mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-24 05:49:58 +00:00
1626 lines
48 KiB
C++
1626 lines
48 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include "base/basictypes.h"
|
|
#include "profiler/profiler.h"
|
|
|
|
#include "Common/ThreadPools.h"
|
|
#include "Common/ColorConv.h"
|
|
#include "Core/Config.h"
|
|
#include "Core/MemMap.h"
|
|
#include "Core/Reporting.h"
|
|
#include "GPU/GPUState.h"
|
|
|
|
#include "GPU/Common/TextureDecoder.h"
|
|
#include "GPU/Software/SoftGpu.h"
|
|
#include "GPU/Software/Rasterizer.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#if defined(_M_SSE)
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
extern FormatBuffer fb;
|
|
extern FormatBuffer depthbuf;
|
|
|
|
extern u32 clut[4096];
|
|
|
|
namespace Rasterizer {
|
|
|
|
//static inline int orient2d(const DrawingCoords& v0, const DrawingCoords& v1, const DrawingCoords& v2)
|
|
static inline int orient2d(const ScreenCoords& v0, const ScreenCoords& v1, const ScreenCoords& v2)
|
|
{
|
|
return ((int)v1.x-(int)v0.x)*((int)v2.y-(int)v0.y) - ((int)v1.y-(int)v0.y)*((int)v2.x-(int)v0.x);
|
|
}
|
|
|
|
static inline int orient2dIncX(int dY01)
|
|
{
|
|
return dY01;
|
|
}
|
|
|
|
static inline int orient2dIncY(int dX01)
|
|
{
|
|
return -dX01;
|
|
}
|
|
|
|
template <unsigned int texel_size_bits>
|
|
static inline int GetPixelDataOffset(unsigned int row_pitch_bits, unsigned int u, unsigned int v)
|
|
{
|
|
if (!gstate.isTextureSwizzled())
|
|
return (v * (row_pitch_bits * texel_size_bits >> 6)) + (u * texel_size_bits >> 3);
|
|
|
|
const int tile_size_bits = 32;
|
|
const int tiles_in_block_horizontal = 4;
|
|
const int tiles_in_block_vertical = 8;
|
|
|
|
int texels_per_tile = tile_size_bits / texel_size_bits;
|
|
int tile_u = u / texels_per_tile;
|
|
int tile_idx = (v % tiles_in_block_vertical) * (tiles_in_block_horizontal) +
|
|
// TODO: not sure if the *texel_size_bits/8 factor is correct
|
|
(v / tiles_in_block_vertical) * ((row_pitch_bits*texel_size_bits/(8*tile_size_bits))*tiles_in_block_vertical) +
|
|
(tile_u % tiles_in_block_horizontal) +
|
|
(tile_u / tiles_in_block_horizontal) * (tiles_in_block_horizontal*tiles_in_block_vertical);
|
|
|
|
return tile_idx * (tile_size_bits / 8) + ((u % texels_per_tile) * texel_size_bits) / 8;
|
|
}
|
|
|
|
static inline u32 LookupColor(unsigned int index, unsigned int level)
|
|
{
|
|
const bool mipmapShareClut = gstate.isClutSharedForMipmaps();
|
|
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
|
|
|
|
switch (gstate.getClutPaletteFormat()) {
|
|
case GE_CMODE_16BIT_BGR5650:
|
|
return RGB565ToRGBA8888(reinterpret_cast<u16*>(clut)[index + clutSharingOffset]);
|
|
|
|
case GE_CMODE_16BIT_ABGR5551:
|
|
return RGBA5551ToRGBA8888(reinterpret_cast<u16*>(clut)[index + clutSharingOffset]);
|
|
|
|
case GE_CMODE_16BIT_ABGR4444:
|
|
return RGBA4444ToRGBA8888(reinterpret_cast<u16*>(clut)[index + clutSharingOffset]);
|
|
|
|
case GE_CMODE_32BIT_ABGR8888:
|
|
return clut[index + clutSharingOffset];
|
|
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Unsupported palette format: %x", gstate.getClutPaletteFormat());
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline u8 ClampFogDepth(float fogdepth) {
|
|
if (fogdepth <= 0.0f)
|
|
return 0;
|
|
else if (fogdepth >= 1.0f)
|
|
return 255;
|
|
else
|
|
return (u8)(u32)(fogdepth * 255.0f);
|
|
}
|
|
|
|
static inline void GetTexelCoordinates(int level, float s, float t, int& out_u, int& out_v)
|
|
{
|
|
int width = gstate.getTextureWidth(level);
|
|
int height = gstate.getTextureHeight(level);
|
|
|
|
int u = (int)(s * width + 0.375f);
|
|
int v = (int)(t * height + 0.375f);
|
|
|
|
if (gstate.isTexCoordClampedS()) {
|
|
if (u >= width - 1)
|
|
u = width - 1;
|
|
else if (u < 0)
|
|
u = 0;
|
|
} else {
|
|
u &= width - 1;
|
|
}
|
|
if (gstate.isTexCoordClampedT()) {
|
|
if (v >= height - 1)
|
|
v = height - 1;
|
|
else if (v < 0)
|
|
v = 0;
|
|
} else {
|
|
v &= height - 1;
|
|
}
|
|
|
|
out_u = u;
|
|
out_v = v;
|
|
}
|
|
|
|
static inline void GetTexelCoordinatesQuad(int level, float in_s, float in_t, int u[4], int v[4], int &frac_u, int &frac_v)
|
|
{
|
|
// 8 bits of fractional UV
|
|
int width = gstate.getTextureWidth(level);
|
|
int height = gstate.getTextureHeight(level);
|
|
|
|
int base_u = in_s * width * 256;
|
|
int base_v = in_t * height * 256;
|
|
|
|
frac_u = (int)(base_u) & 0xff;
|
|
frac_v = (int)(base_v) & 0xff;
|
|
|
|
base_u >>= 8;
|
|
base_v >>= 8;
|
|
|
|
// Need to generate and individually wrap/clamp the four sample coordinates. Ugh.
|
|
|
|
if (gstate.isTexCoordClampedS()) {
|
|
for (int i = 0; i < 4; i++) {
|
|
int temp_u = base_u + (i & 1);
|
|
if (temp_u > width - 1)
|
|
temp_u = width - 1;
|
|
else if (temp_u < 0)
|
|
temp_u = 0;
|
|
u[i] = temp_u;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 4; i++) {
|
|
u[i] = (base_u + (i & 1)) & (width - 1);
|
|
}
|
|
}
|
|
if (gstate.isTexCoordClampedT()) {
|
|
for (int i = 0; i < 4; i++) {
|
|
int temp_v = base_v + ((i & 2) >> 1);
|
|
if (temp_v > height - 1)
|
|
temp_v = height - 1;
|
|
else if (temp_v < 0)
|
|
temp_v = 0;
|
|
v[i] = temp_v;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 4; i++) {
|
|
v[i] = (base_v + ((i & 2) >> 1)) & (height - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void GetTexelCoordinatesThrough(int level, int s, int t, int& u, int& v)
|
|
{
|
|
// TODO: Not actually sure which clamp/wrap modes should be applied. Let's just wrap for now.
|
|
int width = gstate.getTextureWidth(level);
|
|
int height = gstate.getTextureHeight(level);
|
|
|
|
// Wrap!
|
|
u = ((unsigned int)(s) & (width - 1));
|
|
v = ((unsigned int)(t) & (height - 1));
|
|
}
|
|
|
|
static inline void GetTexelCoordinatesThroughQuad(int level, int s, int t, int *u, int *v)
|
|
{
|
|
// Not actually sure which clamp/wrap modes should be applied. Let's just wrap for now.
|
|
int width = gstate.getTextureWidth(level);
|
|
int height = gstate.getTextureHeight(level);
|
|
|
|
// Wrap!
|
|
for (int i = 0; i < 4; i++) {
|
|
u[i] = (s + (i & 1)) & (width - 1);
|
|
v[i] = (t + ((i & 2) >> 1)) & (height - 1);
|
|
}
|
|
}
|
|
|
|
static inline void GetTextureCoordinates(const VertexData& v0, const VertexData& v1, const VertexData& v2, int w0, int w1, int w2, float& s, float& t)
|
|
{
|
|
switch (gstate.getUVGenMode()) {
|
|
case GE_TEXMAP_TEXTURE_COORDS:
|
|
case GE_TEXMAP_UNKNOWN:
|
|
case GE_TEXMAP_ENVIRONMENT_MAP:
|
|
{
|
|
// TODO: What happens if vertex has no texture coordinates?
