ppsspp/GPU/Vulkan/DrawEngineVulkan.cpp
2020-10-13 06:05:30 +01:00

1096 lines
43 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "Common/Data/Convert/SmallDataConvert.h"
#include "Common/Profiler/Profiler.h"
#include "Common/GPU/Vulkan/VulkanRenderManager.h"
#include "Common/Log.h"
#include "Common/MemoryUtil.h"
#include "Common/TimeUtil.h"
#include "Core/MemMap.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "Common/GPU/Vulkan/VulkanContext.h"
#include "Common/GPU/Vulkan/VulkanMemory.h"
#include "GPU/Common/SplineCommon.h"
#include "GPU/Common/TransformCommon.h"
#include "GPU/Common/VertexDecoderCommon.h"
#include "GPU/Common/SoftwareTransformCommon.h"
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/Debugger/Debugger.h"
#include "GPU/Vulkan/DrawEngineVulkan.h"
#include "GPU/Vulkan/TextureCacheVulkan.h"
#include "GPU/Vulkan/ShaderManagerVulkan.h"
#include "GPU/Vulkan/PipelineManagerVulkan.h"
#include "GPU/Vulkan/FramebufferManagerVulkan.h"
#include "GPU/Vulkan/GPU_Vulkan.h"
enum {
VERTEX_CACHE_SIZE = 8192 * 1024
};
#define VERTEXCACHE_DECIMATION_INTERVAL 17
#define DESCRIPTORSET_DECIMATION_INTERVAL 1 // Temporarily cut to 1. Handle reuse breaks this when textures get deleted.
enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 };
enum {
DRAW_BINDING_TEXTURE = 0,
DRAW_BINDING_2ND_TEXTURE = 1,
DRAW_BINDING_DEPAL_TEXTURE = 2,
DRAW_BINDING_DYNUBO_BASE = 3,
DRAW_BINDING_DYNUBO_LIGHT = 4,
DRAW_BINDING_DYNUBO_BONE = 5,
DRAW_BINDING_TESS_STORAGE_BUF = 6,
DRAW_BINDING_TESS_STORAGE_BUF_WU = 7,
DRAW_BINDING_TESS_STORAGE_BUF_WV = 8,
};
enum {
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
};
DrawEngineVulkan::DrawEngineVulkan(VulkanContext *vulkan, Draw::DrawContext *draw)
: vulkan_(vulkan),
draw_(draw),
stats_{},
vai_(1024) {
decOptions_.expandAllWeightsToFloat = false;
decOptions_.expand8BitNormalsToFloat = false;
// Allocate nicely aligned memory. Maybe graphics drivers will appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE);
indexGen.Setup(decIndex);
InitDeviceObjects();
}
void DrawEngineVulkan::InitDeviceObjects() {
// All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated.
VkDescriptorSetLayoutBinding bindings[9]{};
bindings[0].descriptorCount = 1;
bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[0].binding = DRAW_BINDING_TEXTURE;
bindings[1].descriptorCount = 1;
bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[1].binding = DRAW_BINDING_2ND_TEXTURE;
bindings[2].descriptorCount = 1;
bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; // sampler is ignored though.
bindings[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[2].binding = DRAW_BINDING_DEPAL_TEXTURE;
bindings[3].descriptorCount = 1;
bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
bindings[3].binding = DRAW_BINDING_DYNUBO_BASE;
bindings[4].descriptorCount = 1;
bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[4].binding = DRAW_BINDING_DYNUBO_LIGHT;
bindings[5].descriptorCount = 1;
bindings[5].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
bindings[5].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[5].binding = DRAW_BINDING_DYNUBO_BONE;
// Used only for hardware tessellation.
bindings[6].descriptorCount = 1;
bindings[6].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
bindings[6].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[6].binding = DRAW_BINDING_TESS_STORAGE_BUF;
bindings[7].descriptorCount = 1;
bindings[7].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
bindings[7].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[7].binding = DRAW_BINDING_TESS_STORAGE_BUF_WU;
bindings[8].descriptorCount = 1;
bindings[8].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
bindings[8].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
bindings[8].binding = DRAW_BINDING_TESS_STORAGE_BUF_WV;
VkDevice device = vulkan_->GetDevice();
VkDescriptorSetLayoutCreateInfo dsl{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
dsl.bindingCount = ARRAY_SIZE(bindings);
dsl.pBindings = bindings;
VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_);
_dbg_assert_(VK_SUCCESS == res);
// We are going to use one-shot descriptors in the initial implementation. Might look into caching them
// if creating and updating them turns out to be expensive.
for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) {
// We now create descriptor pools on demand, so removed from here.
