ppsspp/Core/MemMapFunctions.cpp
2013-12-30 00:11:29 +01:00

262 lines
6.7 KiB
C++

// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "Common/Common.h"
#include "Common/Atomics.h"
#include "Core/Core.h"
#include "Core/MemMap.h"
#include "Core/Config.h"
#include "Core/Host.h"
#include "Core/Reporting.h"
#include "Core/MIPS/MIPS.h"
namespace Memory
{
// =================================
// From Memmap.cpp
// ----------------
// Read and write shortcuts
// GetPointer must always return an address in the bottom 32 bits of address space, so that 64-bit
// programs don't have problems directly addressing any part of memory.
u8 *GetPointer(const u32 address)
{
if ((address & 0x3E000000) == 0x08000000) {
return GetPointerUnchecked(address);
}
else if ((address & 0x3F800000) == 0x04000000) {
return m_pVRAM + (address & VRAM_MASK);
}
else if ((address & 0xBFFF0000) == 0x00010000) {
return m_pScratchPad + (address & SCRATCHPAD_MASK);
}
else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
return GetPointerUnchecked(address);
}
else {
ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
static bool reported = false;
if (!reported) {
Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
reported = true;
}
if (!g_Config.bIgnoreBadMemAccess) {
Core_EnableStepping(true);
host->SetDebugMode(true);
}
return 0;
}
}
template <typename T>
inline void ReadFromHardware(T &var, const u32 address)
{
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO
if ((address & 0x3E000000) == 0x08000000) {
var = *((const T*)GetPointerUnchecked(address));
}
else if ((address & 0x3F800000) == 0x04000000) {
var = *((const T*)&m_pVRAM[address & VRAM_MASK]);
}
else if ((address & 0xBFFF0000) == 0x00010000) {
// Scratchpad
var = *((const T*)&m_pScratchPad[address & SCRATCHPAD_MASK]);
}
else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
var = *((const T*)GetPointerUnchecked(address));
}
else
{
if (g_Config.bJit) {
WARN_LOG(MEMMAP, "ReadFromHardware: Invalid address %08x", address);
} else {
WARN_LOG(MEMMAP, "ReadFromHardware: Invalid address %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
}
static bool reported = false;
if (!reported) {
Reporting::ReportMessage("ReadFromHardware: Invalid address %08x near PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
reported = true;
}
if (!g_Config.bIgnoreBadMemAccess) {
Core_EnableStepping(true);
host->SetDebugMode(true);
}
var = 0;
}
}
template <typename T>
inline void WriteToHardware(u32 address, const T data)
{
// Could just do a base-relative write, too.... TODO
if ((address & 0x3E000000) == 0x08000000) {
*(T*)GetPointerUnchecked(address) = data;
}
else if ((address & 0x3F800000) == 0x04000000) {
*(T*)&m_pVRAM[address & VRAM_MASK] = data;
}
else if ((address & 0xBFFF0000) == 0x00010000) {
*(T*)&m_pScratchPad[address & SCRATCHPAD_MASK] = data;
}
else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
*(T*)GetPointerUnchecked(address) = data;
}
else
{
if (g_Config.bJit) {
WARN_LOG(MEMMAP, "WriteToHardware: Invalid address %08x", address);
} else {
WARN_LOG(MEMMAP, "WriteToHardware: Invalid address %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
}
static bool reported = false;
if (!reported) {
Reporting::ReportMessage("WriteToHardware: Invalid address %08x near PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
reported = true;
}
if (!g_Config.bIgnoreBadMemAccess) {
Core_EnableStepping(true);
host->SetDebugMode(true);
}
}
}
// =====================
bool IsRAMAddress(const u32 address) {
if ((address & 0x3E000000) == 0x08000000) {
return true;
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
return true;
} else {
return false;
}
}
bool IsVRAMAddress(const u32 address) {
return ((address & 0x3F800000) == 0x04000000);
}
u8 Read_U8(const u32 _Address)
{
u8 _var = 0;
ReadFromHardware<u8>(_var, _Address);
return (u8)_var;
}
u16 Read_U16(const u32 _Address)
{
u16_le _var = 0;
ReadFromHardware<u16_le>(_var, _Address);
return (u16)_var;
}
u32 Read_U32(const u32 _Address)
{
u32_le _var = 0;
ReadFromHardware<u32_le>(_var, _Address);
return _var;
}
u64 Read_U64(const u32 _Address)
{
u64_le _var = 0;
ReadFromHardware<u64_le>(_var, _Address);
return _var;
}
u32 Read_U8_ZX(const u32 _Address)
{
return (u32)Read_U8(_Address);
}
u32 Read_U16_ZX(const u32 _Address)
{
return (u32)Read_U16(_Address);
}
void Write_U8(const u8 _Data, const u32 _Address)
{
WriteToHardware<u8>(_Address, _Data);
}
void Write_U16(const u16 _Data, const u32 _Address)
{
WriteToHardware<u16_le>(_Address, _Data);
}
void Write_U32(const u32 _Data, const u32 _Address)
{
WriteToHardware<u32_le>(_Address, _Data);
}
void Write_U64(const u64 _Data, const u32 _Address)
{
WriteToHardware<u64_le>(_Address, _Data);
}
#ifdef SAFE_MEMORY
u8 ReadUnchecked_U8(const u32 _Address)
{
u8 _var = 0;
ReadFromHardware<u8>(_var, _Address);
return _var;
}
u16 ReadUnchecked_U16(const u32 _Address)
{
u16_le _var = 0;
ReadFromHardware<u16_le>(_var, _Address);
return _var;
}
u32 ReadUnchecked_U32(const u32 _Address)
{
u32_le _var = 0;
ReadFromHardware<u32_le>(_var, _Address);
return _var;
}
void WriteUnchecked_U8(const u8 _iValue, const u32 _Address)
{
WriteToHardware<u8>(_Address, _iValue);
}
void WriteUnchecked_U16(const u16 _iValue, const u32 _Address)
{
WriteToHardware<u16_le>(_Address, _iValue);
}
void WriteUnchecked_U32(const u32 _iValue, const u32 _Address)
{
WriteToHardware<u32_le>(_Address, _iValue);
}
#endif
} // namespace Memory