|
|
// Note that for environment mapping, texture coordinates have been calculated during lighting
|
|
float q0 = 1.f / v0.clippos.w;
|
|
float q1 = 1.f / v1.clippos.w;
|
|
float q2 = 1.f / v2.clippos.w;
|
|
float q_recip = 1.0f / (q0 * w0 + q1 * w1 + q2 * w2);
|
|
s = (v0.texturecoords.s() * q0 * w0 + v1.texturecoords.s() * q1 * w1 + v2.texturecoords.s() * q2 * w2) * q_recip;
|
|
t = (v0.texturecoords.t() * q0 * w0 + v1.texturecoords.t() * q1 * w1 + v2.texturecoords.t() * q2 * w2) * q_recip;
|
|
}
|
|
break;
|
|
case GE_TEXMAP_TEXTURE_MATRIX:
|
|
{
|
|
// projection mapping, TODO: Move this code to TransformUnit!
|
|
Vec3<float> source;
|
|
switch (gstate.getUVProjMode()) {
|
|
case GE_PROJMAP_POSITION:
|
|
source = (v0.modelpos * w0 + v1.modelpos * w1 + v2.modelpos * w2) / (w0 + w1 + w2);
|
|
break;
|
|
|
|
case GE_PROJMAP_UV:
|
|
source = Vec3f((v0.texturecoords * w0 + v1.texturecoords * w1 + v2.texturecoords * w2) / (w0 + w1 + w2), 0.0f);
|
|
break;
|
|
|
|
case GE_PROJMAP_NORMALIZED_NORMAL:
|
|
source = (v0.normal.Normalized() * w0 + v1.normal.Normalized() * w1 + v2.normal.Normalized() * w2) / (w0 + w1 + w2);
|
|
break;
|
|
|
|
case GE_PROJMAP_NORMAL:
|
|
source = (v0.normal * w0 + v1.normal * w1 + v2.normal * w2) / (w0 + w1 + w2);
|
|
break;
|
|
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Unsupported UV projection mode %x", gstate.getUVProjMode());
|
|
break;
|
|
}
|
|
|
|
Mat3x3<float> tgen(gstate.tgenMatrix);
|
|
Vec3<float> stq = tgen * source + Vec3<float>(gstate.tgenMatrix[9], gstate.tgenMatrix[10], gstate.tgenMatrix[11]);
|
|
float z_recip = 1.0f / stq.z;
|
|
s = stq.x * z_recip;
|
|
t = stq.y * z_recip;
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture mapping mode %x!", gstate.getUVGenMode());
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct Nearest4 {
|
|
MEMORY_ALIGNED16(u32 v[4]);
|
|
|
|
operator u32() const {
|
|
return v[0];
|
|
}
|
|
};
|
|
|
|
template <int N>
|
|
inline static Nearest4 SampleNearest(int level, int u[N], int v[N], const u8 *srcptr, int texbufwidthbits)
|
|
{
|
|
Nearest4 res;
|
|
if (!srcptr) {
|
|
memset(res.v, 0, sizeof(res.v));
|
|
return res;
|
|
}
|
|
|
|
GETextureFormat texfmt = gstate.getTextureFormat();
|
|
|
|
// TODO: Should probably check if textures are aligned properly...
|
|
|
|
switch (texfmt) {
|
|
case GE_TFMT_4444:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
|
|
res.v[i] = RGBA4444ToRGBA8888(*(const u16 *)src);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_5551:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
|
|
res.v[i] = RGBA5551ToRGBA8888(*(const u16 *)src);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_5650:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
|
|
res.v[i] = RGB565ToRGBA8888(*(const u16 *)src);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_8888:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<32>(texbufwidthbits, u[i], v[i]);
|
|
res.v[i] = *(const u32 *)src;
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_CLUT32:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<32>(texbufwidthbits, u[i], v[i]);
|
|
u32 val = src[0] + (src[1] << 8) + (src[2] << 16) + (src[3] << 24);
|
|
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_CLUT16:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<16>(texbufwidthbits, u[i], v[i]);
|
|
u16 val = src[0] + (src[1] << 8);
|
|
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_CLUT8:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<8>(texbufwidthbits, u[i], v[i]);
|
|
u8 val = *src;
|
|
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_CLUT4:
|
|
for (int i = 0; i < N; ++i) {
|
|
const u8 *src = srcptr + GetPixelDataOffset<4>(texbufwidthbits, u[i], v[i]);
|
|
u8 val = (u[i] & 1) ? (src[0] >> 4) : (src[0] & 0xF);
|
|
res.v[i] = LookupColor(gstate.transformClutIndex(val), level);
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_DXT1:
|
|
for (int i = 0; i < N; ++i) {
|
|
const DXT1Block *block = (const DXT1Block *)srcptr + (v[i] / 4) * (texbufwidthbits / 8 / 4) + (u[i] / 4);
|
|
u32 data[4 * 4];
|
|
DecodeDXT1Block(data, block, 4);
|
|
res.v[i] = data[4 * (v[i] % 4) + (u[i] % 4)];
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_DXT3:
|
|
for (int i = 0; i < N; ++i) {
|
|
const DXT3Block *block = (const DXT3Block *)srcptr + (v[i] / 4) * (texbufwidthbits / 8 / 4) + (u[i] / 4);
|
|
u32 data[4 * 4];
|
|
DecodeDXT3Block(data, block, 4);
|
|
res.v[i] = data[4 * (v[i] % 4) + (u[i] % 4)];
|
|
}
|
|
return res;
|
|
|
|
case GE_TFMT_DXT5:
|
|
for (int i = 0; i < N; ++i) {
|
|
const DXT5Block *block = (const DXT5Block *)srcptr + (v[i] / 4) * (texbufwidthbits / 8 / 4) + (u[i] / 4);
|
|
u32 data[4 * 4];
|
|
DecodeDXT5Block(data, block, 4);
|
|
res.v[i] = data[4 * (v[i] % 4) + (u[i] % 4)];
|
|
}
|
|
return res;
|
|
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Unsupported texture format: %x", texfmt);
|
|
memset(res.v, 0, sizeof(res.v));
|
|
return res;
|
|
}
|
|
}
|
|
|
|
// NOTE: These likely aren't endian safe
|
|
static inline u32 GetPixelColor(int x, int y)
|
|
{
|
|
switch (gstate.FrameBufFormat()) {
|
|
case GE_FORMAT_565:
|
|
return RGB565ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
|
|
|
|
case GE_FORMAT_5551:
|
|
return RGBA5551ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
|
|
|
|
case GE_FORMAT_4444:
|
|
return RGBA4444ToRGBA8888(fb.Get16(x, y, gstate.FrameBufStride()));
|
|
|
|
case GE_FORMAT_8888:
|
|
return fb.Get32(x, y, gstate.FrameBufStride());
|
|
|
|
case GE_FORMAT_INVALID:
|
|
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void SetPixelColor(int x, int y, u32 value)
|
|
{
|
|
switch (gstate.FrameBufFormat()) {
|
|
case GE_FORMAT_565:
|
|
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGB565(value));
|
|
break;
|
|
|
|
case GE_FORMAT_5551:
|
|
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGBA5551(value));
|
|
break;
|
|
|
|
case GE_FORMAT_4444:
|
|
fb.Set16(x, y, gstate.FrameBufStride(), RGBA8888ToRGBA4444(value));
|
|
break;
|
|
|
|
case GE_FORMAT_8888:
|
|
fb.Set32(x, y, gstate.FrameBufStride(), value);
|
|
break;
|
|
|
|
case GE_FORMAT_INVALID:
|
|
_dbg_assert_msg_(G3D, false, "Software: invalid framebuf format.");
|
|
}
|
|
}
|
|
|
|
static inline u16 GetPixelDepth(int x, int y)
|
|
{
|
|
return depthbuf.Get16(x, y, gstate.DepthBufStride());
|
|
}
|
|
|
|
static inline void SetPixelDepth(int x, int y, u16 value)
|
|
{
|
|
depthbuf.Set16(x, y, gstate.DepthBufStride(), value);
|
|
}
|
|
|
|
static inline u8 GetPixelStencil(int x, int y)
|
|
{
|
|
if (gstate.FrameBufFormat() == GE_FORMAT_565) {
|
|
// Always treated as 0 for comparison purposes.
|
|
return 0;
|
|
} else if (gstate.FrameBufFormat() == GE_FORMAT_5551) {
|
|
return ((fb.Get16(x, y, gstate.FrameBufStride()) & 0x8000) != 0) ? 0xFF : 0;
|
|
} else if (gstate.FrameBufFormat() == GE_FORMAT_4444) {
|
|
return Convert4To8(fb.Get16(x, y, gstate.FrameBufStride()) >> 12);
|
|
} else {
|
|
return fb.Get32(x, y, gstate.FrameBufStride()) >> 24;
|
|
}
|
|
}
|
|
|
|
static inline void SetPixelStencil(int x, int y, u8 value)
|
|
{
|
|
// TODO: This seems like it maybe respects the alpha mask (at least in some scenarios?)
