstate.FrameBufFormat() == GE_FORMAT_4444) {
u16 pixel = fb.Get16(x, y, gstate.FrameBufStride()) & ~0xF000;
pixel |= (u16)value << 12;
fb.Set16(x, y, gstate.FrameBufStride(), pixel);
} else {
u32 pixel = fb.Get32(x, y, gstate.FrameBufStride()) & ~0xFF000000;
pixel |= (u32)value << 24;
fb.Set32(x, y, gstate.FrameBufStride(), pixel);
}
}
static inline bool DepthTestPassed(int x, int y, u16 z)
{
u16 reference_z = GetPixelDepth(x, y);
switch (gstate.getDepthTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return (z == reference_z);
case GE_COMP_NOTEQUAL:
return (z != reference_z);
case GE_COMP_LESS:
return (z < reference_z);
case GE_COMP_LEQUAL:
return (z <= reference_z);
case GE_COMP_GREATER:
return (z > reference_z);
case GE_COMP_GEQUAL:
return (z >= reference_z);
default:
return 0;
}
}
static inline bool IsRightSideOrFlatBottomLine(const Vec2<fixed16>& vertex, const Vec2<fixed16>& line1, const Vec2<fixed16>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vertex.y < line1.y;
} else {
// check if vertex is on our left => right side
return vertex.x < line1.x + ((int)line2.x - (int)line1.x) * ((int)vertex.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
}
}
static inline bool StencilTestPassed(u8 stencil)
{
// TODO: Does the masking logic make any sense?
stencil &= gstate.getStencilTestMask();
u8 ref = gstate.getStencilTestRef() & gstate.getStencilTestMask();
switch (gstate.getStencilTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return ref == stencil;
case GE_COMP_NOTEQUAL:
return ref != stencil;
case GE_COMP_LESS:
return ref < stencil;
case GE_COMP_LEQUAL:
return ref <= stencil;
case GE_COMP_GREATER:
return ref > stencil;
case GE_COMP_GEQUAL:
return ref >= stencil;
}
return true;
}
static inline u8 ApplyStencilOp(int op, int x, int y)
{
u8 old_stencil = GetPixelStencil(x, y); // TODO: Apply mask?
u8 reference_stencil = gstate.getStencilTestRef(); // TODO: Apply mask?
switch (op) {
case GE_STENCILOP_KEEP:
return old_stencil;
case GE_STENCILOP_ZERO:
return 0;
case GE_STENCILOP_REPLACE:
return reference_stencil;
case GE_STENCILOP_INVERT:
return ~old_stencil;
case GE_STENCILOP_INCR:
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_8888:
if (old_stencil != 0xFF) {
return old_stencil + 1;
}
return old_stencil;
case GE_FORMAT_5551:
return 0xFF;
case GE_FORMAT_4444:
if (old_stencil < 0xF0) {
return old_stencil + 0x10;
}
return old_stencil;
default:
return old_stencil;
}
break;
case GE_STENCILOP_DECR:
switch (gstate.FrameBufFormat()) {
case GE_FORMAT_4444:
if (old_stencil >= 0x10)
return old_stencil - 0x10;
break;
default:
if (old_stencil != 0)
return old_stencil - 1;
return old_stencil;
}
break;
}
return old_stencil;
}
static inline u32 ApplyLogicOp(GELogicOp op, u32 old_color, u32 new_color)
{
switch (op) {
case GE_LOGIC_CLEAR:
new_color = 0;
break;
case GE_LOGIC_AND:
new_color = new_color & old_color;
break;
case GE_LOGIC_AND_REVERSE:
new_color = new_color & ~old_color;
break;
case GE_LOGIC_COPY:
//new_color = new_color;
break;
case GE_LOGIC_AND_INVERTED:
new_color = ~new_color & old_color;
break;
case GE_LOGIC_NOOP:
new_color = old_color;
break;
case GE_LOGIC_XOR:
new_color = new_color ^ old_color;
break;
case GE_LOGIC_OR:
new_color = new_color | old_color;
break;
case GE_LOGIC_NOR:
new_color = ~(new_color | old_color);
break;
case GE_LOGIC_EQUIV:
new_color = ~(new_color ^ old_color);
break;
case GE_LOGIC_INVERTED:
new_color = ~old_color;
break;
case GE_LOGIC_OR_REVERSE:
new_color = new_color | ~old_color;
break;
case GE_LOGIC_COPY_INVERTED:
new_color = ~new_color;
break;
case GE_LOGIC_OR_INVERTED:
new_color = ~new_color | old_color;
break;
case GE_LOGIC_NAND:
new_color = ~(new_color & old_color);
break;
case GE_LOGIC_SET:
new_color = 0xFFFFFFFF;
break;
}
return new_color;
}
static inline Vec4<int> GetTextureFunctionOutput(const Vec4<int>& prim_color, const Vec4<int>& texcolor)
{
Vec3<int> out_rgb;
int out_a;
bool rgba = gstate.isTextureAlphaUsed();
switch (gstate.getTextureFunction()) {
case GE_TEXFUNC_MODULATE:
{
#if defined(_M_SSE)
// We can be accurate up to 24 bit integers, should be enough.
