ppsspp/GPU/Directx9/ShaderManagerDX9.cpp
Henrik Rydgård f42c682d34 Revert "Merge pull request #16628 from hrydgard/remove-fog-fshader-flag"
This reverts commit 10dee90c83, reversing
changes made to 34c11c8acf.
2023-05-08 22:01:38 +02:00

713 lines
23 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#ifdef _WIN32
//#define SHADERLOG
#endif
#include <cmath>
#include <map>
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Data/Encoding/Utf8.h"
#include "Common/Data/Text/I18n.h"
#include "Common/Math/lin/matrix4x4.h"
#include "Common/Math/math_util.h"
#include "Common/GPU/D3D9/D3D9ShaderCompiler.h"
#include "Common/GPU/thin3d.h"
#include "Common/System/System.h"
#include "Common/System/Display.h"
#include "Common/CommonTypes.h"
#include "Common/Log.h"
#include "Common/LogReporting.h"
#include "Common/StringUtils.h"
#include "Core/Config.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/Common/ShaderUniforms.h"
#include "GPU/Common/FragmentShaderGenerator.h"
#include "GPU/Directx9/ShaderManagerDX9.h"
#include "GPU/Directx9/DrawEngineDX9.h"
#include "GPU/Directx9/FramebufferManagerDX9.h"
using namespace Lin;
PSShader::PSShader(LPDIRECT3DDEVICE9 device, FShaderID id, const char *code) : id_(id) {
source_ = code;
#ifdef SHADERLOG
OutputDebugString(ConvertUTF8ToWString(code).c_str());
#endif
bool success;
std::string errorMessage;
success = CompilePixelShaderD3D9(device, code, &shader, &errorMessage);
if (!errorMessage.empty()) {
if (success) {
ERROR_LOG(G3D, "Warnings in shader compilation!");
} else {
ERROR_LOG(G3D, "Error in shader compilation!");
}
ERROR_LOG(G3D, "Messages: %s", errorMessage.c_str());
ERROR_LOG(G3D, "Shader source:\n%s", LineNumberString(code).c_str());
OutputDebugStringUTF8("Messages:\n");
OutputDebugStringUTF8(errorMessage.c_str());
Reporting::ReportMessage("D3D error in shader compilation: info: %s / code: %s", errorMessage.c_str(), code);
}
if (!success) {
failed_ = true;
if (shader)
shader->Release();
shader = NULL;
return;
} else {
VERBOSE_LOG(G3D, "Compiled pixel shader:\n%s\n", (const char *)code);
}
}
PSShader::~PSShader() {
if (shader)
shader->Release();
}
std::string PSShader::GetShaderString(DebugShaderStringType type) const {
switch (type) {
case SHADER_STRING_SOURCE_CODE:
return source_;
case SHADER_STRING_SHORT_DESC:
return FragmentShaderDesc(id_);
default:
return "N/A";
}
}
VSShader::VSShader(LPDIRECT3DDEVICE9 device, VShaderID id, const char *code, bool useHWTransform) : useHWTransform_(useHWTransform), id_(id) {
source_ = code;
#ifdef SHADERLOG
OutputDebugString(ConvertUTF8ToWString(code).c_str());
#endif
bool success;
std::string errorMessage;
success = CompileVertexShaderD3D9(device, code, &shader, &errorMessage);
if (!errorMessage.empty()) {
if (success) {
ERROR_LOG(G3D, "Warnings in shader compilation!");
} else {
ERROR_LOG(G3D, "Error in shader compilation!");
}
ERROR_LOG(G3D, "Messages: %s", errorMessage.c_str());
ERROR_LOG(G3D, "Shader source:\n%s", code);