// Note that pushUBO is also used for tessellation data (search for SetPushBuffer), and to upload
// the null texture. This should be cleaned up...
frame_[i].pushUBO = new VulkanPushBuffer(vulkan_, 8 * 1024 * 1024, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
frame_[i].pushVertex = new VulkanPushBuffer(vulkan_, 2 * 1024 * 1024, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
frame_[i].pushIndex = new VulkanPushBuffer(vulkan_, 1 * 1024 * 1024, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
frame_[i].pushLocal = new VulkanPushBuffer(vulkan_, 1 * 1024 * 1024, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
VkPipelineLayoutCreateInfo pl{ VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
pl.pPushConstantRanges = nullptr;
pl.pushConstantRangeCount = 0;
pl.setLayoutCount = 1;
pl.pSetLayouts = &descriptorSetLayout_;
pl.flags = 0;
res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_);
_dbg_assert_(VK_SUCCESS == res);
VkSamplerCreateInfo samp{ VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samp.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samp.flags = 0;
samp.magFilter = VK_FILTER_NEAREST;
samp.minFilter = VK_FILTER_NEAREST;
res = vkCreateSampler(device, &samp, nullptr, &samplerSecondary_);
_dbg_assert_(VK_SUCCESS == res);
res = vkCreateSampler(device, &samp, nullptr, &nullSampler_);
_dbg_assert_(VK_SUCCESS == res);
vertexCache_ = new VulkanPushBuffer(vulkan_, VERTEX_CACHE_SIZE, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
tessDataTransferVulkan = new TessellationDataTransferVulkan(vulkan_);
tessDataTransfer = tessDataTransferVulkan;
}
DrawEngineVulkan::~DrawEngineVulkan() {
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
DestroyDeviceObjects();
}
void DrawEngineVulkan::FrameData::Destroy(VulkanContext *vulkan) {
if (descPool != VK_NULL_HANDLE) {
vulkan->Delete().QueueDeleteDescriptorPool(descPool);
}
if (pushUBO) {
pushUBO->Destroy(vulkan);
delete pushUBO;
pushUBO = nullptr;
}
if (pushVertex) {
pushVertex->Destroy(vulkan);
delete pushVertex;
pushVertex = nullptr;
}
if (pushIndex) {
pushIndex->Destroy(vulkan);
delete pushIndex;
pushIndex = nullptr;
}
if (pushLocal) {
pushLocal->Destroy(vulkan);
delete pushLocal;
pushLocal = nullptr;
}
}
void DrawEngineVulkan::DestroyDeviceObjects() {
delete tessDataTransferVulkan;
tessDataTransfer = nullptr;
tessDataTransferVulkan = nullptr;
for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) {
frame_[i].Destroy(vulkan_);
}
if (samplerSecondary_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteSampler(samplerSecondary_);
if (nullSampler_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteSampler(nullSampler_);
if (pipelineLayout_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeletePipelineLayout(pipelineLayout_);
if (descriptorSetLayout_ != VK_NULL_HANDLE)
vulkan_->Delete().QueueDeleteDescriptorSetLayout(descriptorSetLayout_);
if (vertexCache_) {
vertexCache_->Destroy(vulkan_);
delete vertexCache_;
vertexCache_ = nullptr;
}
// Need to clear this to get rid of all remaining references to the dead buffers.