const __m128 p = _mm_cvtepi32_ps(prim_color.ivec);
const __m128 t = _mm_cvtepi32_ps(texcolor.ivec);
out_rgb.ivec = _mm_cvtps_epi32(_mm_div_ps(_mm_mul_ps(p, t), _mm_set_ps1(255.0f)));
if (rgba) {
return Vec4<int>(out_rgb.ivec);
} else {
out_a = prim_color.a();
}
#else
out_rgb = prim_color.rgb() * texcolor.rgb() / 255;
out_a = (rgba) ? (prim_color.a() * texcolor.a() / 255) : prim_color.a();
#endif
break;
}
case GE_TEXFUNC_DECAL:
{
int t = (rgba) ? texcolor.a() : 255;
int invt = (rgba) ? 255 - t : 0;
out_rgb = (prim_color.rgb() * invt + texcolor.rgb() * t) / 255;
out_a = prim_color.a();
break;
}
case GE_TEXFUNC_BLEND:
{
const Vec3<int> const255(255, 255, 255);
const Vec3<int> texenv(gstate.getTextureEnvColR(), gstate.getTextureEnvColG(), gstate.getTextureEnvColB());
out_rgb = ((const255 - texcolor.rgb()) * prim_color.rgb() + texcolor.rgb() * texenv) / 255;
out_a = prim_color.a() * ((rgba) ? texcolor.a() : 255) / 255;
break;
}
case GE_TEXFUNC_REPLACE:
out_rgb = texcolor.rgb();
out_a = (rgba) ? texcolor.a() : prim_color.a();
break;
case GE_TEXFUNC_ADD:
out_rgb = prim_color.rgb() + texcolor.rgb();
if (out_rgb.r() > 255) out_rgb.r() = 255;
if (out_rgb.g() > 255) out_rgb.g() = 255;
if (out_rgb.b() > 255) out_rgb.b() = 255;
out_a = prim_color.a() * ((rgba) ? texcolor.a() : 255) / 255;
break;
default:
ERROR_LOG_REPORT(G3D, "Software: Unknown texture function %x", gstate.getTextureFunction());
out_rgb = Vec3<int>::AssignToAll(0);
out_a = 0;
}
return Vec4<int>(out_rgb.r(), out_rgb.g(), out_rgb.b(), out_a);
}
static inline bool ColorTestPassed(const Vec3<int> &color)
{
const u32 mask = gstate.getColorTestMask();
const u32 c = color.ToRGB() & mask;
const u32 ref = gstate.getColorTestRef() & mask;
switch (gstate.getColorTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return c == ref;
case GE_COMP_NOTEQUAL:
return c != ref;
default:
ERROR_LOG_REPORT(G3D, "Software: Invalid colortest function: %d", gstate.getColorTestFunction());
break;
}
return true;
}
static inline bool AlphaTestPassed(int alpha)
{
const u8 mask = gstate.getAlphaTestMask() & 0xFF;
const u8 ref = gstate.getAlphaTestRef() & mask;
alpha &= mask;
switch (gstate.getAlphaTestFunction()) {
case GE_COMP_NEVER:
return false;
case GE_COMP_ALWAYS:
return true;
case GE_COMP_EQUAL:
return (alpha == ref);
case GE_COMP_NOTEQUAL:
return (alpha != ref);
case GE_COMP_LESS:
return (alpha < ref);
case GE_COMP_LEQUAL:
return (alpha <= ref);
case GE_COMP_GREATER:
return (alpha > ref);
case GE_COMP_GEQUAL:
return (alpha >= ref);
}
return true;
}
static inline Vec3<int> GetSourceFactor(const Vec4<int>& source, const Vec4<int>& dst)
{
switch (gstate.getBlendFuncA()) {
case GE_SRCBLEND_DSTCOLOR:
return dst.rgb();
case GE_SRCBLEND_INVDSTCOLOR:
return Vec3<int>::AssignToAll(255) - dst.rgb();
case GE_SRCBLEND_SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case GE_SRCBLEND_INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case GE_SRCBLEND_DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case GE_SRCBLEND_INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case GE_SRCBLEND_DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case GE_SRCBLEND_DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case GE_SRCBLEND_DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case GE_SRCBLEND_DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case GE_SRCBLEND_FIXA:
default:
// All other dest factors (> 10) are treated as FIXA.
