ppsspp/GPU/Vulkan/ShaderManagerVulkan.cpp
2016-03-20 21:48:28 +01:00

587 lines
18 KiB
C++

// Copyright (c) 2015- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#ifdef _WIN32
#define SHADERLOG
#endif
#include <map>
#include "base/logging.h"
#include "math/lin/matrix4x4.h"
#include "math/math_util.h"
#include "math/dataconv.h"
#include "util/text/utf8.h"
#include "Common/Vulkan/VulkanContext.h"
#include "Common/Vulkan/VulkanMemory.h"
#include "Common/Common.h"
#include "Core/Config.h"
#include "Core/Reporting.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#include "GPU/Vulkan/FramebufferVulkan.h"
#include "GPU/Vulkan/FragmentShaderGeneratorVulkan.h"
#include "GPU/Vulkan/VertexShaderGeneratorVulkan.h"
#include "UI/OnScreenDisplay.h"
VulkanFragmentShader::VulkanFragmentShader(VulkanContext *vulkan, ShaderID id, const char *code, bool useHWTransform)
: vulkan_(vulkan), id_(id), failed_(false), useHWTransform_(useHWTransform), module_(0) {
source_ = code;
std::string errorMessage;
std::vector<uint32_t> spirv;
#ifdef SHADERLOG
OutputDebugStringA(code);
#endif
bool success = GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT, code, spirv, &errorMessage);
if (!errorMessage.empty()) {
if (success) {
ERROR_LOG(G3D, "Warnings in shader compilation!");
} else {
ERROR_LOG(G3D, "Error in shader compilation!");
}
ERROR_LOG(G3D, "Messages: %s", errorMessage.c_str());
ERROR_LOG(G3D, "Shader source:\n%s", code);
#ifdef SHADERLOG
OutputDebugStringA("Messages:\n");
OutputDebugStringA(errorMessage.c_str());
OutputDebugStringA(code);
#endif
Reporting::ReportMessage("Vulkan error in shader compilation: info: %s / code: %s", errorMessage.c_str(), code);
} else {
success = vulkan_->CreateShaderModule(spirv, &module_);
#ifdef SHADERLOG
OutputDebugStringA("OK\n");
#endif
}
if (!success) {
failed_ = true;
return;
} else {
DEBUG_LOG(G3D, "Compiled shader:\n%s\n", (const char *)code);
}
}
VulkanFragmentShader::~VulkanFragmentShader() {
if (module_) {
vulkan_->Delete().QueueDeleteShaderModule(module_);
}
}
std::string VulkanFragmentShader::GetShaderString(DebugShaderStringType type) const {
switch (type) {
case SHADER_STRING_SOURCE_CODE:
return source_;
case SHADER_STRING_SHORT_DESC:
return FragmentShaderDesc(id_);
default:
return "N/A";
}
}
VulkanVertexShader::VulkanVertexShader(VulkanContext *vulkan, ShaderID id, const char *code, int vertType, bool useHWTransform, bool usesLighting)
: vulkan_(vulkan), id_(id), failed_(false), useHWTransform_(useHWTransform), module_(VK_NULL_HANDLE), usesLighting_(usesLighting) {
source_ = code;
std::string errorMessage;
std::vector<uint32_t> spirv;
#ifdef SHADERLOG
OutputDebugStringA(code);
#endif
bool success = GLSLtoSPV(VK_SHADER_STAGE_VERTEX_BIT, code, spirv, &errorMessage);
if (!errorMessage.empty()) {
if (success) {
ERROR_LOG(G3D, "Warnings in shader compilation!");
} else {
ERROR_LOG(G3D, "Error in shader compilation!");
}
ERROR_LOG(G3D, "Messages: %s", errorMessage.c_str());
ERROR_LOG(G3D, "Shader source:\n%s", code);
OutputDebugStringUTF8("Messages:\n");
OutputDebugStringUTF8(errorMessage.c_str());