vai_.Iterate([](uint32_t hash, VertexArrayInfoVulkan *vai) {
delete vai;
});
vai_.Clear();
}
void DrawEngineVulkan::DeviceLost() {
DestroyDeviceObjects();
DirtyAllUBOs();
}
void DrawEngineVulkan::DeviceRestore(VulkanContext *vulkan, Draw::DrawContext *draw) {
vulkan_ = vulkan;
draw_ = draw;
InitDeviceObjects();
}
void DrawEngineVulkan::BeginFrame() {
lastPipeline_ = nullptr;
lastRenderStepId_ = -1;
int curFrame = vulkan_->GetCurFrame();
FrameData *frame = &frame_[curFrame];
// First reset all buffers, then begin. This is so that Reset can free memory and Begin can allocate it,
// if growing the buffer is needed. Doing it this way will reduce fragmentation if more than one buffer
// needs to grow in the same frame. The state where many buffers are reset can also be used to
// defragment memory.
frame->pushUBO->Reset();
frame->pushVertex->Reset();
frame->pushIndex->Reset();
frame->pushLocal->Reset();
frame->pushUBO->Begin(vulkan_);
frame->pushVertex->Begin(vulkan_);
frame->pushIndex->Begin(vulkan_);
frame->pushLocal->Begin(vulkan_);
// TODO: How can we make this nicer...
tessDataTransferVulkan->SetPushBuffer(frame->pushUBO);
DirtyAllUBOs();
// Wipe the vertex cache if it's grown too large.
if (vertexCache_->GetTotalSize() > VERTEX_CACHE_SIZE) {
vertexCache_->Destroy(vulkan_);
delete vertexCache_; // orphans the buffers, they'll get deleted once no longer used by an in-flight frame.
vertexCache_ = new VulkanPushBuffer(vulkan_, VERTEX_CACHE_SIZE, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
vai_.Iterate([&](uint32_t hash, VertexArrayInfoVulkan *vai) {
delete vai;
});
vai_.Clear();
}
vertexCache_->BeginNoReset();
if (--descDecimationCounter_ <= 0) {
if (frame->descPool != VK_NULL_HANDLE)
vkResetDescriptorPool(vulkan_->GetDevice(), frame->descPool, 0);
frame->descSets.Clear();
frame->descCount = 0;
descDecimationCounter_ = DESCRIPTORSET_DECIMATION_INTERVAL;
}
if (--decimationCounter_ <= 0) {
decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL;
const int threshold = gpuStats.numFlips - VAI_KILL_AGE;
const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE;
int unreliableLeft = VAI_UNRELIABLE_KILL_MAX;
vai_.Iterate([&](uint32_t hash, VertexArrayInfoVulkan *vai) {
bool kill;
if (vai->status == VertexArrayInfoVulkan::VAI_UNRELIABLE) {
// We limit killing unreliable so we don't rehash too often.
kill = vai->lastFrame < unreliableThreshold && --unreliableLeft >= 0;
} else {
kill = vai->lastFrame < threshold;
}
if (kill) {
// This is actually quite safe.
vai_.Remove(hash);
delete vai;
}
});
}
vai_.Maintain();
}
void DrawEngineVulkan::EndFrame() {
FrameData *frame = &frame_[vulkan_->GetCurFrame()];
stats_.pushUBOSpaceUsed = (int)frame->pushUBO->GetOffset();
stats_.pushVertexSpaceUsed = (int)frame->pushVertex->GetOffset();
stats_.pushIndexSpaceUsed = (int)frame->pushIndex->GetOffset();
frame->pushUBO->End();
frame->pushVertex->End();
frame->pushIndex->End();
frame->pushLocal->End();
vertexCache_->End();
}
void DrawEngineVulkan::DecodeVertsToPushBuffer(VulkanPushBuffer *push, uint32_t *bindOffset, VkBuffer *vkbuf) {
u8 *dest = decoded;
// Figure out how much pushbuffer space we need to allocate.
if (push) {
int vertsToDecode = ComputeNumVertsToDecode();
dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, vkbuf);
}
DecodeVerts(dest);
}
void DrawEngineVulkan::SetLineWidth(float lineWidth) {
pipelineManager_->SetLineWidth(lineWidth);
}
VkResult DrawEngineVulkan::RecreateDescriptorPool(FrameData &frame, int newSize) {
// Reallocate this desc pool larger, and "wipe" the cache. We might lose a tiny bit of descriptor set reuse but
// only for this frame.