return Vec3<int>::FromRGB(gstate.getFixA());
}
}
static inline Vec3<int> GetDestFactor(const Vec4<int>& source, const Vec4<int>& dst)
{
switch (gstate.getBlendFuncB()) {
case GE_DSTBLEND_SRCCOLOR:
return source.rgb();
case GE_DSTBLEND_INVSRCCOLOR:
return Vec3<int>::AssignToAll(255) - source.rgb();
case GE_DSTBLEND_SRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
#else
return Vec3<int>::AssignToAll(source.a());
#endif
case GE_DSTBLEND_INVSRCALPHA:
#if defined(_M_SSE)
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
#else
return Vec3<int>::AssignToAll(255 - source.a());
#endif
case GE_DSTBLEND_DSTALPHA:
return Vec3<int>::AssignToAll(dst.a());
case GE_DSTBLEND_INVDSTALPHA:
return Vec3<int>::AssignToAll(255 - dst.a());
case GE_DSTBLEND_DOUBLESRCALPHA:
return Vec3<int>::AssignToAll(2 * source.a());
case GE_DSTBLEND_DOUBLEINVSRCALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
case GE_DSTBLEND_DOUBLEDSTALPHA:
return Vec3<int>::AssignToAll(2 * dst.a());
case GE_DSTBLEND_DOUBLEINVDSTALPHA:
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
case GE_DSTBLEND_FIXB:
default:
// All other dest factors (> 10) are treated as FIXB.
return Vec3<int>::FromRGB(gstate.getFixB());
}
}
static inline Vec3<int> AlphaBlendingResult(const Vec4<int> &source, const Vec4<int> &dst)
{
// Note: These factors cannot go below 0, but they can go above 255 when doubling.
Vec3<int> srcfactor = GetSourceFactor(source, dst);
Vec3<int> dstfactor = GetDestFactor(source, dst);
switch (gstate.getBlendEq()) {
case GE_BLENDMODE_MUL_AND_ADD:
{
#if defined(_M_SSE)
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(s, d), _mm_set_ps1(1.0f / 255.0f))));
#else
return (source.rgb() * srcfactor + dst.rgb() * dstfactor) / 255;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT:
{
#if defined(_M_SSE)
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_sub_ps(s, d), _mm_set_ps1(1.0f / 255.0f))));
#else
return (source.rgb() * srcfactor - dst.rgb() * dstfactor) / 255;
#endif
}
case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE:
{
#if defined(_M_SSE)
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_sub_ps(d, s), _mm_set_ps1(1.0f / 255.0f))));
#else
return (dst.rgb() * dstfactor - source.rgb() * srcfactor) / 255;
#endif
}
case GE_BLENDMODE_MIN:
return Vec3<int>(std::min(source.r(), dst.r()),
std::min(source.g(), dst.g()),
std::min(source.b(), dst.b()));
case GE_BLENDMODE_MAX:
return Vec3<int>(std::max(source.r(), dst.r()),
std::max(source.g(), dst.g()),
std::max(source.b(), dst.b()));
case GE_BLENDMODE_ABSDIFF:
return Vec3<int>(::abs(source.r() - dst.r()),
::abs(source.g() - dst.g()),
::abs(source.b() - dst.b()));
default:
ERROR_LOG_REPORT(G3D, "Software: Unknown blend function %x", gstate.getBlendEq());
return Vec3<int>();
}
}
template <bool clearMode>
inline void DrawSinglePixel(const DrawingCoords &p, u16 z, u8 fog, const Vec4<int> &color_in) {
Vec4<int> prim_color = color_in;
// Depth range test
// TODO: Clear mode?
if (!gstate.isModeThrough())
if (z < gstate.getDepthRangeMin() || z > gstate.getDepthRangeMax())
return;
if (gstate.isColorTestEnabled() && !clearMode)
if (!ColorTestPassed(prim_color.rgb()))
return;
// TODO: Does a need to be clamped?
if (gstate.isAlphaTestEnabled() && !clearMode)
if (!AlphaTestPassed(prim_color.a()))
return;
// In clear mode, it uses the alpha color as stencil.
u8 stencil = clearMode ? prim_color.a() : GetPixelStencil(p.x, p.y);
// TODO: Is it safe to ignore gstate.isDepthTestEnabled() when clear mode is enabled? Probably yes
if (!clearMode && (gstate.isStencilTestEnabled() || gstate.isDepthTestEnabled())) {
if (gstate.isStencilTestEnabled() && !StencilTestPassed(stencil)) {
stencil = ApplyStencilOp(gstate.getStencilOpSFail(), p.x, p.y);
SetPixelStencil(p.x, p.y, stencil);
return;
}
// Also apply depth at the same time. If disabled, same as passing.