Reporting::ReportMessage("Vulkan error in shader compilation: info: %s / code: %s", errorMessage.c_str(), code);
} else {
success = vulkan_->CreateShaderModule(spirv, &module_);
#ifdef SHADERLOG
OutputDebugStringA("OK\n");
#endif
}
if (!success) {
failed_ = true;
module_ = VK_NULL_HANDLE;
return;
} else {
DEBUG_LOG(G3D, "Compiled shader:\n%s\n", (const char *)code);
}
}
VulkanVertexShader::~VulkanVertexShader() {
if (module_) {
vulkan_->Delete().QueueDeleteShaderModule(module_);
}
}
std::string VulkanVertexShader::GetShaderString(DebugShaderStringType type) const {
switch (type) {
case SHADER_STRING_SOURCE_CODE:
return source_;
case SHADER_STRING_SHORT_DESC:
return VertexShaderDesc(id_);
default:
return "N/A";
}
}
static void ConvertProjMatrixToVulkan(Matrix4x4 &in, bool invertedX, bool invertedY) {
const Vec3 trans(0, 0, gstate_c.vpZOffset * 0.5f + 0.5f);
const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f);
in.translateAndScale(trans, scale);
}
static void ConvertProjMatrixToVulkanThrough(Matrix4x4 &in) {
in.translateAndScale(Vec3(0.0f, 0.0f, 0.5f), Vec3(1.0f, 1.0f, 0.5f));
}
ShaderManagerVulkan::ShaderManagerVulkan(VulkanContext *vulkan)
: vulkan_(vulkan), lastVShader_(nullptr), lastFShader_(nullptr), globalDirty_(0xFFFFFFFF) {
codeBuffer_ = new char[16384];
uboAlignment_ = vulkan_->GetPhysicalDeviceProperties().limits.minUniformBufferOffsetAlignment;
memset(&ub_base, 0, sizeof(ub_base));
memset(&ub_lights, 0, sizeof(ub_lights));
memset(&ub_bones, 0, sizeof(ub_bones));
ILOG("sizeof(ub_base): %d", (int)sizeof(ub_base));
ILOG("sizeof(ub_lights): %d", (int)sizeof(ub_lights));
ILOG("sizeof(ub_bones): %d", (int)sizeof(ub_bones));
}
ShaderManagerVulkan::~ShaderManagerVulkan() {
ClearShaders();
delete[] codeBuffer_;
}
uint32_t ShaderManagerVulkan::PushBaseBuffer(VulkanPushBuffer *dest, VkBuffer *buf) {
return dest->PushAligned(&ub_base, sizeof(ub_base), uboAlignment_, buf);
}
uint32_t ShaderManagerVulkan::PushLightBuffer(VulkanPushBuffer *dest, VkBuffer *buf) {
return dest->PushAligned(&ub_lights, sizeof(ub_lights), uboAlignment_, buf);
}
// TODO: Only push half the bone buffer if we only have four bones.
uint32_t ShaderManagerVulkan::PushBoneBuffer(VulkanPushBuffer *dest, VkBuffer *buf) {
return dest->PushAligned(&ub_bones, sizeof(ub_bones), uboAlignment_, buf);
}
void ShaderManagerVulkan::BaseUpdateUniforms(int dirtyUniforms) {
if (dirtyUniforms & DIRTY_TEXENV) {
Uint8x3ToFloat4(ub_base.texEnvColor, gstate.texenvcolor);
}
if (dirtyUniforms & DIRTY_ALPHACOLORREF) {
Uint8x3ToInt4_Alpha(ub_base.alphaColorRef, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
}
if (dirtyUniforms & DIRTY_ALPHACOLORMASK) {
Uint8x3ToInt4_Alpha(ub_base.colorTestMask, gstate.getColorTestMask(), gstate.getAlphaTestMask());
}
if (dirtyUniforms & DIRTY_FOGCOLOR) {
Uint8x3ToFloat4(ub_base.fogColor, gstate.fogcolor);
}
if (dirtyUniforms & DIRTY_SHADERBLEND) {
Uint8x3ToFloat4(ub_base.blendFixA, gstate.getFixA());
Uint8x3ToFloat4(ub_base.blendFixB, gstate.getFixB());
}
if (dirtyUniforms & DIRTY_TEXCLAMP) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
// First wrap xy, then half texel xy (for clamp.)