if (frame.descPool) {
DEBUG_LOG(G3D, "Reallocating desc pool from %d to %d", frame.descPoolSize, newSize);
vulkan_->Delete().QueueDeleteDescriptorPool(frame.descPool);
frame.descSets.Clear();
frame.descCount = 0;
}
frame.descPoolSize = newSize;
VkDescriptorPoolSize dpTypes[3];
dpTypes[0].descriptorCount = frame.descPoolSize * 3;
dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
dpTypes[1].descriptorCount = frame.descPoolSize * 3; // Don't use these for tess anymore, need max three per set.
dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
dpTypes[2].descriptorCount = frame.descPoolSize * 3; // TODO: Use a separate layout when no spline stuff is needed to reduce the need for these.
dpTypes[2].type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
VkDescriptorPoolCreateInfo dp{ VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
dp.flags = 0; // Don't want to mess around with individually freeing these.
// We zap the whole pool every few frames.
dp.maxSets = frame.descPoolSize;
dp.pPoolSizes = dpTypes;
dp.poolSizeCount = ARRAY_SIZE(dpTypes);
VkResult res = vkCreateDescriptorPool(vulkan_->GetDevice(), &dp, nullptr, &frame.descPool);
return res;
}
VkDescriptorSet DrawEngineVulkan::GetOrCreateDescriptorSet(VkImageView imageView, VkSampler sampler, VkBuffer base, VkBuffer light, VkBuffer bone, bool tess) {
_dbg_assert_(base != VK_NULL_HANDLE);
_dbg_assert_(light != VK_NULL_HANDLE);
_dbg_assert_(bone != VK_NULL_HANDLE);
DescriptorSetKey key;
key.imageView_ = imageView;
key.sampler_ = sampler;
key.secondaryImageView_ = boundSecondary_;
key.depalImageView_ = boundDepal_;
key.base_ = base;
key.light_ = light;
key.bone_ = bone;
FrameData &frame = frame_[vulkan_->GetCurFrame()];
// See if we already have this descriptor set cached.
if (!tess) { // Don't cache descriptors for HW tessellation.
VkDescriptorSet d = frame.descSets.Get(key);
if (d != VK_NULL_HANDLE)
return d;
}
if (!frame.descPool || frame.descPoolSize < frame.descCount + 1) {
VkResult res = RecreateDescriptorPool(frame, frame.descPoolSize * 2);
_dbg_assert_(res == VK_SUCCESS);
}
// Didn't find one in the frame descriptor set cache, let's make a new one.
// We wipe the cache on every frame.
VkDescriptorSet desc;
VkDescriptorSetAllocateInfo descAlloc{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
descAlloc.pSetLayouts = &descriptorSetLayout_;
descAlloc.descriptorPool = frame.descPool;
descAlloc.descriptorSetCount = 1;
VkResult result = vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc);
if (result == VK_ERROR_FRAGMENTED_POOL || result < 0) {
// There seems to have been a spec revision. Here we should apparently recreate the descriptor pool,
// so let's do that. See https://www.khronos.org/registry/vulkan/specs/1.0/man/html/vkAllocateDescriptorSets.html
// Fragmentation shouldn't really happen though since we wipe the pool every frame..
VkResult res = RecreateDescriptorPool(frame, frame.descPoolSize);
_assert_msg_(res == VK_SUCCESS, "Ran out of descriptor space (frag?) and failed to recreate a descriptor pool. sz=%d res=%d", (int)frame.descSets.size(), (int)res);
descAlloc.descriptorPool = frame.descPool; // Need to update this pointer since we have allocated a new one.
result = vkAllocateDescriptorSets(vulkan_->GetDevice(), &descAlloc, &desc);
_assert_msg_(result == VK_SUCCESS, "Ran out of descriptor space (frag?) and failed to allocate after recreating a descriptor pool. res=%d", (int)result);
}
// Even in release mode, this is bad.
_assert_msg_(result == VK_SUCCESS, "Ran out of descriptor space in pool. sz=%d res=%d", (int)frame.descSets.size(), (int)result);
// We just don't write to the slots we don't care about, which is fine.