if (gstate.isDepthTestEnabled() && !DepthTestPassed(p.x, p.y, z)) {
if (gstate.isStencilTestEnabled()) {
stencil = ApplyStencilOp(gstate.getStencilOpZFail(), p.x, p.y);
SetPixelStencil(p.x, p.y, stencil);
}
return;
} else if (gstate.isStencilTestEnabled()) {
stencil = ApplyStencilOp(gstate.getStencilOpZPass(), p.x, p.y);
}
if (gstate.isDepthTestEnabled() && gstate.isDepthWriteEnabled()) {
SetPixelDepth(p.x, p.y, z);
}
} else if (clearMode && gstate.isClearModeDepthMask()) {
SetPixelDepth(p.x, p.y, z);
}
// Doubling happens only when texturing is enabled, and after tests.
if (gstate.isTextureMapEnabled() && gstate.isColorDoublingEnabled() && !clearMode) {
// TODO: Does this need to be clamped before blending?
prim_color.r() <<= 1;
prim_color.g() <<= 1;
prim_color.b() <<= 1;
}
if (gstate.isFogEnabled() && !gstate.isModeThrough() && !clearMode) {
Vec3<int> fogColor = Vec3<int>::FromRGB(gstate.fogcolor);
fogColor = (prim_color.rgb() * (int)fog + fogColor * (255 - (int)fog)) / 255;
prim_color.r() = fogColor.r();
prim_color.g() = fogColor.g();
prim_color.b() = fogColor.b();
}
const u32 old_color = GetPixelColor(p.x, p.y);
u32 new_color;
if (gstate.isAlphaBlendEnabled() && !clearMode) {
const Vec4<int> dst = Vec4<int>::FromRGBA(old_color);
// ToRGBA() always automatically clamps.
new_color = AlphaBlendingResult(prim_color, dst).ToRGB();
new_color |= stencil << 24;
} else {
#if defined(_M_SSE)
new_color = Vec3<int>(prim_color.ivec).ToRGB();
new_color |= stencil << 24;
#else
new_color = Vec4<int>(prim_color.r(), prim_color.g(), prim_color.b(), stencil).ToRGBA();
#endif
}
// TODO: Is alpha blending still performed if logic ops are enabled?
if (gstate.isLogicOpEnabled() && !clearMode) {
// Logic ops don't affect stencil.
new_color = (stencil << 24) | (ApplyLogicOp(gstate.getLogicOp(), old_color, new_color) & 0x00FFFFFF);
}
if (clearMode) {
new_color = (new_color & ~gstate.getClearModeColorMask()) | (old_color & gstate.getClearModeColorMask());
} else {
new_color = (new_color & ~gstate.getColorMask()) | (old_color & gstate.getColorMask());
}
// TODO: Dither before or inside SetPixelColor
SetPixelColor(p.x, p.y, new_color);
}
inline void ApplyTexturing(Vec4<int> &prim_color, float s, float t, int maxTexLevel, int magFilt, u8 *texptr[], int texbufwidthbits[]) {
int u[4] = {0}, v[4] = {0}; // 1.23.8 fixed point
int frac_u, frac_v;
int texlevel = 0;
bool bilinear = magFilt != 0;
// bilinear = false;
if (gstate.isModeThrough()) {
int u_texel = s * 256;
int v_texel = t * 256;
frac_u = u_texel & 0xff;
frac_v = v_texel & 0xff;
u_texel >>= 8;
v_texel >>= 8;
// we need to compute UV for a quad of pixels together in order to get the mipmap deltas :(
// texlevel = x
if (texlevel > maxTexLevel)
texlevel = maxTexLevel;
if (bilinear) {
GetTexelCoordinatesThroughQuad(texlevel, u_texel, v_texel, u, v);
} else {
GetTexelCoordinatesThrough(texlevel, u_texel, v_texel, u[0], v[0]);
}
} else {
// we need to compute UV for a quad of pixels together in order to get the mipmap deltas :(
// texlevel = x
if (texlevel > maxTexLevel)
texlevel = maxTexLevel;
if (bilinear) {
GetTexelCoordinatesQuad(texlevel, s, t, u, v, frac_u, frac_v);
} else {
GetTexelCoordinates(texlevel, s, t, u[0], v[0]);
}
}
Vec4<int> texcolor;
int bufwbits = texbufwidthbits[texlevel];
const u8 *tptr = texptr[texlevel];
if (!bilinear) {
// Nearest filtering only. Round texcoords or just chop bits?
texcolor = Vec4<int>::FromRGBA(SampleNearest<1>(texlevel, u, v, tptr, bufwbits));
} else {
#if defined(_M_SSE)
Nearest4 c = SampleNearest<4>(texlevel, u, v, tptr, bufwbits);
const __m128i z = _mm_setzero_si128();
__m128i cvec = _mm_load_si128((const __m128i *)c.v);
__m128i tvec = _mm_unpacklo_epi8(cvec, z);
tvec = _mm_mullo_epi16(tvec, _mm_set1_epi16(0x100 - frac_v));
__m128i bvec = _mm_unpackhi_epi8(cvec, z);
bvec = _mm_mullo_epi16(bvec, _mm_set1_epi16(frac_v));
// This multiplies the left and right sides. We shift right after, although this may round down...