const float texclamp[4] = {
widthFactor,
heightFactor,
invW * 0.5f,
invH * 0.5f,
};
const float texclampoff[2] = {
gstate_c.curTextureXOffset * invW,
gstate_c.curTextureYOffset * invH,
};
CopyFloat4(ub_base.texClamp, texclamp);
CopyFloat2(ub_base.texClampOffset, texclampoff);
}
if (dirtyUniforms & DIRTY_PROJMATRIX) {
Matrix4x4 flippedMatrix;
memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
const bool invertedY = gstate_c.vpHeight < 0;
if (invertedY) {
flippedMatrix[1] = -flippedMatrix[1];
flippedMatrix[5] = -flippedMatrix[5];
flippedMatrix[9] = -flippedMatrix[9];
flippedMatrix[13] = -flippedMatrix[13];
}
const bool invertedX = gstate_c.vpWidth < 0;
if (invertedX) {
flippedMatrix[0] = -flippedMatrix[0];
flippedMatrix[4] = -flippedMatrix[4];
flippedMatrix[8] = -flippedMatrix[8];
flippedMatrix[12] = -flippedMatrix[12];
}
ConvertProjMatrixToVulkan(flippedMatrix, invertedX, invertedY);
CopyMatrix4x4(ub_base.proj, flippedMatrix.getReadPtr());
}
if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
Matrix4x4 proj_through;
proj_through.setOrthoVulkan(0.0f, gstate_c.curRTWidth, 0, gstate_c.curRTHeight, 0, 1);
CopyMatrix4x4(ub_base.proj_through, proj_through.getReadPtr());
}
// Transform
if (dirtyUniforms & DIRTY_WORLDMATRIX) {
ConvertMatrix4x3To4x4(ub_base.world, gstate.worldMatrix);
}
if (dirtyUniforms & DIRTY_VIEWMATRIX) {
ConvertMatrix4x3To4x4(ub_base.view, gstate.viewMatrix);
}
if (dirtyUniforms & DIRTY_TEXMATRIX) {
ConvertMatrix4x3To4x4(ub_base.tex, gstate.tgenMatrix);
}
// Combined two small uniforms
if (dirtyUniforms & (DIRTY_FOGCOEF | DIRTY_STENCILREPLACEVALUE)) {
float fogcoef_stencil[3] = {
getFloat24(gstate.fog1),
getFloat24(gstate.fog2),
(float)gstate.getStencilTestRef()
};
if (my_isinf(fogcoef_stencil[1])) {
// not really sure what a sensible value might be.
fogcoef_stencil[1] = fogcoef_stencil[1] < 0.0f ? -10000.0f : 10000.0f;
} else if (my_isnan(fogcoef_stencil[1])) {
// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
// Just put the fog far away at a large finite distance.
// Infinities and NaNs are rather unpredictable in shaders on many GPUs
// so it's best to just make it a sane calculation.
fogcoef_stencil[0] = 100000.0f;
fogcoef_stencil[1] = 1.0f;
}
#ifndef MOBILE_DEVICE
else if (my_isnanorinf(fogcoef_stencil[1]) || my_isnanorinf(fogcoef_stencil[0])) {
ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef_stencil[0], fogcoef_stencil[1]);
}
#endif
CopyFloat3(ub_base.fogCoef_stencil, fogcoef_stencil);
}
// Texturing
if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
static const float rescale[4] = { 1.0f, 2 * 127.5f / 128.f, 2 * 32767.5f / 32768.f, 1.0f };
const float factor = rescale[(gstate.vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT];
float uvscaleoff[4];
switch (gstate.getUVGenMode()) {
case GE_TEXMAP_TEXTURE_COORDS:
// Not sure what GE_TEXMAP_UNKNOWN is, but seen in Riviera. Treating the same as GE_TEXMAP_TEXTURE_COORDS works.
case GE_TEXMAP_UNKNOWN:
if (g_Config.bPrescaleUV) {
// We are here but are prescaling UV in the decoder? Let's do the same as in the other case
// except consider *Scale and *Off to be 1 and 0.
uvscaleoff[0] = widthFactor;
uvscaleoff[1] = heightFactor;
uvscaleoff[2] = 0.0f;
uvscaleoff[3] = 0.0f;
} else {
uvscaleoff[0] = gstate_c.uv.uScale * factor * widthFactor;
uvscaleoff[1] = gstate_c.uv.vScale * factor * heightFactor;
uvscaleoff[2] = gstate_c.uv.uOff * widthFactor;
uvscaleoff[3] = gstate_c.uv.vOff * heightFactor;
}
break;
// These two work the same whether or not we prescale UV.
case GE_TEXMAP_TEXTURE_MATRIX:
// We cannot bake the UV coord scale factor in here, as we apply a matrix multiplication
// before this is applied, and the matrix multiplication may contain translation. In this case
// the translation will be scaled which breaks faces in Hexyz Force for example.