VkWriteDescriptorSet writes[9]{};
// Main texture
int n = 0;
VkDescriptorImageInfo tex[3]{};
if (imageView) {
_dbg_assert_(sampler != VK_NULL_HANDLE);
tex[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tex[0].imageView = imageView;
tex[0].sampler = sampler;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TEXTURE;
writes[n].pImageInfo = &tex[0];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
if (boundSecondary_) {
tex[1].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tex[1].imageView = boundSecondary_;
tex[1].sampler = samplerSecondary_;
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_2ND_TEXTURE;
writes[n].pImageInfo = &tex[1];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
if (boundDepal_) {
tex[2].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
tex[2].imageView = boundDepal_;
tex[2].sampler = samplerSecondary_; // doesn't matter, we use load
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_DEPAL_TEXTURE;
writes[n].pImageInfo = &tex[2];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[n].dstSet = desc;
n++;
}
// Tessellation data buffer.
if (tess) {
const VkDescriptorBufferInfo *bufInfo = tessDataTransferVulkan->GetBufferInfo();
// Control Points
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TESS_STORAGE_BUF;
writes[n].pBufferInfo = &bufInfo[0];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
writes[n].dstSet = desc;
n++;
// Weights U
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TESS_STORAGE_BUF_WU;
writes[n].pBufferInfo = &bufInfo[1];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
writes[n].dstSet = desc;
n++;
// Weights V
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_TESS_STORAGE_BUF_WV;
writes[n].pBufferInfo = &bufInfo[2];
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
writes[n].dstSet = desc;
n++;
}
// Uniform buffer objects
VkDescriptorBufferInfo buf[3]{};
int count = 0;
buf[count].buffer = base;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_FS_Base);
count++;
buf[count].buffer = light;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_Lights);
count++;
buf[count].buffer = bone;
buf[count].offset = 0;
buf[count].range = sizeof(UB_VS_Bones);
count++;
for (int i = 0; i < count; i++) {
writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[n].pNext = nullptr;
writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE + i;
writes[n].dstArrayElement = 0;
writes[n].pBufferInfo = &buf[i];
writes[n].dstSet = desc;
writes[n].descriptorCount = 1;
writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
n++;
}
vkUpdateDescriptorSets(vulkan_->GetDevice(), n, writes, 0, nullptr);
if (!tess) // Again, avoid caching when HW tessellation.
frame.descSets.Insert(key, desc);
frame.descCount++;
return desc;
}
void DrawEngineVulkan::DirtyAllUBOs() {
baseUBOOffset = 0;
lightUBOOffset = 0;
boneUBOOffset = 0;
baseBuf = VK_NULL_HANDLE;
lightBuf = VK_NULL_HANDLE;
boneBuf = VK_NULL_HANDLE;
dirtyUniforms_ = DIRTY_BASE_UNIFORMS | DIRTY_LIGHT_UNIFORMS | DIRTY_BONE_UNIFORMS;
imageView = VK_NULL_HANDLE;
sampler = VK_NULL_HANDLE;
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
void MarkUnreliable(VertexArrayInfoVulkan *vai) {
vai->status = VertexArrayInfoVulkan::VAI_UNRELIABLE;
// TODO: If we change to a real allocator, free the data here.
// For now we just leave it in the pushbuffer.
}
// The inline wrapper in the header checks for numDrawCalls == 0
void DrawEngineVulkan::DoFlush() {
PROFILE_THIS_SCOPE("Flush");
gpuStats.numFlushes++;
// TODO: Should be enough to update this once per frame?
gpuStats.numTrackedVertexArrays = (int)vai_.size();
VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER);
// TODO: Needs to be behind a check for changed render pass, at an appropriate time in this function.
// Similar issues as with the lastRenderStepId_ check. Will need a bit of a rethink.
lastPipeline_ = nullptr;
// If have a new render pass, dirty our dynamic state so it gets re-set.
