ppsspp/GPU/Common/ReplacedTexture.cpp
2023-07-23 22:06:06 +02:00

821 lines
26 KiB
C++

// Copyright (c) 2016- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "ppsspp_config.h"
#include <png.h>
#include "ext/basis_universal/basisu_transcoder.h"
#include "ext/basis_universal/basisu_file_headers.h"
#include "GPU/Common/ReplacedTexture.h"
#include "GPU/Common/TextureReplacer.h"
#include "Common/Data/Format/IniFile.h"
#include "Common/Data/Format/DDSLoad.h"
#include "Common/Data/Format/ZIMLoad.h"
#include "Common/Data/Format/PNGLoad.h"
#include "Common/Thread/ParallelLoop.h"
#include "Common/Thread/Waitable.h"
#include "Common/Thread/ThreadManager.h"
#include "Common/Log.h"
#include "Common/TimeUtil.h"
#define MK_FOURCC(str) (str[0] | ((uint8_t)str[1] << 8) | ((uint8_t)str[2] << 16) | ((uint8_t)str[3] << 24))
static ReplacedImageType IdentifyMagic(const uint8_t magic[4]) {
if (memcmp((const char *)magic, "ZIMG", 4) == 0)
return ReplacedImageType::ZIM;
else if (magic[0] == 0x89 && strncmp((const char *)&magic[1], "PNG", 3) == 0)
return ReplacedImageType::PNG;
else if (memcmp((const char *)magic, "DDS ", 4) == 0)
return ReplacedImageType::DDS;
else if (magic[0] == 's' && magic[1] == 'B') {
uint16_t ver = magic[2] | (magic[3] << 8);
if (ver >= 0x10) {
return ReplacedImageType::BASIS;
}
} else if (memcmp((const char *)magic, "\xabKTX", 4) == 0) {
// Technically, should read 12 bytes here, but this'll do.
return ReplacedImageType::KTX2;
}
return ReplacedImageType::INVALID;
}
static ReplacedImageType Identify(VFSBackend *vfs, VFSOpenFile *openFile, std::string *outMagic) {
uint8_t magic[4];
if (vfs->Read(openFile, magic, 4) != 4) {
*outMagic = "FAIL";
return ReplacedImageType::INVALID;
}
// Turn the signature into a readable string that we can display in an error message.
*outMagic = std::string((const char *)magic, 4);
for (int i = 0; i < outMagic->size(); i++) {
if ((s8)(*outMagic)[i] < 32) {
(*outMagic)[i] = '_';
}
}
vfs->Rewind(openFile);
return IdentifyMagic(magic);
}
class ReplacedTextureTask : public Task {
public:
ReplacedTextureTask(VFSBackend *vfs, ReplacedTexture &tex, LimitedWaitable *w) : vfs_(vfs), tex_(tex), waitable_(w) {}
TaskType Type() const override { return TaskType::IO_BLOCKING; }
TaskPriority Priority() const override { return TaskPriority::NORMAL; }
void Run() override {
tex_.Prepare(vfs_);
waitable_->Notify();
}
private:
VFSBackend *vfs_;
ReplacedTexture &tex_;
LimitedWaitable *waitable_;
};
ReplacedTexture::ReplacedTexture(VFSBackend *vfs, const ReplacementDesc &desc) : vfs_(vfs), desc_(desc) {
logId_ = desc.logId;
}
ReplacedTexture::~ReplacedTexture() {
if (threadWaitable_) {
SetState(ReplacementState::CANCEL_INIT);
std::unique_lock<std::mutex> lock(lock_);
threadWaitable_->WaitAndRelease();
threadWaitable_ = nullptr;
}
for (auto &level : levels_) {
vfs_->ReleaseFile(level.fileRef);
level.fileRef = nullptr;
}
}
void ReplacedTexture::PurgeIfNotUsedSinceTime(double t) {
if (State() != ReplacementState::ACTIVE) {
return;
}
// If there's some leftover threadWaitable, get rid of it.
if (threadWaitable_) {
if (threadWaitable_->WaitFor(0.0)) {
delete threadWaitable_;
threadWaitable_ = nullptr;
// Continue with purging.