// So I've gone back to applying the scale factor in the shader.
uvscaleoff[0] = widthFactor;
uvscaleoff[1] = heightFactor;
uvscaleoff[2] = 0.0f;
uvscaleoff[3] = 0.0f;
break;
case GE_TEXMAP_ENVIRONMENT_MAP:
// In this mode we only use uvscaleoff to scale to the texture size.
uvscaleoff[0] = widthFactor;
uvscaleoff[1] = heightFactor;
uvscaleoff[2] = 0.0f;
uvscaleoff[3] = 0.0f;
break;
default:
ERROR_LOG_REPORT(G3D, "Unexpected UV gen mode: %d", gstate.getUVGenMode());
}
CopyFloat4(ub_base.uvScaleOffset, uvscaleoff);
}
if (dirtyUniforms & DIRTY_DEPTHRANGE) {
float viewZScale = gstate.getViewportZScale();
float viewZCenter = gstate.getViewportZCenter();
float viewZInvScale;
// We had to scale and translate Z to account for our clamped Z range.
// Therefore, we also need to reverse this to round properly.
//
// Example: scale = 65535.0, center = 0.0
// Resulting range = -65535 to 65535, clamped to [0, 65535]
// gstate_c.vpDepthScale = 2.0f
// gstate_c.vpZOffset = -1.0f
//
// The projection already accounts for those, so we need to reverse them.
//
// Additionally, D3D9 uses a range from [0, 1]. We double and move the center.
viewZScale *= (1.0f / gstate_c.vpDepthScale) * 2.0f;
viewZCenter -= 65535.0f * gstate_c.vpZOffset + 32768.5f;
if (viewZScale != 0.0) {
viewZInvScale = 1.0f / viewZScale;
} else {
viewZInvScale = 0.0;
}
float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale };
CopyFloat4(ub_base.depthRange, data);
}
}
void ShaderManagerVulkan::LightUpdateUniforms(int dirtyUniforms) {
// Lighting
if (dirtyUniforms & DIRTY_AMBIENT) {
Uint8x3ToFloat4_AlphaUint8(ub_lights.ambientColor, gstate.ambientcolor, gstate.getAmbientA());
}
if (dirtyUniforms & DIRTY_MATAMBIENTALPHA) {
// Note - this one is not in lighting but in transformCommon as it has uses beyond lighting
Uint8x3ToFloat4_AlphaUint8(ub_base.matAmbient, gstate.materialambient, gstate.getMaterialAmbientA());
}
if (dirtyUniforms & DIRTY_MATDIFFUSE) {
Uint8x3ToFloat4(ub_lights.materialDiffuse, gstate.materialdiffuse);
}
if (dirtyUniforms & DIRTY_MATEMISSIVE) {
Uint8x3ToFloat4(ub_lights.materialEmissive, gstate.materialemissive);
}
if (dirtyUniforms & DIRTY_MATSPECULAR) {
Uint8x3ToFloat4_Alpha(ub_lights.materialSpecular, gstate.materialspecular, getFloat24(gstate.materialspecularcoef));
}
for (int i = 0; i < 4; i++) {
if (dirtyUniforms & (DIRTY_LIGHT0 << i)) {
if (gstate.isDirectionalLight(i)) {
// Prenormalize
float x = getFloat24(gstate.lpos[i * 3 + 0]);
float y = getFloat24(gstate.lpos[i * 3 + 1]);
float z = getFloat24(gstate.lpos[i * 3 + 2]);
float len = sqrtf(x*x + y*y + z*z);
if (len == 0.0f)
len = 1.0f;
else
len = 1.0f / len;
float vec[3] = { x * len, y * len, z * len };
CopyFloat3To4(ub_lights.lpos[i], vec);
} else {
ExpandFloat24x3ToFloat4(ub_lights.lpos[i], &gstate.lpos[i * 3]);
}
ExpandFloat24x3ToFloat4(ub_lights.ldir[i], &gstate.ldir[i * 3]);
ExpandFloat24x3ToFloat4(ub_lights.latt[i], &gstate.latt[i * 3]);
CopyFloat1To4(ub_lights.lightAngle[i], getFloat24(gstate.lcutoff[i]));
CopyFloat1To4(ub_lights.lightSpotCoef[i], getFloat24(gstate.lconv[i]));
Uint8x3ToFloat4(ub_lights.lightAmbient[i], gstate.lcolor[i * 3]);
Uint8x3ToFloat4(ub_lights.lightDiffuse[i], gstate.lcolor[i * 3 + 1]);
Uint8x3ToFloat4(ub_lights.lightSpecular[i], gstate.lcolor[i * 3 + 2]);
}
}
}
void ShaderManagerVulkan::BoneUpdateUniforms(int dirtyUniforms) {