OutputDebugStringUTF8("Messages:\n");
OutputDebugStringUTF8(errorMessage.c_str());
Reporting::ReportMessage("D3D error in shader compilation: info: %s / code: %s", errorMessage.c_str(), code);
}
if (!success) {
failed_ = true;
if (shader)
shader->Release();
shader = NULL;
return;
} else {
VERBOSE_LOG(G3D, "Compiled vertex shader:\n%s\n", (const char *)code);
}
}
VSShader::~VSShader() {
if (shader)
shader->Release();
}
std::string VSShader::GetShaderString(DebugShaderStringType type) const {
switch (type) {
case SHADER_STRING_SOURCE_CODE:
return source_;
case SHADER_STRING_SHORT_DESC:
return VertexShaderDesc(id_);
default:
return "N/A";
}
}
void ShaderManagerDX9::PSSetColorUniform3(int creg, u32 color) {
float f[4];
Uint8x3ToFloat4(f, color);
device_->SetPixelShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::PSSetColorUniform3Alpha255(int creg, u32 color, u8 alpha) {
const float col[4] = {
(float)((color & 0xFF)),
(float)((color & 0xFF00) >> 8),
(float)((color & 0xFF0000) >> 16),
(float)alpha,
};
device_->SetPixelShaderConstantF(creg, col, 1);
}
void ShaderManagerDX9::PSSetFloat(int creg, float value) {
const float f[4] = { value, 0.0f, 0.0f, 0.0f };
device_->SetPixelShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::PSSetFloatArray(int creg, const float *value, int count) {
float f[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
for (int i = 0; i < count; i++) {
f[i] = value[i];
}
device_->SetPixelShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::VSSetFloat(int creg, float value) {
const float f[4] = { value, 0.0f, 0.0f, 0.0f };
device_->SetVertexShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::VSSetFloatArray(int creg, const float *value, int count) {
float f[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
for (int i = 0; i < count; i++) {
f[i] = value[i];
}
device_->SetVertexShaderConstantF(creg, f, 1);
}
// Utility
void ShaderManagerDX9::VSSetColorUniform3(int creg, u32 color) {
float f[4];
Uint8x3ToFloat4(f, color);
device_->SetVertexShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::VSSetFloatUniform4(int creg, const float data[4]) {
device_->SetVertexShaderConstantF(creg, data, 1);
}
void ShaderManagerDX9::VSSetFloat24Uniform3(int creg, const u32 data[3]) {
float f[4];
ExpandFloat24x3ToFloat4(f, data);
device_->SetVertexShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::VSSetFloat24Uniform3Normalized(int creg, const u32 data[3]) {
float f[4];
ExpandFloat24x3ToFloat4AndNormalize(f, data);
device_->SetVertexShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::VSSetColorUniform3Alpha(int creg, u32 color, u8 alpha) {
float f[4];
Uint8x3ToFloat4_AlphaUint8(f, color, alpha);
device_->SetVertexShaderConstantF(creg, f, 1);
}
void ShaderManagerDX9::VSSetColorUniform3ExtraFloat(int creg, u32 color, float extra) {
const float col[4] = {
((color & 0xFF)) / 255.0f,
((color & 0xFF00) >> 8) / 255.0f,
((color & 0xFF0000) >> 16) / 255.0f,
extra
};
device_->SetVertexShaderConstantF(creg, col, 1);