} else {
// Try next time.
return;
}
}
// This is the only place except shutdown where a texture can transition
// from ACTIVE to anything else, so we don't actually need to lock here.
if (lastUsed_ >= t) {
return;
}
data_.clear();
levels_.clear();
fmt = Draw::DataFormat::UNDEFINED;
alphaStatus_ = ReplacedTextureAlpha::UNKNOWN;
// This means we have to reload. If we never purge any, there's no need.
SetState(ReplacementState::UNLOADED);
}
// This can only return true if ACTIVE or NOT_FOUND.
bool ReplacedTexture::Poll(double budget) {
_assert_(vfs_ != nullptr);
double now = time_now_d();
switch (State()) {
case ReplacementState::ACTIVE:
case ReplacementState::NOT_FOUND:
if (threadWaitable_) {
if (!threadWaitable_->WaitFor(budget)) {
lastUsed_ = now;
return false;
}
// Successfully waited! Can get rid of it.
threadWaitable_->WaitAndRelease();
threadWaitable_ = nullptr;
lastUsed = now;
}
lastUsed_ = now;
return true;
case ReplacementState::CANCEL_INIT:
case ReplacementState::PENDING:
return false;
case ReplacementState::UNLOADED:
// We're gonna need to spawn a task.
break;
}
lastUsed_ = now;
// Let's not even start a new texture if we're already behind.
if (budget < 0.0)
return false;
_assert_(!threadWaitable_);
threadWaitable_ = new LimitedWaitable();
SetState(ReplacementState::PENDING);
g_threadManager.EnqueueTask(new ReplacedTextureTask(vfs_, *this, threadWaitable_));
if (threadWaitable_->WaitFor(budget)) {
// If we successfully wait here, we're done. The thread will set state accordingly.
_assert_(State() == ReplacementState::ACTIVE || State() == ReplacementState::NOT_FOUND || State() == ReplacementState::CANCEL_INIT);
delete threadWaitable_;
threadWaitable_ = nullptr;
return true;
}
// Still pending on thread.
return false;
}
inline uint32_t RoundUpTo4(uint32_t value) {
return (value + 3) & ~3;
}
void ReplacedTexture::Prepare(VFSBackend *vfs) {
this->vfs_ = vfs;
std::unique_lock<std::mutex> lock(lock_);
fmt = Draw::DataFormat::UNDEFINED;
Draw::DataFormat pixelFormat;
LoadLevelResult result = LoadLevelResult::LOAD_ERROR;
if (desc_.filenames.empty()) {
result = LoadLevelResult::DONE;
}
for (int i = 0; i < std::min(MAX_REPLACEMENT_MIP_LEVELS, (int)desc_.filenames.size()); ++i) {
if (State() == ReplacementState::CANCEL_INIT) {
break;
}
if (desc_.filenames[i].empty()) {
// Out of valid mip levels. Bail out.
break;
}
VFSFileReference *fileRef = vfs_->GetFile(desc_.filenames[i].c_str());
if (!fileRef) {
if (i == 0) {
WARN_LOG(G3D, "Texture replacement file '%s' not found", desc_.filenames[i].c_str());
// No file at all. Mark as NOT_FOUND.
SetState(ReplacementState::NOT_FOUND);
return;
}
// If the file doesn't exist, let's just bail immediately here.