// We have to do this again after the last possible place in DoFlush that can cause a renderpass switch
// like a shader blend blit or similar. But before we actually set the state!
int curRenderStepId = renderManager->GetCurrentStepId();
if (lastRenderStepId_ != curRenderStepId) {
// Dirty everything that has dynamic state that will need re-recording.
gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_BLEND_STATE | DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS);
textureCache_->ForgetLastTexture();
lastRenderStepId_ = curRenderStepId;
}
FrameData *frame = &frame_[vulkan_->GetCurFrame()];
bool tess = gstate_c.bezier || gstate_c.spline;
bool textureNeedsApply = false;
if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) {
textureCache_->SetTexture();
gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS);
textureNeedsApply = true;
} else if (gstate.getTextureAddress(0) == ((gstate.getFrameBufRawAddress() | 0x04000000) & 0x3FFFFFFF)) {
// This catches the case of clearing a texture.
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
GEPrimitiveType prim = prevPrim_;
// Always use software for flat shading to fix the provoking index.
bool useHWTransform = CanUseHardwareTransform(prim) && (tess || gstate.getShadeMode() != GE_SHADE_FLAT);
VulkanVertexShader *vshader = nullptr;
VulkanFragmentShader *fshader = nullptr;
uint32_t ibOffset;
uint32_t vbOffset;
if (useHWTransform) {
// We don't detect clears in this path, so here we can switch framebuffers if necessary.
int vertexCount = 0;
int maxIndex;
bool useElements = true;
// Cannot cache vertex data with morph enabled.
bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK);
// Also avoid caching when software skinning.
VkBuffer vbuf = VK_NULL_HANDLE;
VkBuffer ibuf = VK_NULL_HANDLE;
if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) {
useCache = false;
}
if (useCache) {
PROFILE_THIS_SCOPE("vcache");
u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263
VertexArrayInfoVulkan *vai = vai_.Get(id);
if (!vai) {
vai = new VertexArrayInfoVulkan();
vai_.Insert(id, vai);
}
switch (vai->status) {
case VertexArrayInfoVulkan::VAI_NEW:
{
// Haven't seen this one before. We don't actually upload the vertex data yet.
uint64_t dataHash = ComputeHash();
vai->hash = dataHash;
vai->minihash = ComputeMiniHash();
vai->status = VertexArrayInfoVulkan::VAI_HASHING;
vai->drawsUntilNextFullHash = 0;
DecodeVertsToPushBuffer(frame->pushVertex, &vbOffset, &vbuf); // writes to indexGen
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0;
goto rotateVBO;
}
// Hashing - still gaining confidence about the buffer.
// But if we get this far it's likely to be worth uploading the data.
case VertexArrayInfoVulkan::VAI_HASHING:
{
PROFILE_THIS_SCOPE("vcachehash");
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
if (vai->drawsUntilNextFullHash == 0) {
// Let's try to skip a full hash if mini would fail.
const u32 newMiniHash = ComputeMiniHash();
uint64_t newHash = vai->hash;
if (newMiniHash == vai->minihash) {
newHash = ComputeHash();
}
if (newMiniHash != vai->minihash || newHash != vai->hash) {
MarkUnreliable(vai);
DecodeVertsToPushBuffer(frame->pushVertex, &vbOffset, &vbuf);
goto rotateVBO;
}
if (vai->numVerts > 64) {
// exponential backoff up to 16 draws, then every 24
vai->drawsUntilNextFullHash = std::min(24, vai->numFrames);
} else {
// Lower numbers seem much more likely to change.
vai->drawsUntilNextFullHash = 0;
}
// TODO: tweak
//if (vai->numFrames > 1000) {
// vai->status = VertexArrayInfo::VAI_RELIABLE;
//}
} else {
vai->drawsUntilNextFullHash--;
u32 newMiniHash = ComputeMiniHash();
if (newMiniHash != vai->minihash) {
MarkUnreliable(vai);
DecodeVertsToPushBuffer(frame->pushVertex, &vbOffset, &vbuf);
goto rotateVBO;
}
}
if (!vai->vb) {
// Directly push to the vertex cache.