|
|
|
|
if (gstate.FrameBufFormat() == GE_FORMAT_565) {
|
|
// Do nothing
|
|
} else if (gstate.FrameBufFormat() == GE_FORMAT_5551) {
|
|
u16 pixel = fb.Get16(x, y, gstate.FrameBufStride()) & ~0x8000;
|
|
pixel |= value != 0 ? 0x8000 : 0;
|
|
fb.Set16(x, y, gstate.FrameBufStride(), pixel);
|
|
} else if (gstate.FrameBufFormat() == GE_FORMAT_4444) {
|
|
u16 pixel = fb.Get16(x, y, gstate.FrameBufStride()) & ~0xF000;
|
|
pixel |= (u16)value << 12;
|
|
fb.Set16(x, y, gstate.FrameBufStride(), pixel);
|
|
} else {
|
|
u32 pixel = fb.Get32(x, y, gstate.FrameBufStride()) & ~0xFF000000;
|
|
pixel |= (u32)value << 24;
|
|
fb.Set32(x, y, gstate.FrameBufStride(), pixel);
|
|
}
|
|
}
|
|
|
|
static inline bool DepthTestPassed(int x, int y, u16 z)
|
|
{
|
|
u16 reference_z = GetPixelDepth(x, y);
|
|
|
|
switch (gstate.getDepthTestFunction()) {
|
|
case GE_COMP_NEVER:
|
|
return false;
|
|
|
|
case GE_COMP_ALWAYS:
|
|
return true;
|
|
|
|
case GE_COMP_EQUAL:
|
|
return (z == reference_z);
|
|
|
|
case GE_COMP_NOTEQUAL:
|
|
return (z != reference_z);
|
|
|
|
case GE_COMP_LESS:
|
|
return (z < reference_z);
|
|
|
|
case GE_COMP_LEQUAL:
|
|
return (z <= reference_z);
|
|
|
|
case GE_COMP_GREATER:
|
|
return (z > reference_z);
|
|
|
|
case GE_COMP_GEQUAL:
|
|
return (z >= reference_z);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline bool IsRightSideOrFlatBottomLine(const Vec2<fixed16>& vertex, const Vec2<fixed16>& line1, const Vec2<fixed16>& line2)
|
|
{
|
|
if (line1.y == line2.y) {
|
|
// just check if vertex is above us => bottom line parallel to x-axis
|
|
return vertex.y < line1.y;
|
|
} else {
|
|
// check if vertex is on our left => right side
|
|
return vertex.x < line1.x + ((int)line2.x - (int)line1.x) * ((int)vertex.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
|
|
}
|
|
}
|
|
|
|
static inline bool StencilTestPassed(u8 stencil)
|
|
{
|
|
// TODO: Does the masking logic make any sense?
|
|
stencil &= gstate.getStencilTestMask();
|
|
u8 ref = gstate.getStencilTestRef() & gstate.getStencilTestMask();
|
|
switch (gstate.getStencilTestFunction()) {
|
|
case GE_COMP_NEVER:
|
|
return false;
|
|
|
|
case GE_COMP_ALWAYS:
|
|
return true;
|
|
|
|
case GE_COMP_EQUAL:
|
|
return ref == stencil;
|
|
|
|
case GE_COMP_NOTEQUAL:
|
|
return ref != stencil;
|
|
|
|
case GE_COMP_LESS:
|
|
return ref < stencil;
|
|
|
|
case GE_COMP_LEQUAL:
|
|
return ref <= stencil;
|
|
|
|
case GE_COMP_GREATER:
|
|
return ref > stencil;
|
|
|
|
case GE_COMP_GEQUAL:
|
|
return ref >= stencil;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline u8 ApplyStencilOp(int op, int x, int y)
|
|
{
|
|
u8 old_stencil = GetPixelStencil(x, y); // TODO: Apply mask?
|
|
u8 reference_stencil = gstate.getStencilTestRef(); // TODO: Apply mask?
|
|
|
|
switch (op) {
|
|
case GE_STENCILOP_KEEP:
|
|
return old_stencil;
|
|
|
|
case GE_STENCILOP_ZERO:
|
|
return 0;
|
|
|
|
case GE_STENCILOP_REPLACE:
|
|
return reference_stencil;
|
|
|
|
case GE_STENCILOP_INVERT:
|
|
return ~old_stencil;
|
|
|
|
case GE_STENCILOP_INCR:
|
|
switch (gstate.FrameBufFormat()) {
|
|
case GE_FORMAT_8888:
|
|
if (old_stencil != 0xFF) {
|
|
return old_stencil + 1;
|
|
}
|
|
return old_stencil;
|
|
case GE_FORMAT_5551:
|
|
return 0xFF;
|
|
case GE_FORMAT_4444:
|
|
if (old_stencil < 0xF0) {
|
|
return old_stencil + 0x10;
|
|
}
|
|
return old_stencil;
|
|
default:
|
|
return old_stencil;
|
|
}
|
|
break;
|
|
|
|
case GE_STENCILOP_DECR:
|
|
switch (gstate.FrameBufFormat()) {
|
|
case GE_FORMAT_4444:
|
|
if (old_stencil >= 0x10)
|
|
return old_stencil - 0x10;
|
|
break;
|
|
default:
|
|
if (old_stencil != 0)
|
|
return old_stencil - 1;
|
|
return old_stencil;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return old_stencil;
|
|
}
|
|
|
|
static inline u32 ApplyLogicOp(GELogicOp op, u32 old_color, u32 new_color)
|
|
{
|
|
switch (op) {
|
|
case GE_LOGIC_CLEAR:
|
|
new_color = 0;
|
|
break;
|
|
|
|
case GE_LOGIC_AND:
|
|
new_color = new_color & old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_AND_REVERSE:
|
|
new_color = new_color & ~old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_COPY:
|
|
//new_color = new_color;
|
|
break;
|
|
|
|
case GE_LOGIC_AND_INVERTED:
|
|
new_color = ~new_color & old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_NOOP:
|
|
new_color = old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_XOR:
|
|
new_color = new_color ^ old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_OR:
|
|
new_color = new_color | old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_NOR:
|
|
new_color = ~(new_color | old_color);
|
|
break;
|
|
|
|
case GE_LOGIC_EQUIV:
|
|
new_color = ~(new_color ^ old_color);
|
|
break;
|
|
|
|
case GE_LOGIC_INVERTED:
|
|
new_color = ~old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_OR_REVERSE:
|
|
new_color = new_color | ~old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_COPY_INVERTED:
|
|
new_color = ~new_color;
|
|
break;
|
|
|
|
case GE_LOGIC_OR_INVERTED:
|
|
new_color = ~new_color | old_color;
|
|
break;
|
|
|
|
case GE_LOGIC_NAND:
|
|
new_color = ~(new_color & old_color);
|
|
break;
|
|
|
|
case GE_LOGIC_SET:
|
|
new_color = 0xFFFFFFFF;
|
|
break;
|
|
}
|
|
|
|
return new_color;
|
|
}
|
|
|
|
static inline Vec4<int> GetTextureFunctionOutput(const Vec4<int>& prim_color, const Vec4<int>& texcolor)
|
|
{
|
|
Vec3<int> out_rgb;
|
|
int out_a;
|
|
|
|
bool rgba = gstate.isTextureAlphaUsed();
|
|
|
|
switch (gstate.getTextureFunction()) {
|
|
case GE_TEXFUNC_MODULATE:
|
|
{
|
|
#if defined(_M_SSE)
|
|
// We can be accurate up to 24 bit integers, should be enough.