// Mark as DONE, not error.
result = LoadLevelResult::DONE;
break;
}
if (i == 0) {
fmt = Draw::DataFormat::R8G8B8A8_UNORM;
}
result = LoadLevelData(fileRef, desc_.filenames[i], i, &pixelFormat);
if (result == LoadLevelResult::DONE) {
// Loaded all the levels we're gonna get.
fmt = pixelFormat;
break;
} else if (result == LoadLevelResult::CONTINUE) {
if (i == 0) {
fmt = pixelFormat;
} else {
if (fmt != pixelFormat) {
ERROR_LOG(G3D, "Replacement mipmap %d doesn't have the same pixel format as mipmap 0. Stopping.", i);
break;
}
}
} else {
// Error state.
break;
}
}
if (levels_.empty()) {
// No replacement found.
std::string name = TextureReplacer::HashName(desc_.cachekey, desc_.hash, 0);
if (result == LoadLevelResult::LOAD_ERROR) {
WARN_LOG(G3D, "Failed to load replacement texture '%s'", name.c_str());
}
SetState(ReplacementState::NOT_FOUND);
return;
}
// Update the level dimensions.
for (auto &level : levels_) {
level.fullW = (level.w * desc_.w) / desc_.newW;
level.fullH = (level.h * desc_.h) / desc_.newH;
int blockSize;
bool bc = Draw::DataFormatIsBlockCompressed(fmt, &blockSize);
if (!bc) {
level.fullDataSize = level.fullW * level.fullH * 4;
} else {
level.fullDataSize = RoundUpTo4(level.fullW) * RoundUpTo4(level.fullH) * blockSize / 16;
}
}
SetState(ReplacementState::ACTIVE);
// the caller calls threadWaitable->notify().
}
// Returns true if Prepare should keep calling this to load more levels.
ReplacedTexture::LoadLevelResult ReplacedTexture::LoadLevelData(VFSFileReference *fileRef, const std::string &filename, int mipLevel, Draw::DataFormat *pixelFormat) {
bool good = false;
if (data_.size() <= mipLevel) {
data_.resize(mipLevel + 1);
}
ReplacedTextureLevel level;
size_t fileSize;
VFSOpenFile *openFile = vfs_->OpenFileForRead(fileRef, &fileSize);
if (!openFile) {
// File missing, no more levels. This is alright.
return LoadLevelResult::DONE;
}
std::string magic;
ReplacedImageType imageType = Identify(vfs_, openFile, &magic);
bool ddsDX10 = false;
int numMips = 1;
if (imageType == ReplacedImageType::KTX2) {
KTXHeader header;
good = vfs_->Read(openFile, &header, sizeof(header)) == sizeof(header);
level.w = header.pixelWidth;
level.h = header.pixelHeight;
numMips = header.levelCount;
// Additional quick checks
good = good && header.layerCount <= 1;
} else if (imageType == ReplacedImageType::BASIS) {
WARN_LOG(G3D, "The basis texture format is not supported. Use KTX2 (basisu texture.png -uastc -ktx2 -mipmap)");
// We simply don't support basis files currently.