__m128i rowmult = _mm_set_epi16(frac_u, frac_u, frac_u, frac_u, 0x100 - frac_u, 0x100 - frac_u, 0x100 - frac_u, 0x100 - frac_u);
__m128i tmp = _mm_mulhi_epu16(_mm_add_epi16(tvec, bvec), rowmult);
// Now we need to add the left and right sides together.
__m128i res = _mm_add_epi16(tmp, _mm_shuffle_epi32(tmp, _MM_SHUFFLE(3, 2, 3, 2)));
texcolor = Vec4<int>(_mm_unpacklo_epi16(res, z));
#else
Nearest4 nearest = SampleNearest<4>(texlevel, u, v, tptr, bufwbits);
Vec4<int> texcolor_tl = Vec4<int>::FromRGBA(nearest.v[0]);
Vec4<int> texcolor_tr = Vec4<int>::FromRGBA(nearest.v[1]);
Vec4<int> texcolor_bl = Vec4<int>::FromRGBA(nearest.v[2]);
Vec4<int> texcolor_br = Vec4<int>::FromRGBA(nearest.v[3]);
// 0x100 causes a slight bias to tl, but without it we'd have to divide by 255 * 255.
Vec4<int> t = texcolor_tl * (0x100 - frac_u) + texcolor_tr * frac_u;
Vec4<int> b = texcolor_bl * (0x100 - frac_u) + texcolor_br * frac_u;
texcolor = (t * (0x100 - frac_v) + b * frac_v) / (256 * 256);
#endif
}
prim_color = GetTextureFunctionOutput(prim_color, texcolor);
}
// Only OK on x64 where our stack is aligned
#if defined(_M_SSE) && !defined(_M_IX86)
static inline __m128 Interpolate(const __m128 &c0, const __m128 &c1, const __m128 &c2, int w0, int w1, int w2, float wsum) {
__m128 v = _mm_mul_ps(c0, _mm_cvtepi32_ps(_mm_set1_epi32(w0)));
v = _mm_add_ps(v, _mm_mul_ps(c1, _mm_cvtepi32_ps(_mm_set1_epi32(w1))));
v = _mm_add_ps(v, _mm_mul_ps(c2, _mm_cvtepi32_ps(_mm_set1_epi32(w2))));
return _mm_mul_ps(v, _mm_set_ps1(wsum));
}
static inline __m128i Interpolate(const __m128i &c0, const __m128i &c1, const __m128i &c2, int w0, int w1, int w2, float wsum) {
return _mm_cvtps_epi32(Interpolate(_mm_cvtepi32_ps(c0), _mm_cvtepi32_ps(c1), _mm_cvtepi32_ps(c2), w0, w1, w2, wsum));
}
#endif
// NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues.
// Not sure if that should be regarded as a bug or if casting to float is a valid fix.
static inline Vec4<int> Interpolate(const Vec4<int> &c0, const Vec4<int> &c1, const Vec4<int> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !defined(_M_IX86)
return Vec4<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
#else
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
#endif
}
static inline Vec3<int> Interpolate(const Vec3<int> &c0, const Vec3<int> &c1, const Vec3<int> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !defined(_M_IX86)
return Vec3<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
#else
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
#endif
}
static inline Vec2<float> Interpolate(const Vec2<float> &c0, const Vec2<float> &c1, const Vec2<float> &c2, int w0, int w1, int w2, float wsum) {
#if defined(_M_SSE) && !defined(_M_IX86)
return Vec2<float>(Interpolate(c0.vec, c1.vec, c2.vec, w0, w1, w2, wsum));
#else
return (c0 * w0 + c1 * w1 + c2 * w2) * wsum;
#endif
}
template <bool clearMode>
void DrawTriangleSlice(
const VertexData& v0, const VertexData& v1, const VertexData& v2,
int minX, int minY, int maxX, int maxY,
int y1, int y2)
{
Vec2<int> d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y);
Vec2<int> d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y);
Vec2<int> d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y);
float texScaleU = gstate_c.uv.uScale;
float texScaleV = gstate_c.uv.vScale;
float texOffsetU = gstate_c.uv.uOff;
float texOffsetV = gstate_c.uv.vOff;
if (g_Config.bPrescaleUV) {
// Already applied during vertex decode.