|
|
const __m128 p = _mm_cvtepi32_ps(prim_color.ivec);
|
|
const __m128 t = _mm_cvtepi32_ps(texcolor.ivec);
|
|
out_rgb.ivec = _mm_cvtps_epi32(_mm_div_ps(_mm_mul_ps(p, t), _mm_set_ps1(255.0f)));
|
|
|
|
if (rgba) {
|
|
return Vec4<int>(out_rgb.ivec);
|
|
} else {
|
|
out_a = prim_color.a();
|
|
}
|
|
#else
|
|
out_rgb = prim_color.rgb() * texcolor.rgb() / 255;
|
|
out_a = (rgba) ? (prim_color.a() * texcolor.a() / 255) : prim_color.a();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case GE_TEXFUNC_DECAL:
|
|
{
|
|
int t = (rgba) ? texcolor.a() : 255;
|
|
int invt = (rgba) ? 255 - t : 0;
|
|
out_rgb = (prim_color.rgb() * invt + texcolor.rgb() * t) / 255;
|
|
out_a = prim_color.a();
|
|
break;
|
|
}
|
|
|
|
case GE_TEXFUNC_BLEND:
|
|
{
|
|
const Vec3<int> const255(255, 255, 255);
|
|
const Vec3<int> texenv(gstate.getTextureEnvColR(), gstate.getTextureEnvColG(), gstate.getTextureEnvColB());
|
|
out_rgb = ((const255 - texcolor.rgb()) * prim_color.rgb() + texcolor.rgb() * texenv) / 255;
|
|
out_a = prim_color.a() * ((rgba) ? texcolor.a() : 255) / 255;
|
|
break;
|
|
}
|
|
|
|
case GE_TEXFUNC_REPLACE:
|
|
out_rgb = texcolor.rgb();
|
|
out_a = (rgba) ? texcolor.a() : prim_color.a();
|
|
break;
|
|
|
|
case GE_TEXFUNC_ADD:
|
|
out_rgb = prim_color.rgb() + texcolor.rgb();
|
|
if (out_rgb.r() > 255) out_rgb.r() = 255;
|
|
if (out_rgb.g() > 255) out_rgb.g() = 255;
|
|
if (out_rgb.b() > 255) out_rgb.b() = 255;
|
|
out_a = prim_color.a() * ((rgba) ? texcolor.a() : 255) / 255;
|
|
break;
|
|
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Unknown texture function %x", gstate.getTextureFunction());
|
|
out_rgb = Vec3<int>::AssignToAll(0);
|
|
out_a = 0;
|
|
}
|
|
|
|
return Vec4<int>(out_rgb.r(), out_rgb.g(), out_rgb.b(), out_a);
|
|
}
|
|
|
|
static inline bool ColorTestPassed(const Vec3<int> &color)
|
|
{
|
|
const u32 mask = gstate.getColorTestMask();
|
|
const u32 c = color.ToRGB() & mask;
|
|
const u32 ref = gstate.getColorTestRef() & mask;
|
|
switch (gstate.getColorTestFunction()) {
|
|
case GE_COMP_NEVER:
|
|
return false;
|
|
|
|
case GE_COMP_ALWAYS:
|
|
return true;
|
|
|
|
case GE_COMP_EQUAL:
|
|
return c == ref;
|
|
|
|
case GE_COMP_NOTEQUAL:
|
|
return c != ref;
|
|
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Invalid colortest function: %d", gstate.getColorTestFunction());
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool AlphaTestPassed(int alpha)
|
|
{
|
|
const u8 mask = gstate.getAlphaTestMask() & 0xFF;
|
|
const u8 ref = gstate.getAlphaTestRef() & mask;
|
|
alpha &= mask;
|
|
|
|
switch (gstate.getAlphaTestFunction()) {
|
|
case GE_COMP_NEVER:
|
|
return false;
|
|
|
|
case GE_COMP_ALWAYS:
|
|
return true;
|
|
|
|
case GE_COMP_EQUAL:
|
|
return (alpha == ref);
|
|
|
|
case GE_COMP_NOTEQUAL:
|
|
return (alpha != ref);
|
|
|
|
case GE_COMP_LESS:
|
|
return (alpha < ref);
|
|
|
|
case GE_COMP_LEQUAL:
|
|
return (alpha <= ref);
|
|
|
|
case GE_COMP_GREATER:
|
|
return (alpha > ref);
|
|
|
|
case GE_COMP_GEQUAL:
|
|
return (alpha >= ref);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline Vec3<int> GetSourceFactor(const Vec4<int>& source, const Vec4<int>& dst)
|
|
{
|
|
switch (gstate.getBlendFuncA()) {
|
|
case GE_SRCBLEND_DSTCOLOR:
|
|
return dst.rgb();
|
|
|
|
case GE_SRCBLEND_INVDSTCOLOR:
|
|
return Vec3<int>::AssignToAll(255) - dst.rgb();
|
|
|
|
case GE_SRCBLEND_SRCALPHA:
|
|
#if defined(_M_SSE)
|
|
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
|
|
#else
|
|
return Vec3<int>::AssignToAll(source.a());
|
|
#endif
|
|
|
|
case GE_SRCBLEND_INVSRCALPHA:
|
|
#if defined(_M_SSE)
|
|
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
|
|
#else
|
|
return Vec3<int>::AssignToAll(255 - source.a());
|
|
#endif
|
|
|
|
case GE_SRCBLEND_DSTALPHA:
|
|
return Vec3<int>::AssignToAll(dst.a());
|
|
|
|
case GE_SRCBLEND_INVDSTALPHA:
|
|
return Vec3<int>::AssignToAll(255 - dst.a());
|
|
|
|
case GE_SRCBLEND_DOUBLESRCALPHA:
|
|
return Vec3<int>::AssignToAll(2 * source.a());
|
|
|
|
case GE_SRCBLEND_DOUBLEINVSRCALPHA:
|
|
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
|
|
|
|
case GE_SRCBLEND_DOUBLEDSTALPHA:
|
|
return Vec3<int>::AssignToAll(2 * dst.a());
|
|
|
|
case GE_SRCBLEND_DOUBLEINVDSTALPHA:
|
|
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
|
|
|
|
case GE_SRCBLEND_FIXA:
|
|
default:
|
|
// All other dest factors (> 10) are treated as FIXA.
|
|
return Vec3<int>::FromRGB(gstate.getFixA());
|
|
}
|
|
}
|
|
|
|
static inline Vec3<int> GetDestFactor(const Vec4<int>& source, const Vec4<int>& dst)
|
|
{
|
|
switch (gstate.getBlendFuncB()) {
|
|
case GE_DSTBLEND_SRCCOLOR:
|
|
return source.rgb();
|
|
|
|
case GE_DSTBLEND_INVSRCCOLOR:
|
|
return Vec3<int>::AssignToAll(255) - source.rgb();
|
|
|
|
case GE_DSTBLEND_SRCALPHA:
|
|
#if defined(_M_SSE)
|
|
return Vec3<int>(_mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3)));
|
|
#else
|
|
return Vec3<int>::AssignToAll(source.a());
|
|
#endif
|
|
|
|
case GE_DSTBLEND_INVSRCALPHA:
|
|
#if defined(_M_SSE)
|
|
return Vec3<int>(_mm_sub_epi32(_mm_set1_epi32(255), _mm_shuffle_epi32(source.ivec, _MM_SHUFFLE(3, 3, 3, 3))));
|
|
#else
|
|
return Vec3<int>::AssignToAll(255 - source.a());
|
|
#endif
|
|
|
|
case GE_DSTBLEND_DSTALPHA:
|
|
return Vec3<int>::AssignToAll(dst.a());
|
|
|
|
case GE_DSTBLEND_INVDSTALPHA:
|
|
return Vec3<int>::AssignToAll(255 - dst.a());
|
|
|
|
case GE_DSTBLEND_DOUBLESRCALPHA:
|
|
return Vec3<int>::AssignToAll(2 * source.a());
|
|
|
|
case GE_DSTBLEND_DOUBLEINVSRCALPHA:
|
|
return Vec3<int>::AssignToAll(255 - std::min(2 * source.a(), 255));
|
|
|
|
case GE_DSTBLEND_DOUBLEDSTALPHA:
|
|
return Vec3<int>::AssignToAll(2 * dst.a());
|
|
|
|
case GE_DSTBLEND_DOUBLEINVDSTALPHA:
|
|
return Vec3<int>::AssignToAll(255 - std::min(2 * dst.a(), 255));
|
|
|
|
case GE_DSTBLEND_FIXB:
|
|
default:
|
|
// All other dest factors (> 10) are treated as FIXB.
|
|
return Vec3<int>::FromRGB(gstate.getFixB());
|
|
}
|
|
}
|
|
|
|
static inline Vec3<int> AlphaBlendingResult(const Vec4<int> &source, const Vec4<int> &dst)
|
|
{
|
|
// Note: These factors cannot go below 0, but they can go above 255 when doubling.