good = false;
} else if (imageType == ReplacedImageType::DDS) {
DDSHeader header;
DDSHeaderDXT10 header10{};
good = vfs_->Read(openFile, &header, sizeof(header)) == sizeof(header);
*pixelFormat = Draw::DataFormat::UNDEFINED;
u32 format;
if (good && (header.ddspf.dwFlags & DDPF_FOURCC)) {
char *fcc = (char *)&header.ddspf.dwFourCC;
// INFO_LOG(G3D, "DDS fourcc: %c%c%c%c", fcc[0], fcc[1], fcc[2], fcc[3]);
if (header.ddspf.dwFourCC == MK_FOURCC("DX10")) {
ddsDX10 = true;
good = good && vfs_->Read(openFile, &header10, sizeof(header10)) == sizeof(header10);
format = header10.dxgiFormat;
switch (format) {
case 71: // DXGI_FORMAT_BC1_UNORM
case 72: // DXGI_FORMAT_BC1_UNORM_SRGB
if (!desc_.formatSupport.bc123) {
WARN_LOG(G3D, "BC1 format not supported, skipping texture");
good = false;
}
*pixelFormat = Draw::DataFormat::BC1_RGBA_UNORM_BLOCK;
break;
case 74: // DXGI_FORMAT_BC2_UNORM
case 75: // DXGI_FORMAT_BC2_UNORM_SRGB
if (!desc_.formatSupport.bc123) {
WARN_LOG(G3D, "BC2 format not supported, skipping texture");
good = false;
}
*pixelFormat = Draw::DataFormat::BC2_UNORM_BLOCK;
break;
case 77: // DXGI_FORMAT_BC3_UNORM
case 78: // DXGI_FORMAT_BC3_UNORM_SRGB
if (!desc_.formatSupport.bc123) {
WARN_LOG(G3D, "BC3 format not supported, skipping texture");
good = false;
}
*pixelFormat = Draw::DataFormat::BC3_UNORM_BLOCK;
break;
case 98: // DXGI_FORMAT_BC7_UNORM:
case 99: // DXGI_FORMAT_BC7_UNORM_SRGB:
if (!desc_.formatSupport.bc7) {
WARN_LOG(G3D, "BC7 format not supported, skipping texture");
good = false;
}
*pixelFormat = Draw::DataFormat::BC7_UNORM_BLOCK;
break;
default:
WARN_LOG(G3D, "DXGI pixel format %d not supported.", header10.dxgiFormat);
good = false;
}
} else {
if (!desc_.formatSupport.bc123) {
WARN_LOG(G3D, "BC1-3 formats not supported");
good = false;
}
format = header.ddspf.dwFourCC;
// OK, there are a number of possible formats we might have ended up with. We choose just a few
// to support for now.
switch (format) {
case MK_FOURCC("DXT1"):
*pixelFormat = Draw::DataFormat::BC1_RGBA_UNORM_BLOCK;
break;
case MK_FOURCC("DXT3"):
*pixelFormat = Draw::DataFormat::BC2_UNORM_BLOCK;
break;
case MK_FOURCC("DXT5"):
*pixelFormat = Draw::DataFormat::BC3_UNORM_BLOCK;
break;
default:
ERROR_LOG(G3D, "DDS pixel format not supported.");
good = false;
}
}
} else if (good) {
ERROR_LOG(G3D, "DDS non-fourCC format not supported.");
good = false;
}
level.w = header.dwWidth;
level.h = header.dwHeight;
numMips = header.dwMipMapCount;
} else if (imageType == ReplacedImageType::ZIM) {
uint32_t ignore = 0;
struct ZimHeader {
uint32_t magic;
uint32_t w;
uint32_t h;
uint32_t flags;
} header;
good = vfs_->Read(openFile, &header, sizeof(header)) == sizeof(header);
level.w = header.w;
level.h = header.h;
good = good && (header.flags & ZIM_FORMAT_MASK) == ZIM_RGBA8888;
*pixelFormat = Draw::DataFormat::R8G8B8A8_UNORM;
} else if (imageType == ReplacedImageType::PNG) {
PNGHeaderPeek headerPeek;
good = vfs_->Read(openFile, &headerPeek, sizeof(headerPeek)) == sizeof(headerPeek);
if (good && headerPeek.IsValidPNGHeader()) {
level.w = headerPeek.Width();
level.h = headerPeek.Height();
good = true;
} else {
ERROR_LOG(G3D, "Could not get PNG dimensions: %s (zip)", filename.c_str());
good = false;
}
*pixelFormat = Draw::DataFormat::R8G8B8A8_UNORM;
} else {
ERROR_LOG(G3D, "Could not load texture replacement info: %s - unsupported format %s", filename.c_str(), magic.c_str());
}
// TODO: We no longer really need to have a split in this function, the upper and lower parts can be merged now.
if (good && mipLevel != 0) {
// If loading a low mip directly (through png most likely), check that the mipmap size is correct.