DecodeVertsToPushBuffer(vertexCache_, &vai->vbOffset, &vai->vb);
_dbg_assert_msg_(gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching.");
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0;
useElements = !indexGen.SeenOnlyPurePrims();
if (!useElements && indexGen.PureCount()) {
vai->numVerts = indexGen.PureCount();
}
if (useElements) {
u32 size = sizeof(uint16_t) * indexGen.VertexCount();
void *dest = vertexCache_->Push(size, &vai->ibOffset, &vai->ib);
memcpy(dest, decIndex, size);
} else {
vai->ib = VK_NULL_HANDLE;
vai->ibOffset = 0;
}
} else {
gpuStats.numCachedDrawCalls++;
useElements = vai->ib ? true : false;
gpuStats.numCachedVertsDrawn += vai->numVerts;
gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA;
}
vbuf = vai->vb;
ibuf = vai->ib;
vbOffset = vai->vbOffset;
ibOffset = vai->ibOffset;
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
break;
}
// Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time.
case VertexArrayInfoVulkan::VAI_RELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
gpuStats.numCachedDrawCalls++;
gpuStats.numCachedVertsDrawn += vai->numVerts;
vbuf = vai->vb;
ibuf = vai->ib;
vbOffset = vai->vbOffset;
ibOffset = vai->ibOffset;
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA;
break;
}
case VertexArrayInfoVulkan::VAI_UNRELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
DecodeVertsToPushBuffer(frame->pushVertex, &vbOffset, &vbuf);
goto rotateVBO;
}
default:
break;
}
} else {
if (g_Config.bSoftwareSkinning && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) {
// If software skinning, we've already predecoded into "decoded". So push that content.
VkDeviceSize size = decodedVerts_ * dec_->GetDecVtxFmt().stride;
u8 *dest = (u8 *)frame->pushVertex->Push(size, &vbOffset, &vbuf);
memcpy(dest, decoded, size);
} else {
// Decode directly into the pushbuffer
DecodeVertsToPushBuffer(frame->pushVertex, &vbOffset, &vbuf);
}
rotateVBO:
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
if (!useElements && indexGen.PureCount()) {
vertexCount = indexGen.PureCount();
}
prim = indexGen.Prim();
}
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
PROFILE_THIS_SCOPE("updatestate");
if (textureNeedsApply) {
textureCache_->ApplyTexture();
textureCache_->GetVulkanHandles(imageView, sampler);
if (imageView == VK_NULL_HANDLE)
imageView = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::NULL_IMAGEVIEW);
if (sampler == VK_NULL_HANDLE)
sampler = nullSampler_;
}
if (!lastPipeline_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE) || prim != lastPrim_) {
if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) {
ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_);
}
shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, true, useHWTessellation_); // usehwtransform
_dbg_assert_msg_(vshader->UseHWTransform(), "Bad vshader");
Draw::NativeObject object = framebufferManager_->UseBufferedRendering() ? Draw::NativeObject::FRAMEBUFFER_RENDERPASS : Draw::NativeObject::BACKBUFFER_RENDERPASS;
VkRenderPass renderPass = (VkRenderPass)draw_->GetNativeObject(object);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, renderPass, pipelineKey_, &dec_->decFmt, vshader, fshader, true);
if (!pipeline || !pipeline->pipeline) {
// Already logged, let's bail out.
return;
}
BindShaderBlendTex(); // This might cause copies so important to do before BindPipeline.
// If have a new render pass, dirty our dynamic state so it gets re-set.
// WARNING: We have to do this AFTER the last possible place in DoFlush that can cause a renderpass switch
// like a shader blend blit or similar. But before we actually set the state!
int curRenderStepId = renderManager->GetCurrentStepId();
if (lastRenderStepId_ != curRenderStepId) {
// Dirty everything that has dynamic state that will need re-recording.
gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_BLEND_STATE);
lastRenderStepId_ = curRenderStepId;
}
renderManager->BindPipeline(pipeline->pipeline, (PipelineFlags)pipeline->flags);
if (pipeline != lastPipeline_) {
if (lastPipeline_ && !(lastPipeline_->UsesBlendConstant() && pipeline->UsesBlendConstant())) {
gstate_c.Dirty(DIRTY_BLEND_STATE);
}
lastPipeline_ = pipeline;
}
ApplyDrawStateLate(renderManager, false, 0, pipeline->UsesBlendConstant());
gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE);
lastPipeline_ = pipeline;
// Must dirty blend state here so we re-copy next time. Example: Lunar's spell effects.