|
|
Vec3<int> srcfactor = GetSourceFactor(source, dst);
|
|
Vec3<int> dstfactor = GetDestFactor(source, dst);
|
|
|
|
switch (gstate.getBlendEq()) {
|
|
case GE_BLENDMODE_MUL_AND_ADD:
|
|
{
|
|
#if defined(_M_SSE)
|
|
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
|
|
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
|
|
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(s, d), _mm_set_ps1(1.0f / 255.0f))));
|
|
#else
|
|
return (source.rgb() * srcfactor + dst.rgb() * dstfactor) / 255;
|
|
#endif
|
|
}
|
|
|
|
case GE_BLENDMODE_MUL_AND_SUBTRACT:
|
|
{
|
|
#if defined(_M_SSE)
|
|
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
|
|
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
|
|
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_sub_ps(s, d), _mm_set_ps1(1.0f / 255.0f))));
|
|
#else
|
|
return (source.rgb() * srcfactor - dst.rgb() * dstfactor) / 255;
|
|
#endif
|
|
}
|
|
|
|
case GE_BLENDMODE_MUL_AND_SUBTRACT_REVERSE:
|
|
{
|
|
#if defined(_M_SSE)
|
|
const __m128 s = _mm_mul_ps(_mm_cvtepi32_ps(source.ivec), _mm_cvtepi32_ps(srcfactor.ivec));
|
|
const __m128 d = _mm_mul_ps(_mm_cvtepi32_ps(dst.ivec), _mm_cvtepi32_ps(dstfactor.ivec));
|
|
return Vec3<int>(_mm_cvtps_epi32(_mm_mul_ps(_mm_sub_ps(d, s), _mm_set_ps1(1.0f / 255.0f))));
|
|
#else
|
|
return (dst.rgb() * dstfactor - source.rgb() * srcfactor) / 255;
|
|
#endif
|
|
}
|
|
|
|
case GE_BLENDMODE_MIN:
|
|
return Vec3<int>(std::min(source.r(), dst.r()),
|
|
std::min(source.g(), dst.g()),
|
|
std::min(source.b(), dst.b()));
|
|
|
|
case GE_BLENDMODE_MAX:
|
|
return Vec3<int>(std::max(source.r(), dst.r()),
|
|
std::max(source.g(), dst.g()),
|
|
std::max(source.b(), dst.b()));
|
|
|
|
case GE_BLENDMODE_ABSDIFF:
|
|
return Vec3<int>(::abs(source.r() - dst.r()),
|
|
::abs(source.g() - dst.g()),
|
|
::abs(source.b() - dst.b()));
|
|
|
|
default:
|
|
ERROR_LOG_REPORT(G3D, "Software: Unknown blend function %x", gstate.getBlendEq());
|
|
return Vec3<int>();
|
|
}
|
|
}
|
|
|
|
template <bool clearMode>
|
|
inline void DrawSinglePixel(const DrawingCoords &p, u16 z, u8 fog, const Vec4<int> &color_in) {
|
|
Vec4<int> prim_color = color_in;
|
|
// Depth range test
|
|
// TODO: Clear mode?
|
|
if (!gstate.isModeThrough())
|
|
if (z < gstate.getDepthRangeMin() || z > gstate.getDepthRangeMax())
|
|
return;
|
|
|
|
if (gstate.isColorTestEnabled() && !clearMode)
|
|
if (!ColorTestPassed(prim_color.rgb()))
|
|
return;
|
|
|
|
// TODO: Does a need to be clamped?
|
|
if (gstate.isAlphaTestEnabled() && !clearMode)
|
|
if (!AlphaTestPassed(prim_color.a()))
|
|
return;
|
|
|
|
// In clear mode, it uses the alpha color as stencil.
|
|
u8 stencil = clearMode ? prim_color.a() : GetPixelStencil(p.x, p.y);
|
|
// TODO: Is it safe to ignore gstate.isDepthTestEnabled() when clear mode is enabled? Probably yes
|
|
if (!clearMode && (gstate.isStencilTestEnabled() || gstate.isDepthTestEnabled())) {
|
|
if (gstate.isStencilTestEnabled() && !StencilTestPassed(stencil)) {
|
|
stencil = ApplyStencilOp(gstate.getStencilOpSFail(), p.x, p.y);
|
|
SetPixelStencil(p.x, p.y, stencil);
|
|
return;
|
|
}
|
|
|
|
// Also apply depth at the same time. If disabled, same as passing.
|
|
if (gstate.isDepthTestEnabled() && !DepthTestPassed(p.x, p.y, z)) {
|
|
if (gstate.isStencilTestEnabled()) {
|
|
stencil = ApplyStencilOp(gstate.getStencilOpZFail(), p.x, p.y);
|
|
SetPixelStencil(p.x, p.y, stencil);
|
|
}
|
|
return;
|
|
} else if (gstate.isStencilTestEnabled()) {
|
|
stencil = ApplyStencilOp(gstate.getStencilOpZPass(), p.x, p.y);
|
|
}
|
|
|
|
if (gstate.isDepthTestEnabled() && gstate.isDepthWriteEnabled()) {
|
|
SetPixelDepth(p.x, p.y, z);
|
|
}
|
|
} else if (clearMode && gstate.isClearModeDepthMask()) {
|
|
SetPixelDepth(p.x, p.y, z);
|
|
}
|
|
|
|
// Doubling happens only when texturing is enabled, and after tests.
|
|
if (gstate.isTextureMapEnabled() && gstate.isColorDoublingEnabled() && !clearMode) {
|
|
// TODO: Does this need to be clamped before blending?
|
|
prim_color.r() <<= 1;
|
|
prim_color.g() <<= 1;
|
|
prim_color.b() <<= 1;
|
|
}
|
|
|
|
if (gstate.isFogEnabled() && !gstate.isModeThrough() && !clearMode) {
|
|
Vec3<int> fogColor = Vec3<int>::FromRGB(gstate.fogcolor);
|
|
fogColor = (prim_color.rgb() * (int)fog + fogColor * (255 - (int)fog)) / 255;
|
|
prim_color.r() = fogColor.r();
|
|
prim_color.g() = fogColor.g();
|
|
prim_color.b() = fogColor.b();
|
|
}
|
|
|
|
const u32 old_color = GetPixelColor(p.x, p.y);
|
|
u32 new_color;
|
|
|
|
if (gstate.isAlphaBlendEnabled() && !clearMode) {
|
|
const Vec4<int> dst = Vec4<int>::FromRGBA(old_color);
|
|
// ToRGBA() always automatically clamps.
|
|
new_color = AlphaBlendingResult(prim_color, dst).ToRGB();
|
|
new_color |= stencil << 24;
|
|
} else {
|
|
#if defined(_M_SSE)
|
|
new_color = Vec3<int>(prim_color.ivec).ToRGB();
|
|
new_color |= stencil << 24;
|
|
#else
|
|
new_color = Vec4<int>(prim_color.r(), prim_color.g(), prim_color.b(), stencil).ToRGBA();
|
|
#endif
|
|
}
|
|
|
|
// TODO: Is alpha blending still performed if logic ops are enabled?
|
|
if (gstate.isLogicOpEnabled() && !clearMode) {
|
|
// Logic ops don't affect stencil.
|
|
new_color = (stencil << 24) | (ApplyLogicOp(gstate.getLogicOp(), old_color, new_color) & 0x00FFFFFF);
|
|
}
|
|
|
|
if (clearMode) {
|
|
new_color = (new_color & ~gstate.getClearModeColorMask()) | (old_color & gstate.getClearModeColorMask());
|
|
} else {
|
|
new_color = (new_color & ~gstate.getColorMask()) | (old_color & gstate.getColorMask());
|
|
}
|
|
|
|
// TODO: Dither before or inside SetPixelColor
|
|
SetPixelColor(p.x, p.y, new_color);
|
|
}
|
|
|
|
inline void ApplyTexturing(Vec4<int> &prim_color, float s, float t, int maxTexLevel, int magFilt, u8 *texptr[], int texbufwidthbits[]) {
|
|
int u[4] = {0}, v[4] = {0}; // 1.23.8 fixed point
|
|
int frac_u, frac_v;
|
|
|
|
int texlevel = 0;
|
|
|
|
bool bilinear = magFilt != 0;
|
|
// bilinear = false;
|
|
|
|
if (gstate.isModeThrough()) {
|
|
int u_texel = s * 256;
|
|
int v_texel = t * 256;
|
|
frac_u = u_texel & 0xff;
|
|
frac_v = v_texel & 0xff;
|
|
u_texel >>= 8;
|
|
v_texel >>= 8;
|
|
|
|
// we need to compute UV for a quad of pixels together in order to get the mipmap deltas :(
|
|
// texlevel = x
|
|
|
|
if (texlevel > maxTexLevel)
|
|
texlevel = maxTexLevel;
|
|
|
|
if (bilinear) {
|
|
GetTexelCoordinatesThroughQuad(texlevel, u_texel, v_texel, u, v);
|
|
} else {
|
|
GetTexelCoordinatesThrough(texlevel, u_texel, v_texel, u[0], v[0]);
|
|
}
|
|
} else {
|
|
// we need to compute UV for a quad of pixels together in order to get the mipmap deltas :(
|
|
// texlevel = x
|
|
|
|
if (texlevel > maxTexLevel)
|
|
texlevel = maxTexLevel;
|
|
|
|
if (bilinear) {
|
|
GetTexelCoordinatesQuad(texlevel, s, t, u, v, frac_u, frac_v);
|
|
} else {
|
|
GetTexelCoordinates(texlevel, s, t, u[0], v[0]);
|
|
}
|
|
}
|
|
|
|
Vec4<int> texcolor;
|
|
int bufwbits = texbufwidthbits[texlevel];
|
|
const u8 *tptr = texptr[texlevel];
|
|
if (!bilinear) {
|
|
// Nearest filtering only. Round texcoords or just chop bits?