}
void ShaderManagerDX9::VSSetMatrix4x3_3(int creg, const float *m4x3) {
float m3x4[12];
ConvertMatrix4x3To3x4Transposed(m3x4, m4x3);
device_->SetVertexShaderConstantF(creg, m3x4, 3);
}
void ShaderManagerDX9::VSSetMatrix(int creg, const float* pMatrix) {
device_->SetVertexShaderConstantF(creg, pMatrix, 4);
}
// Depth in ogl is between -1;1 we need between 0;1 and optionally reverse it
static void ConvertProjMatrixToD3D(Matrix4x4 &in, bool invertedX, bool invertedY) {
// Half pixel offset hack
float xoff = 1.0f / gstate_c.curRTRenderWidth;
if (invertedX) {
xoff = -gstate_c.vpXOffset - xoff;
} else {
xoff = gstate_c.vpXOffset - xoff;
}
float yoff = -1.0f / gstate_c.curRTRenderHeight;
if (invertedY) {
yoff = -gstate_c.vpYOffset - yoff;
} else {
yoff = gstate_c.vpYOffset - yoff;
}
const Vec3 trans(xoff, yoff, gstate_c.vpZOffset * 0.5f + 0.5f);
const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f);
in.translateAndScale(trans, scale);
}
static void ConvertProjMatrixToD3DThrough(Matrix4x4 &in) {
float xoff = -1.0f / gstate_c.curRTRenderWidth;
float yoff = 1.0f / gstate_c.curRTRenderHeight;
in.translateAndScale(Vec3(xoff, yoff, 0.5f), Vec3(1.0f, 1.0f, 0.5f));
}
const uint64_t psUniforms = DIRTY_TEXENV | DIRTY_TEX_ALPHA_MUL | DIRTY_ALPHACOLORREF | DIRTY_ALPHACOLORMASK | DIRTY_FOGCOLOR | DIRTY_STENCILREPLACEVALUE | DIRTY_SHADERBLEND | DIRTY_TEXCLAMP | DIRTY_MIPBIAS;
void ShaderManagerDX9::PSUpdateUniforms(u64 dirtyUniforms) {
if (dirtyUniforms & DIRTY_TEXENV) {
PSSetColorUniform3(CONST_PS_TEXENV, gstate.texenvcolor);
}
if (dirtyUniforms & DIRTY_ALPHACOLORREF) {
PSSetColorUniform3Alpha255(CONST_PS_ALPHACOLORREF, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask());
}
if (dirtyUniforms & DIRTY_ALPHACOLORMASK) {
PSSetColorUniform3Alpha255(CONST_PS_ALPHACOLORMASK, gstate.colortestmask, gstate.getAlphaTestMask());
}
if (dirtyUniforms & DIRTY_FOGCOLOR) {
PSSetColorUniform3(CONST_PS_FOGCOLOR, gstate.fogcolor);
}
if (dirtyUniforms & DIRTY_STENCILREPLACEVALUE) {
PSSetFloat(CONST_PS_STENCILREPLACE, (float)gstate.getStencilTestRef() * (1.0f / 255.0f));
}
if (dirtyUniforms & DIRTY_TEX_ALPHA_MUL) {
bool doTextureAlpha = gstate.isTextureAlphaUsed();
if (gstate_c.textureFullAlpha && gstate.getTextureFunction() != GE_TEXFUNC_REPLACE) {
doTextureAlpha = false;
}
// NOTE: Reversed value, more efficient in shader.
PSSetFloat(CONST_PS_TEX_NO_ALPHA, doTextureAlpha ? 0.0f : 1.0f);
PSSetFloat(CONST_PS_TEX_MUL, gstate.isColorDoublingEnabled() ? 2.0f : 1.0f);
}
if (dirtyUniforms & DIRTY_SHADERBLEND) {
PSSetColorUniform3(CONST_PS_BLENDFIXA, gstate.getFixA());
PSSetColorUniform3(CONST_PS_BLENDFIXB, gstate.getFixB());
const float fbotexSize[2] = {
1.0f / (float)gstate_c.curRTRenderWidth,
1.0f / (float)gstate_c.curRTRenderHeight,
};
PSSetFloatArray(CONST_PS_FBOTEXSIZE, fbotexSize, 2);
}
if (dirtyUniforms & DIRTY_TEXCLAMP) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
// First wrap xy, then half texel xy (for clamp.)