// Can't load mips of the wrong size.
if (level.w != std::max(1, (levels_[0].w >> mipLevel)) || level.h != std::max(1, (levels_[0].h >> mipLevel))) {
WARN_LOG(G3D, "Replacement mipmap invalid: size=%dx%d, expected=%dx%d (level %d)",
level.w, level.h, levels_[0].w >> mipLevel, levels_[0].h >> mipLevel, mipLevel);
good = false;
}
}
if (!good) {
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
vfs_->Rewind(openFile);
level.fileRef = fileRef;
if (imageType == ReplacedImageType::KTX2) {
// Just slurp the whole file in one go and feed to the decoder.
std::vector<uint8_t> buffer;
buffer.resize(fileSize);
buffer.resize(vfs_->Read(openFile, &buffer[0], buffer.size()));
basist::ktx2_transcoder transcoder;
if (!transcoder.init(buffer.data(), (int)buffer.size())) {
WARN_LOG(G3D, "Error reading KTX file");
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
// Figure out the target format.
basist::transcoder_texture_format transcoderFormat;
if (transcoder.is_etc1s()) {
// We only support opaque colors with this compression method.
alphaStatus_ = ReplacedTextureAlpha::FULL;
// Let's pick a suitable compatible format.
if (desc_.formatSupport.bc123) {
transcoderFormat = basist::transcoder_texture_format::cTFBC1;
*pixelFormat = Draw::DataFormat::BC1_RGBA_UNORM_BLOCK;
} else if (desc_.formatSupport.etc2) {
transcoderFormat = basist::transcoder_texture_format::cTFETC1_RGB;
*pixelFormat = Draw::DataFormat::ETC2_R8G8B8_UNORM_BLOCK;
} else {
// Transcode to RGBA8 instead as a fallback. A bit slow and takes a lot of memory, but better than nothing.
WARN_LOG(G3D, "Replacement texture format not supported - transcoding to RGBA8888");
transcoderFormat = basist::transcoder_texture_format::cTFRGBA32;
*pixelFormat = Draw::DataFormat::R8G8B8A8_UNORM;
}
} else if (transcoder.is_uastc()) {
// TODO: Try to recover some indication of alpha from the actual data blocks.
alphaStatus_ = ReplacedTextureAlpha::UNKNOWN;
// Let's pick a suitable compatible format.
if (desc_.formatSupport.bc7) {
transcoderFormat = basist::transcoder_texture_format::cTFBC7_RGBA;
*pixelFormat = Draw::DataFormat::BC7_UNORM_BLOCK;
} else if (desc_.formatSupport.astc) {
transcoderFormat = basist::transcoder_texture_format::cTFASTC_4x4_RGBA;
*pixelFormat = Draw::DataFormat::ASTC_4x4_UNORM_BLOCK;
} else {
// Transcode to RGBA8 instead as a fallback. A bit slow and takes a lot of memory, but better than nothing.
WARN_LOG(G3D, "Replacement texture format not supported - transcoding to RGBA8888");
transcoderFormat = basist::transcoder_texture_format::cTFRGBA32;
*pixelFormat = Draw::DataFormat::R8G8B8A8_UNORM;
}
} else {
WARN_LOG(G3D, "PPSSPP currently only supports KTX for basis/UASTC textures. This may change in the future.");
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
int blockSize = 0;
bool bc = Draw::DataFormatIsBlockCompressed(*pixelFormat, &blockSize);
_dbg_assert_(bc || *pixelFormat == Draw::DataFormat::R8G8B8A8_UNORM);
if (bc && ((level.w & 3) != 0 || (level.h & 3) != 0)) {
WARN_LOG(G3D, "Block compressed replacement texture '%s' not divisible by 4x4 (%dx%d). In D3D11 (only!) we will have to expand (potentially causing glitches).", filename.c_str(), level.w, level.h);
}
data_.resize(numMips);
basist::ktx2_transcoder_state transcodeState; // Each thread needs one of these.