|
|
texcolor = Vec4<int>::FromRGBA(SampleNearest<1>(texlevel, u, v, tptr, bufwbits));
|
|
} else {
|
|
#if defined(_M_SSE)
|
|
Nearest4 c = SampleNearest<4>(texlevel, u, v, tptr, bufwbits);
|
|
|
|
const __m128i z = _mm_setzero_si128();
|
|
|
|
__m128i cvec = _mm_load_si128((const __m128i *)c.v);
|
|
__m128i tvec = _mm_unpacklo_epi8(cvec, z);
|
|
tvec = _mm_mullo_epi16(tvec, _mm_set1_epi16(0x100 - frac_v));
|
|
__m128i bvec = _mm_unpackhi_epi8(cvec, z);
|
|
bvec = _mm_mullo_epi16(bvec, _mm_set1_epi16(frac_v));
|
|
|
|
// This multiplies the left and right sides. We shift right after, although this may round down...
|
|
__m128i rowmult = _mm_set_epi16(frac_u, frac_u, frac_u, frac_u, 0x100 - frac_u, 0x100 - frac_u, 0x100 - frac_u, 0x100 - frac_u);
|
|
__m128i tmp = _mm_mulhi_epu16(_mm_add_epi16(tvec, bvec), rowmult);
|
|
|
|
// Now we need to add the left and right sides together.
|
|
__m128i res = _mm_add_epi16(tmp, _mm_shuffle_epi32(tmp, _MM_SHUFFLE(3, 2, 3, 2)));
|
|
texcolor = Vec4<int>(_mm_unpacklo_epi16(res, z));
|
|
#else
|
|
Nearest4 nearest = SampleNearest<4>(texlevel, u, v, tptr, bufwbits);
|
|
Vec4<int> texcolor_tl = Vec4<int>::FromRGBA(nearest.v[0]);
|
|
Vec4<int> texcolor_tr = Vec4<int>::FromRGBA(nearest.v[1]);
|
|
Vec4<int> texcolor_bl = Vec4<int>::FromRGBA(nearest.v[2]);
|
|
Vec4<int> texcolor_br = Vec4<int>::FromRGBA(nearest.v[3]);
|
|
// 0x100 causes a slight bias to tl, but without it we'd have to divide by 255 * 255.
|
|
Vec4<int> t = texcolor_tl * (0x100 - frac_u) + texcolor_tr * frac_u;
|
|
Vec4<int> b = texcolor_bl * (0x100 - frac_u) + texcolor_br * frac_u;
|
|
texcolor = (t * (0x100 - frac_v) + b * frac_v) / (256 * 256);
|
|
#endif
|
|
}
|
|
prim_color = GetTextureFunctionOutput(prim_color, texcolor);
|
|
}
|
|
|
|
// Only OK on x64 where our stack is aligned
|
|
#if defined(_M_SSE) && !defined(_M_IX86)
|
|
static inline __m128 Interpolate(const __m128 &c0, const __m128 &c1, const __m128 &c2, int w0, int w1, int w2, float wsum) {
|
|
__m128 v = _mm_mul_ps(c0, _mm_cvtepi32_ps(_mm_set1_epi32(w0)));
|
|
v = _mm_add_ps(v, _mm_mul_ps(c1, _mm_cvtepi32_ps(_mm_set1_epi32(w1))));
|
|
v = _mm_add_ps(v, _mm_mul_ps(c2, _mm_cvtepi32_ps(_mm_set1_epi32(w2))));
|
|
return _mm_mul_ps(v, _mm_set_ps1(wsum));
|
|
}
|
|
|
|
static inline __m128i Interpolate(const __m128i &c0, const __m128i &c1, const __m128i &c2, int w0, int w1, int w2, float wsum) {
|
|
return _mm_cvtps_epi32(Interpolate(_mm_cvtepi32_ps(c0), _mm_cvtepi32_ps(c1), _mm_cvtepi32_ps(c2), w0, w1, w2, wsum));
|
|
}
|
|
#endif
|
|
|
|
// NOTE: When not casting color0 and color1 to float vectors, this code suffers from severe overflow issues.
|
|
// Not sure if that should be regarded as a bug or if casting to float is a valid fix.
|
|
|
|
static inline Vec4<int> Interpolate(const Vec4<int> &c0, const Vec4<int> &c1, const Vec4<int> &c2, int w0, int w1, int w2, float wsum) {
|
|
#if defined(_M_SSE) && !defined(_M_IX86)
|
|
return Vec4<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
|
|
#else
|
|
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
|
|
#endif
|
|
}
|
|
|
|
static inline Vec3<int> Interpolate(const Vec3<int> &c0, const Vec3<int> &c1, const Vec3<int> &c2, int w0, int w1, int w2, float wsum) {
|
|
#if defined(_M_SSE) && !defined(_M_IX86)
|
|
return Vec3<int>(Interpolate(c0.ivec, c1.ivec, c2.ivec, w0, w1, w2, wsum));
|
|
#else
|
|
return ((c0.Cast<float>() * w0 + c1.Cast<float>() * w1 + c2.Cast<float>() * w2) * wsum).Cast<int>();
|
|
#endif
|
|
}
|
|
|
|
static inline Vec2<float> Interpolate(const Vec2<float> &c0, const Vec2<float> &c1, const Vec2<float> &c2, int w0, int w1, int w2, float wsum) {
|
|
#if defined(_M_SSE) && !defined(_M_IX86)
|
|
return Vec2<float>(Interpolate(c0.vec, c1.vec, c2.vec, w0, w1, w2, wsum));
|
|
#else
|
|
return (c0 * w0 + c1 * w1 + c2 * w2) * wsum;
|
|
#endif
|
|
}
|
|
|
|
template <bool clearMode>
|
|
void DrawTriangleSlice(
|
|
const VertexData& v0, const VertexData& v1, const VertexData& v2,
|
|
int minX, int minY, int maxX, int maxY,
|
|
int y1, int y2)
|
|
{
|
|
Vec2<int> d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y);
|
|
Vec2<int> d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y);
|
|
Vec2<int> d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y);
|
|
float texScaleU = gstate_c.uv.uScale;
|
|
float texScaleV = gstate_c.uv.vScale;
|
|
float texOffsetU = gstate_c.uv.uOff;
|
|
float texOffsetV = gstate_c.uv.vOff;
|
|
|
|
if (g_Config.bPrescaleUV) {
|
|
// Already applied during vertex decode.
|
|
texScaleU = 1.0f;
|
|
texScaleV = 1.0f;
|
|
texOffsetU = 0.0f;
|
|
texOffsetV = 0.0f;
|
|
}
|
|
|
|
int bias0 = IsRightSideOrFlatBottomLine(v0.screenpos.xy(), v1.screenpos.xy(), v2.screenpos.xy()) ? -1 : 0;
|
|
int bias1 = IsRightSideOrFlatBottomLine(v1.screenpos.xy(), v2.screenpos.xy(), v0.screenpos.xy()) ? -1 : 0;
|
|
int bias2 = IsRightSideOrFlatBottomLine(v2.screenpos.xy(), v0.screenpos.xy(), v1.screenpos.xy()) ? -1 : 0;
|
|
|
|
int texbufwidthbits[8] = {0};
|
|
|
|
int maxTexLevel = gstate.getTextureMaxLevel();
|
|
u8 *texptr[8] = {NULL};
|
|
|
|
int magFilt = (gstate.texfilter>>8) & 1;
|
|
if (g_Config.iTexFiltering > 1) {
|
|
if (g_Config.iTexFiltering == 2) {
|
|
magFilt = 0;
|
|
} else if (g_Config.iTexFiltering == 3) {
|
|
magFilt = 1;
|
|
}
|
|
}
|
|
if ((gstate.texfilter & 4) == 0) {
|
|
// No mipmapping enabled
|
|
maxTexLevel = 0;
|
|
}
|
|
|
|
if (gstate.isTextureMapEnabled() && !clearMode) {
|
|
// TODO: Always using level 0.
|
|
GETextureFormat texfmt = gstate.getTextureFormat();
|
|
for (int i = 0; i <= maxTexLevel; i++) {
|
|
u32 texaddr = gstate.getTextureAddress(i);
|
|
texbufwidthbits[i] = GetTextureBufw(i, texaddr, texfmt) * 8;
|
|
if (Memory::IsValidAddress(texaddr))
|
|
texptr[i] = Memory::GetPointerUnchecked(texaddr);
|
|
else
|
|
texptr[i] = 0;
|
|
}
|
|
}
|
|
|
|
ScreenCoords pprime(minX, minY, 0);
|
|
int w0_base = orient2d(v1.screenpos, v2.screenpos, pprime);
|
|
int w1_base = orient2d(v2.screenpos, v0.screenpos, pprime);
|
|
int w2_base = orient2d(v0.screenpos, v1.screenpos, pprime);
|
|
|
|
// Step forward to y1 (slice..)