const float texclamp[4] = {
widthFactor,
heightFactor,
invW * 0.5f,
invH * 0.5f,
};
const float texclampoff[2] = {
gstate_c.curTextureXOffset * invW,
gstate_c.curTextureYOffset * invH,
};
PSSetFloatArray(CONST_PS_TEXCLAMP, texclamp, 4);
PSSetFloatArray(CONST_PS_TEXCLAMPOFF, texclampoff, 2);
}
if (dirtyUniforms & DIRTY_MIPBIAS) {
float mipBias = (float)gstate.getTexLevelOffset16() * (1.0 / 16.0f);
// NOTE: This equation needs some adjustment in D3D9. Can't get it to look completely smooth :(
mipBias = (mipBias + 0.25f) / (float)(gstate.getTextureMaxLevel() + 1);
PSSetFloatArray(CONST_PS_MIPBIAS, &mipBias, 1);
}
}
const uint64_t vsUniforms = DIRTY_PROJMATRIX | DIRTY_PROJTHROUGHMATRIX | DIRTY_WORLDMATRIX | DIRTY_VIEWMATRIX | DIRTY_TEXMATRIX |
DIRTY_FOGCOEF | DIRTY_BONE_UNIFORMS | DIRTY_UVSCALEOFFSET | DIRTY_DEPTHRANGE | DIRTY_CULLRANGE |
DIRTY_AMBIENT | DIRTY_MATAMBIENTALPHA | DIRTY_MATSPECULAR | DIRTY_MATDIFFUSE | DIRTY_MATEMISSIVE | DIRTY_LIGHT0 | DIRTY_LIGHT1 | DIRTY_LIGHT2 | DIRTY_LIGHT3;
void ShaderManagerDX9::VSUpdateUniforms(u64 dirtyUniforms) {
// Update any dirty uniforms before we draw
if (dirtyUniforms & DIRTY_PROJMATRIX) {
Matrix4x4 flippedMatrix;
memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
const bool invertedY = gstate_c.vpHeight < 0;
if (!invertedY) {
flippedMatrix[1] = -flippedMatrix[1];
flippedMatrix[5] = -flippedMatrix[5];
flippedMatrix[9] = -flippedMatrix[9];
flippedMatrix[13] = -flippedMatrix[13];
}
const bool invertedX = gstate_c.vpWidth < 0;
if (invertedX) {
flippedMatrix[0] = -flippedMatrix[0];
flippedMatrix[4] = -flippedMatrix[4];
flippedMatrix[8] = -flippedMatrix[8];
flippedMatrix[12] = -flippedMatrix[12];
}
ConvertProjMatrixToD3D(flippedMatrix, invertedX, invertedY);
VSSetMatrix(CONST_VS_PROJ, flippedMatrix.getReadPtr());
VSSetFloat(CONST_VS_ROTATION, 0); // We don't use this on any platform in D3D9.
}
if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) {
Matrix4x4 proj_through;
proj_through.setOrtho(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0, 0, 1);
ConvertProjMatrixToD3DThrough(proj_through);
VSSetMatrix(CONST_VS_PROJ_THROUGH, proj_through.getReadPtr());
}
// Transform
if (dirtyUniforms & DIRTY_WORLDMATRIX) {
VSSetMatrix4x3_3(CONST_VS_WORLD, gstate.worldMatrix);
}
if (dirtyUniforms & DIRTY_VIEWMATRIX) {
VSSetMatrix4x3_3(CONST_VS_VIEW, gstate.viewMatrix);
}
if (dirtyUniforms & DIRTY_TEXMATRIX) {
VSSetMatrix4x3_3(CONST_VS_TEXMTX, gstate.tgenMatrix);
}
if (dirtyUniforms & DIRTY_FOGCOEF) {
float fogcoef[2] = {
getFloat24(gstate.fog1),
getFloat24(gstate.fog2),
};
// The PSP just ignores infnan here (ignoring IEEE), so take it down to a valid float.
// Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988
if (my_isnanorinf(fogcoef[0])) {
// Not really sure what a sensible value might be, but let's try 64k.
fogcoef[0] = std::signbit(fogcoef[0]) ? -65535.0f : 65535.0f;
}
if (my_isnanorinf(fogcoef[1])) {
fogcoef[1] = std::signbit(fogcoef[1]) ? -65535.0f : 65535.0f;
}
VSSetFloatArray(CONST_VS_FOGCOEF, fogcoef, 2);
}
// TODO: Could even set all bones in one go if they're all dirty.