texScaleU = 1.0f;
texScaleV = 1.0f;
texOffsetU = 0.0f;
texOffsetV = 0.0f;
}
int bias0 = IsRightSideOrFlatBottomLine(v0.screenpos.xy(), v1.screenpos.xy(), v2.screenpos.xy()) ? -1 : 0;
int bias1 = IsRightSideOrFlatBottomLine(v1.screenpos.xy(), v2.screenpos.xy(), v0.screenpos.xy()) ? -1 : 0;
int bias2 = IsRightSideOrFlatBottomLine(v2.screenpos.xy(), v0.screenpos.xy(), v1.screenpos.xy()) ? -1 : 0;
int texbufwidthbits[8] = {0};
int maxTexLevel = gstate.getTextureMaxLevel();
u8 *texptr[8] = {NULL};
int magFilt = (gstate.texfilter>>8) & 1;
if (g_Config.iTexFiltering > 1) {
if (g_Config.iTexFiltering == 2) {
magFilt = 0;
} else if (g_Config.iTexFiltering == 3) {
magFilt = 1;
}
}
if ((gstate.texfilter & 4) == 0) {
// No mipmapping enabled
maxTexLevel = 0;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
// TODO: Always using level 0.
GETextureFormat texfmt = gstate.getTextureFormat();
for (int i = 0; i <= maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
texbufwidthbits[i] = GetTextureBufw(i, texaddr, texfmt) * 8;
if (Memory::IsValidAddress(texaddr))
texptr[i] = Memory::GetPointerUnchecked(texaddr);
else
texptr[i] = 0;
}
}
ScreenCoords pprime(minX, minY, 0);
int w0_base = orient2d(v1.screenpos, v2.screenpos, pprime);
int w1_base = orient2d(v2.screenpos, v0.screenpos, pprime);
int w2_base = orient2d(v0.screenpos, v1.screenpos, pprime);
// Step forward to y1 (slice..)
w0_base += orient2dIncY(d12.x) * 16 * y1;
w1_base += orient2dIncY(-d02.x) * 16 * y1;
w2_base += orient2dIncY(d01.x) * 16 * y1;
// All the z values are the same, no interpolation required.
// This is common, and when we interpolate, we lose accuracy.
const bool flatZ = v0.screenpos.z == v1.screenpos.z && v0.screenpos.z == v2.screenpos.z;
for (pprime.y = minY + y1 * 16; pprime.y < minY + y2 * 16; pprime.y += 16,
w0_base += orient2dIncY(d12.x)*16,
w1_base += orient2dIncY(-d02.x)*16,
w2_base += orient2dIncY(d01.x)*16) {
int w0 = w0_base;
int w1 = w1_base;
int w2 = w2_base;
pprime.x = minX;
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
for (; pprime.x <= maxX; pprime.x +=16,
w0 += orient2dIncX(d12.y)*16,
w1 += orient2dIncX(-d02.y)*16,
w2 += orient2dIncX(d01.y)*16,
p.x = (p.x + 1) & 0x3FF) {
// If p is on or inside all edges, render pixel
if (w0 + bias0 >= 0 && w1 + bias1 >= 0 && w2 + bias2 >= 0) {
int wsum = w0 + w1 + w2;
if (wsum == 0.0f)
continue;
float wsum_recip = 1.0f / (float)wsum;
Vec4<int> prim_color;
Vec3<int> sec_color;
if (gstate.getShadeMode() == GE_SHADE_GOURAUD && !clearMode) {
// Does the PSP do perspective-correct color interpolation? The GC doesn't.
prim_color = Interpolate(v0.color0, v1.color0, v2.color0, w0, w1, w2, wsum_recip);
sec_color = Interpolate(v0.color1, v1.color1, v2.color1, w0, w1, w2, wsum_recip);
} else {
prim_color = v2.color0;
sec_color = v2.color1;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
if (gstate.isModeThrough()) {
Vec2<float> texcoords = Interpolate(v0.texturecoords, v1.texturecoords, v2.texturecoords, w0, w1, w2, wsum_recip);
ApplyTexturing(prim_color, texcoords.s(), texcoords.t(), maxTexLevel, magFilt, texptr, texbufwidthbits);
} else {
// Texture coordinate interpolation must definitely be perspective-correct.
float s = 0, t = 0;
GetTextureCoordinates(v0, v1, v2, w0, w1, w2, s, t);
s = s * texScaleU + texOffsetU;
t = t * texScaleV + texOffsetV;
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
}
}
if (!clearMode) {
// TODO: Tried making Vec4 do this, but things got slower.
#if defined(_M_SSE)
const __m128i sec = _mm_and_si128(sec_color.ivec, _mm_set_epi32(0, -1, -1, -1));
prim_color.ivec = _mm_add_epi32(prim_color.ivec, sec);
#else
prim_color += Vec4<int>(sec_color, 0);
#endif
}
int fog = 255;
if (gstate.isFogEnabled() && !clearMode) {
fog = ClampFogDepth(((float)v0.fogdepth * w0 + (float)v1.fogdepth * w1 + (float)v2.fogdepth * w2) * wsum_recip);
}
u16 z = v2.screenpos.z;
// TODO: Is that the correct way to interpolate?