for (int i = 0; i < 8; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4(ub_bones.bones[i], gstate.boneMatrix + 12 * i);
}
}
}
void ShaderManagerVulkan::Clear() {
for (auto iter = fsCache_.begin(); iter != fsCache_.end(); ++iter) {
delete iter->second;
}
for (auto iter = vsCache_.begin(); iter != vsCache_.end(); ++iter) {
delete iter->second;
}
fsCache_.clear();
vsCache_.clear();
lastFSID_.clear();
lastVSID_.clear();
}
void ShaderManagerVulkan::ClearShaders() {
Clear();
DirtyShader();
DirtyUniform(0xFFFFFFFF);
}
void ShaderManagerVulkan::DirtyShader() {
// Forget the last shader ID
lastFSID_.clear();
lastVSID_.clear();
lastVShader_ = nullptr;
lastFShader_ = nullptr;
}
void ShaderManagerVulkan::DirtyLastShader() { // disables vertex arrays
lastVShader_ = nullptr;
lastFShader_ = nullptr;
}
uint32_t ShaderManagerVulkan::UpdateUniforms() {
uint32_t dirty = globalDirty_;
if (globalDirty_) {
BaseUpdateUniforms(dirty);
LightUpdateUniforms(dirty);
BoneUpdateUniforms(dirty);
}
globalDirty_ = 0;
return dirty;
}
void ShaderManagerVulkan::GetShaders(int prim, u32 vertType, VulkanVertexShader **vshader, VulkanFragmentShader **fshader, bool useHWTransform) {
ShaderID VSID;
ShaderID FSID;
ComputeVertexShaderID(&VSID, vertType, useHWTransform);
ComputeFragmentShaderID(&FSID);
// Just update uniforms if this is the same shader as last time.
if (lastVShader_ != nullptr && lastFShader_ != nullptr && VSID == lastVSID_ && FSID == lastFSID_) {
*vshader = lastVShader_;
*fshader = lastFShader_;
// Already all set, no need to look up in shader maps.
return;
}
VSCache::iterator vsIter = vsCache_.find(VSID);
VulkanVertexShader *vs;
if (vsIter == vsCache_.end()) {
// Vertex shader not in cache. Let's compile it.
bool usesLighting;
GenerateVulkanGLSLVertexShader(VSID, codeBuffer_, &usesLighting);
vs = new VulkanVertexShader(vulkan_, VSID, codeBuffer_, vertType, useHWTransform, usesLighting);
vsCache_[VSID] = vs;
} else {
vs = vsIter->second;
}
lastVSID_ = VSID;
FSCache::iterator fsIter = fsCache_.find(FSID);
VulkanFragmentShader *fs;
if (fsIter == fsCache_.end()) {
// Fragment shader not in cache. Let's compile it.
GenerateVulkanGLSLFragmentShader(FSID, codeBuffer_);
fs = new VulkanFragmentShader(vulkan_, FSID, codeBuffer_, useHWTransform);
fsCache_[FSID] = fs;
} else {
fs = fsIter->second;
}
lastFSID_ = FSID;
lastVShader_ = vs;
lastFShader_ = fs;
*vshader = vs;
*fshader = fs;
}
std::vector<std::string> ShaderManagerVulkan::DebugGetShaderIDs(DebugShaderType type) {
std::string id;
std::vector<std::string> ids;
switch (type) {
case SHADER_TYPE_VERTEX:
{
for (auto iter : vsCache_) {
iter.first.ToString(&id);
ids.push_back(id);
}
break;
}
case SHADER_TYPE_FRAGMENT:
{
for (auto iter : fsCache_) {
iter.first.ToString(&id);
ids.push_back(id);
}
break;
}
default:
break;
}
return ids;
}
std::string ShaderManagerVulkan::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) {
ShaderID shaderId;
shaderId.FromString(id);
switch (type) {
case SHADER_TYPE_VERTEX:
{
auto iter = vsCache_.find(shaderId);
if (iter == vsCache_.end()) {
return "";
}
return iter->second->GetShaderString(stringType);
}
case SHADER_TYPE_FRAGMENT:
{
auto iter = fsCache_.find(shaderId);
if (iter == fsCache_.end()) {
return "";
}
return iter->second->GetShaderString(stringType);
}
default:
return "N/A";
}
}