transcoder.start_transcoding();
for (int i = 0; i < numMips; i++) {
std::vector<uint8_t> &out = data_[mipLevel + i];
basist::ktx2_image_level_info levelInfo{};
bool result = transcoder.get_image_level_info(levelInfo, i, 0, 0);
_dbg_assert_(result);
size_t dataSizeBytes = levelInfo.m_total_blocks * blockSize;
size_t outputSize = levelInfo.m_total_blocks;
size_t outputPitch = levelInfo.m_num_blocks_x;
// Support transcoded-to-RGBA8888 images too.
if (!bc) {
dataSizeBytes = levelInfo.m_orig_width * levelInfo.m_orig_height * 4;
outputSize = levelInfo.m_orig_width * levelInfo.m_orig_height;
outputPitch = levelInfo.m_orig_width;
}
data_[i].resize(dataSizeBytes);
transcodeState.clear();
transcoder.transcode_image_level(i, 0, 0, &out[0], (uint32_t)outputSize, transcoderFormat, 0, (uint32_t)outputPitch, level.h, -1, -1, &transcodeState);
level.w = levelInfo.m_orig_width;
level.h = levelInfo.m_orig_height;
if (i != 0)
level.fileRef = nullptr;
levels_.push_back(level);
}
transcoder.clear();
vfs_->CloseFile(openFile);
return LoadLevelResult::DONE; // don't read more levels
} else if (imageType == ReplacedImageType::DDS) {
// TODO: Do better with alphaStatus, it's possible.
alphaStatus_ = ReplacedTextureAlpha::UNKNOWN;
DDSHeader header;
DDSHeaderDXT10 header10{};
vfs_->Read(openFile, &header, sizeof(header));
if (ddsDX10) {
vfs_->Read(openFile, &header10, sizeof(header10));
}
int blockSize = 0;
bool bc = Draw::DataFormatIsBlockCompressed(*pixelFormat, &blockSize);
_dbg_assert_(bc);
if (bc && ((level.w & 3) != 0 || (level.h & 3) != 0)) {
WARN_LOG(G3D, "Block compressed replacement texture '%s' not divisible by 4x4 (%dx%d). In D3D11 (only!) we will have to expand (potentially causing glitches).", filename.c_str(), level.w, level.h);
}
data_.resize(numMips);
// A DDS File can contain multiple mipmaps.
for (int i = 0; i < numMips; i++) {
std::vector<uint8_t> &out = data_[mipLevel + i];
int bytesToRead = RoundUpTo4(level.w) * RoundUpTo4(level.h) * blockSize / 16;
out.resize(bytesToRead);
size_t read_bytes = vfs_->Read(openFile, &out[0], bytesToRead);
if (read_bytes != bytesToRead) {
WARN_LOG(G3D, "DDS: Expected %d bytes, got %d", bytesToRead, (int)read_bytes);
}
levels_.push_back(level);
level.w = std::max(level.w / 2, 1);
level.h = std::max(level.h / 2, 1);
if (i != 0)
level.fileRef = nullptr; // We only provide a fileref on level 0 if we have mipmaps.