#ifdef USE_BONE_ARRAY
if (u_bone != 0) {
float allBones[8 * 16];
bool allDirty = true;
for (int i = 0; i < numBones; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
ConvertMatrix4x3To4x4(allBones + 16 * i, gstate.boneMatrix + 12 * i);
} else {
allDirty = false;
}
}
if (allDirty) {
// Set them all with one call
//glUniformMatrix4fv(u_bone, numBones, GL_FALSE, allBones);
} else {
// Set them one by one. Could try to coalesce two in a row etc but too lazy.
for (int i = 0; i < numBones; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
//glUniformMatrix4fv(u_bone + i, 1, GL_FALSE, allBones + 16 * i);
}
}
}
}
#else
for (int i = 0; i < 8; i++) {
if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) {
VSSetMatrix4x3_3(CONST_VS_BONE0 + 3 * i, gstate.boneMatrix + 12 * i);
}
}
#endif
// Texturing
if (dirtyUniforms & DIRTY_UVSCALEOFFSET) {
const float invW = 1.0f / (float)gstate_c.curTextureWidth;
const float invH = 1.0f / (float)gstate_c.curTextureHeight;
const int w = gstate.getTextureWidth(0);
const int h = gstate.getTextureHeight(0);
const float widthFactor = (float)w * invW;
const float heightFactor = (float)h * invH;
float uvscaleoff[4];
uvscaleoff[0] = widthFactor;
uvscaleoff[1] = heightFactor;
uvscaleoff[2] = 0.0f;
uvscaleoff[3] = 0.0f;
VSSetFloatArray(CONST_VS_UVSCALEOFFSET, uvscaleoff, 4);
}
if (dirtyUniforms & DIRTY_DEPTHRANGE) {
// Depth is [0, 1] mapping to [minz, maxz], not too hard.
float vpZScale = gstate.getViewportZScale();
float vpZCenter = gstate.getViewportZCenter();
// These are just the reverse of the formulas in GPUStateUtils.
float halfActualZRange = gstate_c.vpDepthScale != 0.0f ? vpZScale / gstate_c.vpDepthScale : 0.0f;
float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange;
float viewZScale = halfActualZRange * 2.0f;
float viewZCenter = minz;
float reverseScale = gstate_c.vpDepthScale != 0.0f ? 2.0f * (1.0f / gstate_c.vpDepthScale) : 0.0f;
float reverseTranslate = gstate_c.vpZOffset * 0.5f + 0.5f;
float data[4] = { viewZScale, viewZCenter, reverseTranslate, reverseScale };
VSSetFloatUniform4(CONST_VS_DEPTHRANGE, data);
if (draw_->GetDeviceCaps().clipPlanesSupported >= 1) {
float clip[4] = { 0.0f, 0.0f, reverseScale, 1.0f - reverseTranslate * reverseScale };
// Well, not a uniform, but we treat it as one like other backends.
device_->SetClipPlane(0, clip);
}
}
if (dirtyUniforms & DIRTY_CULLRANGE) {
float minValues[4], maxValues[4];
CalcCullRange(minValues, maxValues, false, false);
VSSetFloatUniform4(CONST_VS_CULLRANGEMIN, minValues);
VSSetFloatUniform4(CONST_VS_CULLRANGEMAX, maxValues);
}
// Lighting
if (dirtyUniforms & DIRTY_AMBIENT) {
VSSetColorUniform3Alpha(CONST_VS_AMBIENT, gstate.ambientcolor, gstate.getAmbientA());
}
if (dirtyUniforms & DIRTY_MATAMBIENTALPHA) {
VSSetColorUniform3Alpha(CONST_VS_MATAMBIENTALPHA, gstate.materialambient, gstate.getMaterialAmbientA());
}
if (dirtyUniforms & DIRTY_MATDIFFUSE) {
VSSetColorUniform3(CONST_VS_MATDIFFUSE, gstate.materialdiffuse);
}
if (dirtyUniforms & DIRTY_MATEMISSIVE) {