|
|
w0_base += orient2dIncY(d12.x) * 16 * y1;
|
|
w1_base += orient2dIncY(-d02.x) * 16 * y1;
|
|
w2_base += orient2dIncY(d01.x) * 16 * y1;
|
|
|
|
// All the z values are the same, no interpolation required.
|
|
// This is common, and when we interpolate, we lose accuracy.
|
|
const bool flatZ = v0.screenpos.z == v1.screenpos.z && v0.screenpos.z == v2.screenpos.z;
|
|
|
|
for (pprime.y = minY + y1 * 16; pprime.y < minY + y2 * 16; pprime.y += 16,
|
|
w0_base += orient2dIncY(d12.x)*16,
|
|
w1_base += orient2dIncY(-d02.x)*16,
|
|
w2_base += orient2dIncY(d01.x)*16) {
|
|
int w0 = w0_base;
|
|
int w1 = w1_base;
|
|
int w2 = w2_base;
|
|
|
|
pprime.x = minX;
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
|
|
|
|
for (; pprime.x <= maxX; pprime.x +=16,
|
|
w0 += orient2dIncX(d12.y)*16,
|
|
w1 += orient2dIncX(-d02.y)*16,
|
|
w2 += orient2dIncX(d01.y)*16,
|
|
p.x = (p.x + 1) & 0x3FF) {
|
|
|
|
// If p is on or inside all edges, render pixel
|
|
if (w0 + bias0 >= 0 && w1 + bias1 >= 0 && w2 + bias2 >= 0) {
|
|
int wsum = w0 + w1 + w2;
|
|
if (wsum == 0.0f)
|
|
continue;
|
|
float wsum_recip = 1.0f / (float)wsum;
|
|
|
|
Vec4<int> prim_color;
|
|
Vec3<int> sec_color;
|
|
if (gstate.getShadeMode() == GE_SHADE_GOURAUD && !clearMode) {
|
|
// Does the PSP do perspective-correct color interpolation? The GC doesn't.
|
|
prim_color = Interpolate(v0.color0, v1.color0, v2.color0, w0, w1, w2, wsum_recip);
|
|
sec_color = Interpolate(v0.color1, v1.color1, v2.color1, w0, w1, w2, wsum_recip);
|
|
} else {
|
|
prim_color = v2.color0;
|
|
sec_color = v2.color1;
|
|
}
|
|
|
|
if (gstate.isTextureMapEnabled() && !clearMode) {
|
|
if (gstate.isModeThrough()) {
|
|
Vec2<float> texcoords = Interpolate(v0.texturecoords, v1.texturecoords, v2.texturecoords, w0, w1, w2, wsum_recip);
|
|
ApplyTexturing(prim_color, texcoords.s(), texcoords.t(), maxTexLevel, magFilt, texptr, texbufwidthbits);
|
|
} else {
|
|
// Texture coordinate interpolation must definitely be perspective-correct.
|
|
float s = 0, t = 0;
|
|
GetTextureCoordinates(v0, v1, v2, w0, w1, w2, s, t);
|
|
s = s * texScaleU + texOffsetU;
|
|
t = t * texScaleV + texOffsetV;
|
|
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
|
|
}
|
|
}
|
|
|
|
if (!clearMode) {
|
|
// TODO: Tried making Vec4 do this, but things got slower.
|
|
#if defined(_M_SSE)
|
|
const __m128i sec = _mm_and_si128(sec_color.ivec, _mm_set_epi32(0, -1, -1, -1));
|
|
prim_color.ivec = _mm_add_epi32(prim_color.ivec, sec);
|
|
#else
|
|
prim_color += Vec4<int>(sec_color, 0);
|
|
#endif
|
|
}
|
|
|
|
int fog = 255;
|
|
if (gstate.isFogEnabled() && !clearMode) {
|
|
fog = ClampFogDepth(((float)v0.fogdepth * w0 + (float)v1.fogdepth * w1 + (float)v2.fogdepth * w2) * wsum_recip);
|
|
}
|
|
|
|
u16 z = v2.screenpos.z;
|
|
// TODO: Is that the correct way to interpolate?
|
|
// Without the (u32), this causes an ICE in some versions of gcc.
|
|
if (!flatZ)
|
|
z = (u16)(u32)(((float)v0.screenpos.z * w0 + (float)v1.screenpos.z * w1 + (float)v2.screenpos.z * w2) * wsum_recip);
|
|
|
|
DrawSinglePixel<clearMode>(p, z, fog, prim_color);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Draws triangle, vertices specified in counter-clockwise direction
|
|
void DrawTriangle(const VertexData& v0, const VertexData& v1, const VertexData& v2)
|
|
{
|
|
PROFILE_THIS_SCOPE("draw_tri");
|
|
|
|
Vec2<int> d01((int)v0.screenpos.x - (int)v1.screenpos.x, (int)v0.screenpos.y - (int)v1.screenpos.y);
|
|
Vec2<int> d02((int)v0.screenpos.x - (int)v2.screenpos.x, (int)v0.screenpos.y - (int)v2.screenpos.y);
|
|
Vec2<int> d12((int)v1.screenpos.x - (int)v2.screenpos.x, (int)v1.screenpos.y - (int)v2.screenpos.y);
|
|
|
|
// Drop primitives which are not in CCW order by checking the cross product
|
|
if (d01.x * d02.y - d01.y * d02.x < 0)
|
|
return;
|
|
|
|
int minX = std::min(std::min(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~0xF;
|
|
int minY = std::min(std::min(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~0xF;
|
|
int maxX = std::max(std::max(v0.screenpos.x, v1.screenpos.x), v2.screenpos.x) & ~0xF;
|
|
int maxY = std::max(std::max(v0.screenpos.y, v1.screenpos.y), v2.screenpos.y) & ~0xF;
|
|
|
|
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0);
|
|
DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0);
|
|
minX = std::max(minX, (int)TransformUnit::DrawingToScreen(scissorTL).x);
|
|
maxX = std::min(maxX, (int)TransformUnit::DrawingToScreen(scissorBR).x);
|
|
minY = std::max(minY, (int)TransformUnit::DrawingToScreen(scissorTL).y);
|
|
maxY = std::min(maxY, (int)TransformUnit::DrawingToScreen(scissorBR).y);
|
|
|
|
int range = (maxY - minY) / 16 + 1;
|
|
if (gstate.isModeClear()) {
|
|
if (range >= 24 && (maxX - minX) >= 24 * 16) {
|
|
auto bound = [&](int a, int b) -> void {
|
|
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, a, b);
|
|
};
|
|
GlobalThreadPool::Loop(bound, 0, range);
|
|
} else {
|
|
DrawTriangleSlice<true>(v0, v1, v2, minX, minY, maxX, maxY, 0, range);
|
|
}
|
|
} else {
|
|
if (range >= 24 && (maxX - minX) >= 24 * 16) {
|
|
auto bound = [&](int a, int b) -> void {
|
|
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, a, b);
|
|
};
|
|
GlobalThreadPool::Loop(bound, 0, range);
|
|
} else {
|
|
DrawTriangleSlice<false>(v0, v1, v2, minX, minY, maxX, maxY, 0, range);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DrawPoint(const VertexData &v0)
|
|
{
|
|
ScreenCoords pos = v0.screenpos;
|
|
Vec4<int> prim_color = v0.color0;
|
|
Vec3<int> sec_color = v0.color1;
|
|
// TODO: UVGenMode?
|
|
float s = v0.texturecoords.s();
|
|
float t = v0.texturecoords.t();
|
|
|
|
ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0)));
|
|
ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0)));
|
|
|
|
if (pos.x < scissorTL.x || pos.y < scissorTL.y || pos.x >= scissorBR.x || pos.y >= scissorBR.y)
|
|
return;
|
|
|
|
bool clearMode = gstate.isModeClear();
|
|
|
|
if (gstate.isTextureMapEnabled() && !clearMode) {
|
|
int texbufwidthbits[8] = {0};
|
|
|
|
int maxTexLevel = gstate.getTextureMaxLevel();
|
|
u8 *texptr[8] = {NULL};
|
|
|
|
int magFilt = (gstate.texfilter>>8) & 1;
|
|
if (g_Config.iTexFiltering > 1) {
|
|
if (g_Config.iTexFiltering == 2) {
|
|
magFilt = 0;
|
|
} else if (g_Config.iTexFiltering == 3) {
|
|
magFilt = 1;
|
|
}
|
|
}
|
|
if ((gstate.texfilter & 4) == 0) {
|
|
// No mipmapping enabled
|
|
maxTexLevel = 0;
|
|
}
|
|
|
|
if (gstate.isTextureMapEnabled() && !clearMode) {
|
|
// TODO: Always using level 0.