}
vfs_->CloseFile(openFile);
return LoadLevelResult::DONE; // don't read more levels
} else if (imageType == ReplacedImageType::ZIM) {
std::unique_ptr<uint8_t[]> zim(new uint8_t[fileSize]);
if (!zim) {
ERROR_LOG(G3D, "Failed to allocate memory for texture replacement");
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
if (vfs_->Read(openFile, &zim[0], fileSize) != fileSize) {
ERROR_LOG(G3D, "Could not load texture replacement: %s - failed to read ZIM", filename.c_str());
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
int w, h, f;
uint8_t *image;
std::vector<uint8_t> &out = data_[mipLevel];
// TODO: Zim files can actually hold mipmaps (although no tool has ever been made to create them :P)
if (LoadZIMPtr(&zim[0], fileSize, &w, &h, &f, &image)) {
if (w > level.w || h > level.h) {
ERROR_LOG(G3D, "Texture replacement changed since header read: %s", filename.c_str());
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
out.resize(level.w * level.h * 4);
if (w == level.w) {
memcpy(&out[0], image, level.w * 4 * level.h);
} else {
for (int y = 0; y < h; ++y) {
memcpy(&out[level.w * 4 * y], image + w * 4 * y, w * 4);
}
}
free(image);
CheckAlphaResult res = CheckAlpha32Rect((u32 *)&out[0], level.w, w, h, 0xFF000000);
if (res == CHECKALPHA_ANY || mipLevel == 0) {
alphaStatus_ = ReplacedTextureAlpha(res);
}
levels_.push_back(level);
} else {
good = false;
}
vfs_->CloseFile(openFile);
return LoadLevelResult::CONTINUE;
} else if (imageType == ReplacedImageType::PNG) {
png_image png = {};
png.version = PNG_IMAGE_VERSION;
std::string pngdata;
pngdata.resize(fileSize);
pngdata.resize(vfs_->Read(openFile, &pngdata[0], fileSize));
if (!png_image_begin_read_from_memory(&png, &pngdata[0], pngdata.size())) {
ERROR_LOG(G3D, "Could not load texture replacement info: %s - %s (zip)", filename.c_str(), png.message);
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
if (png.width > (uint32_t)level.w || png.height > (uint32_t)level.h) {
ERROR_LOG(G3D, "Texture replacement changed since header read: %s", filename.c_str());
vfs_->CloseFile(openFile);
return LoadLevelResult::LOAD_ERROR;
}
bool checkedAlpha = false;
if ((png.format & PNG_FORMAT_FLAG_ALPHA) == 0) {
// Well, we know for sure it doesn't have alpha.
if (mipLevel == 0) {
alphaStatus_ = ReplacedTextureAlpha::FULL;
}
checkedAlpha = true;
}
png.format = PNG_FORMAT_RGBA;
std::vector<uint8_t> &out = data_[mipLevel];
out.resize(level.w * level.h * 4);
if (!png_image_finish_read(&png, nullptr, &out[0], level.w * 4, nullptr)) {
ERROR_LOG(G3D, "Could not load texture replacement: %s - %s", filename.c_str(), png.message);
vfs_->CloseFile(openFile);
out.resize(0);
return LoadLevelResult::LOAD_ERROR;
}
png_image_free(&png);
if (!checkedAlpha) {
// This will only check the hashed bits.
CheckAlphaResult res = CheckAlpha32Rect((u32 *)&out[0], level.w, png.width, png.height, 0xFF000000);
if (res == CHECKALPHA_ANY || mipLevel == 0) {
alphaStatus_ = ReplacedTextureAlpha(res);
}
}
levels_.push_back(level);
vfs_->CloseFile(openFile);
return LoadLevelResult::CONTINUE;
} else {
WARN_LOG(G3D, "Don't know how to load this image type! %d", (int)imageType);
vfs_->CloseFile(openFile);
}
return LoadLevelResult::LOAD_ERROR;
}
bool ReplacedTexture::CopyLevelTo(int level, uint8_t *out, size_t outDataSize, int rowPitch) {
_assert_msg_((size_t)level < levels_.size(), "Invalid miplevel");
_assert_msg_(out != nullptr && rowPitch > 0, "Invalid out/pitch");
if (State() != ReplacementState::ACTIVE) {
WARN_LOG(G3D, "Init not done yet");
return false;
}
// We pad the images right here during the copy.
// TODO: Add support for the texture cache to scale texture coordinates instead.