VSSetColorUniform3(CONST_VS_MATEMISSIVE, gstate.materialemissive);
}
if (dirtyUniforms & DIRTY_MATSPECULAR) {
VSSetColorUniform3ExtraFloat(CONST_VS_MATSPECULAR, gstate.materialspecular, getFloat24(gstate.materialspecularcoef));
}
for (int i = 0; i < 4; i++) {
if (dirtyUniforms & (DIRTY_LIGHT0 << i)) {
if (gstate.isDirectionalLight(i)) {
VSSetFloat24Uniform3Normalized(CONST_VS_LIGHTPOS + i, &gstate.lpos[i * 3]);
} else {
VSSetFloat24Uniform3(CONST_VS_LIGHTPOS + i, &gstate.lpos[i * 3]);
}
VSSetFloat24Uniform3Normalized(CONST_VS_LIGHTDIR + i, &gstate.ldir[i * 3]);
VSSetFloat24Uniform3(CONST_VS_LIGHTATT + i, &gstate.latt[i * 3]);
float angle_spotCoef[4] = { getFloat24(gstate.lcutoff[i]), getFloat24(gstate.lconv[i]) };
VSSetFloatUniform4(CONST_VS_LIGHTANGLE_SPOTCOEF + i, angle_spotCoef);
VSSetColorUniform3(CONST_VS_LIGHTAMBIENT + i, gstate.lcolor[i * 3]);
VSSetColorUniform3(CONST_VS_LIGHTDIFFUSE + i, gstate.lcolor[i * 3 + 1]);
VSSetColorUniform3(CONST_VS_LIGHTSPECULAR + i, gstate.lcolor[i * 3 + 2]);
}
}
}
ShaderManagerDX9::ShaderManagerDX9(Draw::DrawContext *draw, LPDIRECT3DDEVICE9 device)
: ShaderManagerCommon(draw), device_(device) {
codeBuffer_ = new char[32768];
}
ShaderManagerDX9::~ShaderManagerDX9() {
delete [] codeBuffer_;
}
void ShaderManagerDX9::Clear() {
for (auto iter = fsCache_.begin(); iter != fsCache_.end(); ++iter) {
delete iter->second;
}
for (auto iter = vsCache_.begin(); iter != vsCache_.end(); ++iter) {
delete iter->second;
}
fsCache_.clear();
vsCache_.clear();
DirtyShader();
}
void ShaderManagerDX9::ClearShaders() {
Clear();
}
void ShaderManagerDX9::DirtyShader() {
// Forget the last shader ID
lastFSID_.set_invalid();
lastVSID_.set_invalid();
lastVShader_ = nullptr;
lastPShader_ = nullptr;
gstate_c.Dirty(DIRTY_ALL_UNIFORMS | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE);
}
void ShaderManagerDX9::DirtyLastShader() {
lastVShader_ = nullptr;
lastPShader_ = nullptr;
}
VSShader *ShaderManagerDX9::ApplyShader(bool useHWTransform, bool useHWTessellation, VertexDecoder *decoder, bool weightsAsFloat, bool useSkinInDecode, const ComputedPipelineState &pipelineState) {
VShaderID VSID;
if (gstate_c.IsDirty(DIRTY_VERTEXSHADER_STATE)) {
gstate_c.Clean(DIRTY_VERTEXSHADER_STATE);
ComputeVertexShaderID(&VSID, decoder, useHWTransform, useHWTessellation, weightsAsFloat, useSkinInDecode);
} else {
VSID = lastVSID_;
}
FShaderID FSID;
if (gstate_c.IsDirty(DIRTY_FRAGMENTSHADER_STATE)) {
gstate_c.Clean(DIRTY_FRAGMENTSHADER_STATE);
ComputeFragmentShaderID(&FSID, pipelineState, draw_->GetBugs());
} else {
FSID = lastFSID_;
}
// Just update uniforms if this is the same shader as last time.
if (lastVShader_ != nullptr && lastPShader_ != nullptr && VSID == lastVSID_ && FSID == lastFSID_) {
uint64_t dirtyUniforms = gstate_c.GetDirtyUniforms();
if (dirtyUniforms) {
if (dirtyUniforms & psUniforms)
PSUpdateUniforms(dirtyUniforms);
if (dirtyUniforms & vsUniforms)
VSUpdateUniforms(dirtyUniforms);
gstate_c.CleanUniforms();
}
return lastVShader_; // Already all set.