|
|
maxTexLevel = 0;
|
|
GETextureFormat texfmt = gstate.getTextureFormat();
|
|
for (int i = 0; i <= maxTexLevel; i++) {
|
|
u32 texaddr = gstate.getTextureAddress(i);
|
|
texbufwidthbits[i] = GetTextureBufw(i, texaddr, texfmt) * 8;
|
|
texptr[i] = Memory::GetPointer(texaddr);
|
|
}
|
|
}
|
|
|
|
if (gstate.isModeThrough()) {
|
|
// TODO: Is it really this simple?
|
|
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
|
|
} else {
|
|
float texScaleU = gstate_c.uv.uScale;
|
|
float texScaleV = gstate_c.uv.vScale;
|
|
float texOffsetU = gstate_c.uv.uOff;
|
|
float texOffsetV = gstate_c.uv.vOff;
|
|
|
|
if (g_Config.bPrescaleUV) {
|
|
// Already applied during vertex decode.
|
|
texScaleU = 1.0f;
|
|
texScaleV = 1.0f;
|
|
texOffsetU = 0.0f;
|
|
texOffsetV = 0.0f;
|
|
}
|
|
|
|
s = s * texScaleU + texOffsetU;
|
|
t = t * texScaleV + texOffsetV;
|
|
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
|
|
}
|
|
}
|
|
|
|
if (!clearMode)
|
|
prim_color += Vec4<int>(sec_color, 0);
|
|
|
|
ScreenCoords pprime = pos;
|
|
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
|
|
u16 z = pos.z;
|
|
|
|
u8 fog = 255;
|
|
if (gstate.isFogEnabled() && !clearMode) {
|
|
fog = ClampFogDepth(v0.fogdepth);
|
|
}
|
|
|
|
if (clearMode) {
|
|
DrawSinglePixel<true>(p, z, fog, prim_color);
|
|
} else {
|
|
DrawSinglePixel<false>(p, z, fog, prim_color);
|
|
}
|
|
}
|
|
|
|
void DrawLine(const VertexData &v0, const VertexData &v1)
|
|
{
|
|
// TODO: Use a proper line drawing algorithm that handles fractional endpoints correctly.
|
|
Vec3<int> a(v0.screenpos.x, v0.screenpos.y, v0.screenpos.z);
|
|
Vec3<int> b(v1.screenpos.x, v1.screenpos.y, v0.screenpos.z);
|
|
|
|
int dx = b.x - a.x;
|
|
int dy = b.y - a.y;
|
|
int dz = b.z - a.z;
|
|
|
|
int steps;
|
|
if (abs(dx) < abs(dy))
|
|
steps = abs(dy) / 16;
|
|
else
|
|
steps = abs(dx) / 16;
|
|
|
|
float xinc = (float)dx / steps;
|
|
float yinc = (float)dy / steps;
|
|
float zinc = (float)dz / steps;
|
|
|
|
ScreenCoords scissorTL(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX1(), gstate.getScissorY1(), 0)));
|
|
ScreenCoords scissorBR(TransformUnit::DrawingToScreen(DrawingCoords(gstate.getScissorX2(), gstate.getScissorY2(), 0)));
|
|
bool clearMode = gstate.isModeClear();
|
|
|
|
int texbufwidthbits[8] = {0};
|
|
|
|
int maxTexLevel = gstate.getTextureMaxLevel();
|
|
u8 *texptr[8] = {NULL};
|
|
|
|
int magFilt = (gstate.texfilter>>8) & 1;
|
|
if (g_Config.iTexFiltering > 1) {
|
|
if (g_Config.iTexFiltering == 2) {
|
|
magFilt = 0;
|
|
} else if (g_Config.iTexFiltering == 3) {
|
|
magFilt = 1;
|
|
}
|
|
}
|
|
if ((gstate.texfilter & 4) == 0) {
|
|
// No mipmapping enabled
|
|
maxTexLevel = 0;
|
|
}
|
|
|
|
if (gstate.isTextureMapEnabled() && !clearMode) {
|
|
// TODO: Always using level 0.
|
|
GETextureFormat texfmt = gstate.getTextureFormat();
|
|
for (int i = 0; i <= maxTexLevel; i++) {
|
|
u32 texaddr = gstate.getTextureAddress(i);
|
|
texbufwidthbits[i] = GetTextureBufw(i, texaddr, texfmt) * 8;
|
|
texptr[i] = Memory::GetPointer(texaddr);
|
|
}
|
|
}
|
|
|
|
float texScaleU = gstate_c.uv.uScale;
|
|
float texScaleV = gstate_c.uv.vScale;
|
|
float texOffsetU = gstate_c.uv.uOff;
|
|
float texOffsetV = gstate_c.uv.vOff;
|
|
|
|
if (g_Config.bPrescaleUV) {
|
|
// Already applied during vertex decode.
|
|
texScaleU = 1.0f;
|
|
texScaleV = 1.0f;
|
|
texOffsetU = 0.0f;
|
|
texOffsetV = 0.0f;
|
|
}
|
|
|
|
float x = a.x;
|
|
float y = a.y;
|
|
float z = a.z;
|
|
const int steps1 = steps == 0 ? 1 : steps;
|
|
for (int i = 0; i <= steps; i++) {
|
|
if (x < scissorTL.x || y < scissorTL.y || x >= scissorBR.x || y >= scissorBR.y)
|
|
continue;
|
|
|
|
// Interpolate between the two points.
|
|
Vec4<int> c0 = (v0.color0 * (steps - i) + v1.color0 * i) / steps1;
|
|
Vec3<int> sec_color = (v0.color1 * (steps - i) + v1.color1 * i) / steps1;
|
|
// TODO: UVGenMode?
|
|
Vec2<float> tc = (v0.texturecoords * (float)(steps - i) + v1.texturecoords * (float)i) / steps1;
|
|
Vec4<int> prim_color = c0;
|
|
|
|
u8 fog = 255;
|
|
if (gstate.isFogEnabled() && !clearMode) {
|
|
fog = ClampFogDepth((v0.fogdepth * (float)(steps - i) + v1.fogdepth * (float)i) / steps1);
|
|
}
|
|
|
|
float s = tc.s();
|
|
float t = tc.t();
|
|
|
|
if (gstate.isTextureMapEnabled() && !clearMode) {
|
|
if (gstate.isModeThrough()) {
|
|
// TODO: Is it really this simple?
|
|
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
|
|
} else {
|
|
s = s * texScaleU + texOffsetU;
|
|
t = t * texScaleV + texOffsetV;
|
|
ApplyTexturing(prim_color, s, t, maxTexLevel, magFilt, texptr, texbufwidthbits);
|
|
}
|
|
}
|
|
|
|
if (!clearMode)
|
|
prim_color += Vec4<int>(sec_color, 0);
|
|
|
|
ScreenCoords pprime = ScreenCoords(x, y, z);
|
|
|
|
DrawingCoords p = TransformUnit::ScreenToDrawing(pprime);
|
|
if (clearMode) {
|
|
DrawSinglePixel<true>(p, z, fog, prim_color);
|
|
} else {
|
|
DrawSinglePixel<false>(p, z, fog, prim_color);
|
|
}
|
|
|
|
x = x + xinc;
|
|
y = y + yinc;
|
|
z = z + zinc;
|
|
}
|
|
}
|
|
|
|
bool GetCurrentStencilbuffer(GPUDebugBuffer &buffer)
|
|
{
|
|
int w = gstate.getRegionX2() - gstate.getRegionX1() + 1;
|
|
int h = gstate.getRegionY2() - gstate.getRegionY1() + 1;
|
|
buffer.Allocate(w, h, GPU_DBG_FORMAT_8BIT);
|
|
|
|
u8 *row = buffer.GetData();
|
|
for (int y = gstate.getRegionY1(); y <= gstate.getRegionY2(); ++y) {
|
|
for (int x = gstate.getRegionX1(); x <= gstate.getRegionX2(); ++x) {
|
|
row[x - gstate.getRegionX1()] = GetPixelStencil(x, y);
|
|
}
|
|
row += w;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GetCurrentTexture(GPUDebugBuffer &buffer, int level)
|
|
{
|
|
if (!gstate.isTextureMapEnabled()) {
|
|
return false;
|
|
}
|
|
|
|
int w = gstate.getTextureWidth(level);
|
|
int h = gstate.getTextureHeight(level);
|
|
buffer.Allocate(w, h, GE_FORMAT_8888, false);
|
|
|
|
GETextureFormat texfmt = gstate.getTextureFormat();
|
|
u32 texaddr = gstate.getTextureAddress(level);
|
|
int texbufwidthbits = GetTextureBufw(level, texaddr, texfmt) * 8;
|
|
u8 *texptr = Memory::GetPointer(texaddr);
|
|
|
|
u32 *row = (u32 *)buffer.GetData();
|
|
for (int y = 0; y < h; ++y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
row[x] = SampleNearest<1>(level, &x, &y, texptr, texbufwidthbits);
|
|
}
|
|
row += w;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|