// Without the (u32), this causes an ICE in some versions of gcc.
if (!flatZ)
z = (u16)(u32)(((float)v0.screenpos.z * w0 + (float)v1.screenpos.z * w1 + (float)v2.screenpos.z * w2) * wsum_recip);
DrawSinglePixel<clearMode>(p, z, fog, prim_color);
}
}
}
}
// Draws triangle, vertices specified in counter-clockwise direction
void DrawTriangle(const VertexData& v0, const VertexData& v1, const VertexData& v2)
{
PROFILE_THIS_SCOPE("draw_tri");
Vec2<int> d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y);
Vec2<int> d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y);
Vec2<int> d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y);
// Drop primitives which are not in CCW order by checking the cross product
if (d01.x * d02.y - d01.y * d02.x < 0)
return;
int minX = std::min(std::min(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~0xF;
int minY = std::min(std::min(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~0xF;
int maxX = std::max(std::max(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~0xF;
int maxY = std::max(std::max(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~0xF;
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0);
DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0);
minX = std::max(minX, (int)TransformUnit::DrawingToScreen(scissorTL).x);
maxX = std::min(maxX, (int)TransformUnit::DrawingToScreen(scissorBR).x);
minY = std::max(minY, (int)TransformUnit::DrawingToScreen(scissorTL).y);
maxY = std::min(maxY, (int)TransformUnit::DrawingToScreen(scissorBR).y);
int range = (maxY - minY) / 16 + 1;
if (gstate.isModeClear()) {
if (range >= 24 && (maxX - minX) >= 24 * 16) {
auto bound = [&](int a, int b) -> void {
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, a, b);
};
GlobalThreadPool::Loop(bound, 0, range);
} else {
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, 0, range);
}
} else {
if (range >= 24 && (maxX - minX) >= 24 * 16) {
auto bound = [&](int a, int b) -> void {
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, a, b);
};
GlobalThreadPool::Loop(bound, 0, range);
} else {
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, 0, range);
}
}
}
void DrawPoint(const VertexData &v0)
{
ScreenCoords pos = v0.screenpos;
Vec4<int> prim_color = v0.color0;
Vec3<int> sec_color = v0.color1;
// TODO: UVGenMode?
float s = v0.texturecoords.s();
float t = v0.texturecoords.t();
ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0)));
ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0)));
if (pos.x < scissorTL.x || pos.y < scissorTL.y || pos.x >= scissorBR.x || pos.y >= scissorBR.y)
return;
bool clearMode = gstate.isModeClear();
if (gstate.isTextureMapEnabled() && !clearMode) {
int texbufwidthbits[8] = {0};
int maxTexLevel = gstate.getTextureMaxLevel();
u8 *texptr[8] = {NULL};
int magFilt = (gstate.texfilter>>8) & 1;
if (g_Config.iTexFiltering > 1) {
if (g_Config.iTexFiltering == 2) {
magFilt = 0;
} else if (g_Config.iTexFiltering == 3) {
magFilt = 1;
}
}
if ((gstate.texfilter & 4) == 0) {
// No mipmapping enabled
maxTexLevel = 0;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
// TODO: Always using level 0.
maxTexLevel = 0;
GETextureFormat texfmt = gstate.getTextureFormat();
for (int i = 0; i <= maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
texbufwidthbits[i] = GetTextureBufw(i, texaddr, texfmt) * 8;
texptr[i] = Memory::GetPointer(texaddr);
}
}
if (gstate.isModeThrough()) {
// TODO: Is it really this simple?
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
} else {
float texScaleU = gstate_c.uv.uScale;
float texScaleV = gstate_c.uv.vScale;
float texOffsetU = gstate_c.uv.uOff;
float texOffsetV = gstate_c.uv.vOff;
if (g_Config.bPrescaleUV) {
// Already applied during vertex decode.
texScaleU = 1.0f;
texScaleV = 1.0f;
texOffsetU = 0.0f;
texOffsetV = 0.0f;
}
s = s * texScaleU + texOffsetU;
t = t * texScaleV + texOffsetV;
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
}
}
if (!clearMode)
prim_color += Vec4<int>(sec_color, 0);
ScreenCoords pprime = pos;
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
u16 z = pos.z;
u8 fog = 255;
if (gstate.isFogEnabled() && !clearMode) {
fog = ClampFogDepth(v0.fogdepth);
}
if (clearMode) {
DrawSinglePixel<true>(p, z, fog, prim_color);
} else {
DrawSinglePixel<false>(p, z, fog, prim_color);
}
}
void DrawLine(const VertexData &v0, const VertexData &v1)
{
// TODO: Use a proper line drawing algorithm that handles fractional endpoints correctly.