}
VSCache::iterator vsIter = vsCache_.find(VSID);
VSShader *vs = nullptr;
if (vsIter == vsCache_.end()) {
// Vertex shader not in cache. Let's compile it.
std::string genErrorString;
uint32_t attrMask;
uint64_t uniformMask;
VertexShaderFlags flags;
if (GenerateVertexShader(VSID, codeBuffer_, draw_->GetShaderLanguageDesc(), draw_->GetBugs(), &attrMask, &uniformMask, &flags, &genErrorString)) {
vs = new VSShader(device_, VSID, codeBuffer_, useHWTransform);
}
if (!vs || vs->Failed()) {
auto gr = GetI18NCategory(I18NCat::GRAPHICS);
if (!vs) {
// TODO: Report this?
ERROR_LOG(G3D, "Shader generation failed, falling back to software transform");
} else {
ERROR_LOG(G3D, "Shader compilation failed, falling back to software transform");
}
if (!g_Config.bHideSlowWarnings) {
System_NotifyUserMessage(gr->T("hardware transform error - falling back to software"), 2.5f, 0xFF3030FF);
}
delete vs;
ComputeVertexShaderID(&VSID, decoder, false, false, weightsAsFloat, useSkinInDecode);
// TODO: Look for existing shader with the appropriate ID, use that instead of generating a new one - however, need to make sure
// that that shader ID is not used when computing the linked shader ID below, because then IDs won't match
// next time and we'll do this over and over...
// Can still work with software transform.
uint32_t attrMask;
uint64_t uniformMask;
bool success = GenerateVertexShader(VSID, codeBuffer_, draw_->GetShaderLanguageDesc(), draw_->GetBugs(), &attrMask, &uniformMask, &flags, &genErrorString);
_assert_(success);
vs = new VSShader(device_, VSID, codeBuffer_, false);
}
vsCache_[VSID] = vs;
} else {
vs = vsIter->second;
}
lastVSID_ = VSID;
FSCache::iterator fsIter = fsCache_.find(FSID);
PSShader *fs;
if (fsIter == fsCache_.end()) {
// Fragment shader not in cache. Let's compile it.
std::string errorString;
uint64_t uniformMask;
FragmentShaderFlags flags;
bool success = GenerateFragmentShader(FSID, codeBuffer_, draw_->GetShaderLanguageDesc(), draw_->GetBugs(), &uniformMask, &flags, &errorString);
// We're supposed to handle all possible cases.
_assert_(success);
fs = new PSShader(device_, FSID, codeBuffer_);
fsCache_[FSID] = fs;
} else {
fs = fsIter->second;
}
lastFSID_ = FSID;
uint64_t dirtyUniforms = gstate_c.GetDirtyUniforms();
if (dirtyUniforms) {
if (dirtyUniforms & psUniforms)
PSUpdateUniforms(dirtyUniforms);
if (dirtyUniforms & vsUniforms)
VSUpdateUniforms(dirtyUniforms);
gstate_c.CleanUniforms();
}
device_->SetPixelShader(fs->shader);
device_->SetVertexShader(vs->shader);
lastPShader_ = fs;
lastVShader_ = vs;
return vs;
}
std::vector<std::string> ShaderManagerDX9::DebugGetShaderIDs(DebugShaderType type) {
std::string id;
std::vector<std::string> ids;
switch (type) {
case SHADER_TYPE_VERTEX:
{
for (auto iter : vsCache_) {
iter.first.ToString(&id);
ids.push_back(id);
}
}
break;
case SHADER_TYPE_FRAGMENT:
{
for (auto iter : fsCache_) {
iter.first.ToString(&id);
ids.push_back(id);
}
}
break;
}
return ids;
}
std::string ShaderManagerDX9::DebugGetShaderString(std::string id, DebugShaderType type, DebugShaderStringType stringType) {
ShaderID shaderId;
shaderId.FromString(id);
switch (type) {
case SHADER_TYPE_VERTEX:
{
auto iter = vsCache_.find(VShaderID(shaderId));
if (iter == vsCache_.end()) {
return "";
}
return iter->second->GetShaderString(stringType);
}
case SHADER_TYPE_FRAGMENT:
{
auto iter = fsCache_.find(FShaderID(shaderId));
if (iter == fsCache_.end()) {
return "";
}
return iter->second->GetShaderString(stringType);
}
default:
return "N/A";
}
}