// It already supports this for render target textures that aren't powers of 2.
int outW = levels_[level].fullW;
int outH = levels_[level].fullH;
// We probably could avoid this lock, but better to play it safe.
std::lock_guard<std::mutex> guard(lock_);
const ReplacedTextureLevel &info = levels_[level];
const std::vector<uint8_t> &data = data_[level];
if (data.empty()) {
WARN_LOG(G3D, "Level %d is empty", level);
return false;
}
#define PARALLEL_COPY
int blockSize;
if (!Draw::DataFormatIsBlockCompressed(fmt, &blockSize)) {
if (fmt != Draw::DataFormat::R8G8B8A8_UNORM) {
ERROR_LOG(G3D, "Unexpected linear data format");
return false;
}
if (rowPitch < info.w * 4) {
ERROR_LOG(G3D, "Replacement rowPitch=%d, but w=%d (level=%d) (too small)", rowPitch, info.w * 4, level);
return false;
}
_assert_msg_(data.size() == info.w * info.h * 4, "Data has wrong size");
if (rowPitch == info.w * 4) {
#ifdef PARALLEL_COPY
ParallelMemcpy(&g_threadManager, out, data.data(), info.w * 4 * info.h);
#else
memcpy(out, data.data(), info.w * 4 * info.h);
#endif
} else {
#ifdef PARALLEL_COPY
const int MIN_LINES_PER_THREAD = 4;
ParallelRangeLoop(&g_threadManager, [&](int l, int h) {
int extraPixels = outW - info.w;
for (int y = l; y < h; ++y) {
memcpy((uint8_t *)out + rowPitch * y, data.data() + info.w * 4 * y, info.w * 4);
// Fill the rest of the line with black.
memset((uint8_t *)out + rowPitch * y + info.w * 4, 0, extraPixels * 4);
}
}, 0, info.h, MIN_LINES_PER_THREAD);
#else
int extraPixels = outW - info.w;
for (int y = 0; y < info.h; ++y) {
memcpy((uint8_t *)out + rowPitch * y, data.data() + info.w * 4 * y, info.w * 4);
memset((uint8_t *)out + rowPitch * y + info.w * 4, 0, extraPixels * 4);
}
#endif
// Memset the rest of the padding to avoid leaky edge pixels. Guess we could parallelize this too, but meh.
for (int y = info.h; y < outH; y++) {
uint8_t *dest = (uint8_t *)out + rowPitch * y;
memset(dest, 0, outW * 4);
}
}
} else {
#ifdef PARALLEL_COPY
// Only parallel copy in the simple case for now.
if (info.w == outW && info.h == outH) {
// TODO: Add sanity checks here for other formats?
ParallelMemcpy(&g_threadManager, out, data.data(), data.size());
return true;
}
#endif
// Alright, so careful copying of blocks it is, padding with zero-blocks as needed.
int inBlocksW = (info.w + 3) / 4;
int inBlocksH = (info.h + 3) / 4;
int outBlocksW = (info.fullW + 3) / 4;
int outBlocksH = (info.fullH + 3) / 4;
int paddingBlocksX = outBlocksW - inBlocksW;
// Copy all the known blocks, and zero-fill out the lines.
for (int y = 0; y < inBlocksH; y++) {
const uint8_t *input = data.data() + y * inBlocksW * blockSize;
uint8_t *output = (uint8_t *)out + y * outBlocksW * blockSize;
memcpy(output, input, inBlocksW * blockSize);
memset(output + inBlocksW * blockSize, 0, paddingBlocksX * blockSize);
}
// Vertical zero-padding.
for (int y = inBlocksH; y < outBlocksH; y++) {
uint8_t *output = (uint8_t *)out + y * outBlocksW * blockSize;
memset(output, 0, outBlocksW * blockSize);
}
}
return true;
}
const char *StateString(ReplacementState state) {
switch (state) {
case ReplacementState::UNLOADED: return "UNLOADED";
case ReplacementState::PENDING: return "PENDING";
case ReplacementState::NOT_FOUND: return "NOT_FOUND";
case ReplacementState::ACTIVE: return "ACTIVE";
case ReplacementState::CANCEL_INIT: return "CANCEL_INIT";
default: return "N/A";
}
}