Vec3<int> a(v0.screenpos.x, v0.screenpos.y, v0.screenpos.z);
Vec3<int> b(v1.screenpos.x, v1.screenpos.y, v0.screenpos.z);
int dx = b.x - a.x;
int dy = b.y - a.y;
int dz = b.z - a.z;
int steps;
if (abs(dx) < abs(dy))
steps = abs(dy) / 16;
else
steps = abs(dx) / 16;
float xinc = (float)dx / steps;
float yinc = (float)dy / steps;
float zinc = (float)dz / steps;
ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0)));
ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0)));
bool clearMode = gstate.isModeClear();
int texbufwidthbits[8] = {0};
int maxTexLevel = gstate.getTextureMaxLevel();
u8 *texptr[8] = {NULL};
int magFilt = (gstate.texfilter>>8) & 1;
if (g_Config.iTexFiltering > 1) {
if (g_Config.iTexFiltering == 2) {
magFilt = 0;
} else if (g_Config.iTexFiltering == 3) {
magFilt = 1;
}
}
if ((gstate.texfilter & 4) == 0) {
// No mipmapping enabled
maxTexLevel = 0;
}
if (gstate.isTextureMapEnabled() && !clearMode) {
// TODO: Always using level 0.
GETextureFormat texfmt = gstate.getTextureFormat();
for (int i = 0; i <= maxTexLevel; i++) {
u32 texaddr = gstate.getTextureAddress(i);
texbufwidthbits[i] = GetTextureBufw(i, texaddr, texfmt) * 8;
texptr[i] = Memory::GetPointer(texaddr);
}
}
float texScaleU = gstate_c.uv.uScale;
float texScaleV = gstate_c.uv.vScale;
float texOffsetU = gstate_c.uv.uOff;
float texOffsetV = gstate_c.uv.vOff;
if (g_Config.bPrescaleUV) {
// Already applied during vertex decode.
texScaleU = 1.0f;
texScaleV = 1.0f;
texOffsetU = 0.0f;
texOffsetV = 0.0f;
}
float x = a.x;
float y = a.y;
float z = a.z;
const int steps1 = steps == 0 ? 1 : steps;
for (int i = 0; i <= steps; i++) {
if (x < scissorTL.x || y < scissorTL.y || x >= scissorBR.x || y >= scissorBR.y)
continue;
// Interpolate between the two points.
Vec4<int> c0 = (v0.color0 * (steps - i) + v1.color0 * i) / steps1;
Vec3<int> sec_color = (v0.color1 * (steps - i) + v1.color1 * i) / steps1;
// TODO: UVGenMode?
Vec2<float> tc = (v0.texturecoords * (float)(steps - i) + v1.texturecoords * (float)i) / steps1;
Vec4<int> prim_color = c0;
u8 fog = 255;
if (gstate.isFogEnabled() && !clearMode) {
fog = ClampFogDepth((v0.fogdepth * (float)(steps - i) + v1.fogdepth * (float)i) / steps1);
}
float s = tc.s();
float t = tc.t();
if (gstate.isTextureMapEnabled() && !clearMode) {
if (gstate.isModeThrough()) {
// TODO: Is it really this simple?
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
} else {
s = s * texScaleU + texOffsetU;
t = t * texScaleV + texOffsetV;
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
}
}
if (!clearMode)
prim_color += Vec4<int>(sec_color, 0);
ScreenCoords pprime = ScreenCoords(x, y, z);
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
if (clearMode) {
DrawSinglePixel<true>(p, z, fog, prim_color);
} else {
DrawSinglePixel<false>(p, z, fog, prim_color);
}
x = x + xinc;
y = y + yinc;
z = z + zinc;
}
}
bool GetCurrentStencilbuffer(GPUDebugBuffer &buffer)
{
int w = gstate.getRegionX2() - gstate.getRegionX1() + 1;
int h = gstate.getRegionY2() - gstate.getRegionY1() + 1;
buffer.Allocate(w, h, GPU_DBG_FORMAT_8BIT);
u8 *row = buffer.GetData();
for (int y = gstate.getRegionY1(); y <= gstate.getRegionY2(); ++y) {
for (int x = gstate.getRegionX1(); x <= gstate.getRegionX2(); ++x) {
row[x - gstate.getRegionX1()] = GetPixelStencil(x, y);
}
row += w;
}
return true;
}
bool GetCurrentTexture(GPUDebugBuffer &buffer, int level)
{
if (!gstate.isTextureMapEnabled()) {
return false;
}
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
buffer.Allocate(w, h, GE_FORMAT_8888, false);
GETextureFormat texfmt = gstate.getTextureFormat();
u32 texaddr = gstate.getTextureAddress(level);
int texbufwidthbits = GetTextureBufw(level, texaddr, texfmt) * 8;
u8 *texptr = Memory::GetPointer(texaddr);
u32 *row = (u32 *)buffer.GetData();
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
row[x] = SampleNearest<1>(level, &x, &y, texptr, texbufwidthbits);
}
row += w;
}
return true;
}
} // namespace