if (fboTexBound_)
gstate_c.Dirty(DIRTY_BLEND_STATE);
}
lastPrim_ = prim;
dirtyUniforms_ |= shaderManager_->UpdateUniforms(framebufferManager_->UseBufferedRendering());
UpdateUBOs(frame);
VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf, tess);
{
PROFILE_THIS_SCOPE("renderman_q");
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
int stride = dec_->GetDecVtxFmt().stride;
if (useElements) {
if (!ibuf)
ibOffset = (uint32_t)frame->pushIndex->Push(decIndex, sizeof(uint16_t) * indexGen.VertexCount(), &ibuf);
renderManager->DrawIndexed(pipelineLayout_, ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, vertexCount, 1, VK_INDEX_TYPE_UINT16);
} else {
renderManager->Draw(pipelineLayout_, ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, vertexCount);
}
}
} else {
PROFILE_THIS_SCOPE("soft");
// Decode to "decoded"
DecodeVertsToPushBuffer(nullptr, nullptr, nullptr);
bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE;
if (gstate.isModeThrough()) {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255);
} else {
gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255);
}
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
// Undo the strip optimization, not supported by the SW code yet.
if (prim == GE_PRIM_TRIANGLE_STRIP)
prim = GE_PRIM_TRIANGLES;
VERBOSE_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount());
u16 *inds = decIndex;
SoftwareTransformResult result{};
SoftwareTransformParams params{};
params.decoded = decoded;
params.transformed = transformed;
params.transformedExpanded = transformedExpanded;
params.fbman = framebufferManager_;
params.texCache = textureCache_;
// We have to force drawing of primitives if !framebufferManager_->UseBufferedRendering() because Vulkan clears
// do not respect scissor rects.
params.allowClear = framebufferManager_->UseBufferedRendering();
params.allowSeparateAlphaClear = false;
params.provokeFlatFirst = true;
// We need to update the viewport early because it's checked for flipping in SoftwareTransform.
// We don't have a "DrawStateEarly" in vulkan, so...
// TODO: Probably should eventually refactor this and feed the vp size into SoftwareTransform directly (Unknown's idea).
if (gstate_c.IsDirty(DIRTY_VIEWPORTSCISSOR_STATE)) {
gstate_c.vpWidth = gstate.getViewportXScale() * 2.0f;
gstate_c.vpHeight = gstate.getViewportYScale() * 2.0f;
}
int maxIndex = indexGen.MaxIndex();
SoftwareTransform swTransform(params);
swTransform.Decode(prim, dec_->VertexType(), dec_->GetDecVtxFmt(), maxIndex, &result);
if (result.action == SW_NOT_READY) {
swTransform.DetectOffsetTexture(maxIndex);
swTransform.BuildDrawingParams(prim, indexGen.VertexCount(), dec_->VertexType(), inds, maxIndex, &result);
}
if (result.setSafeSize)
framebufferManager_->SetSafeSize(result.safeWidth, result.safeHeight);
// Only here, where we know whether to clear or to draw primitives, should we actually set the current framebuffer! Because that gives use the opportunity
// to use a "pre-clear" render pass, for high efficiency on tilers.
if (result.action == SW_DRAW_PRIMITIVES) {
if (textureNeedsApply) {
textureCache_->ApplyTexture();
textureCache_->GetVulkanHandles(imageView, sampler);
if (imageView == VK_NULL_HANDLE)
imageView = (VkImageView)draw_->GetNativeObject(Draw::NativeObject::NULL_IMAGEVIEW);
if (sampler == VK_NULL_HANDLE)
sampler = nullSampler_;
}
if (!lastPipeline_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE) || prim != lastPrim_) {
shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, false, false); // usehwtransform
_dbg_assert_msg_(!vshader->UseHWTransform(), "Bad vshader");
if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) {
ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_);
}
Draw::NativeObject object = framebufferManager_->UseBufferedRendering() ? Draw::NativeObject::FRAMEBUFFER_RENDERPASS : Draw::NativeObject::BACKBUFFER_RENDERPASS;
VkRenderPass renderPass = (VkRenderPass)draw_->GetNativeObject(object);
VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(pipelineLayout_, renderPass, pipelineKey_, &dec_->decFmt, vshader, fshader, false);
if (!pipeline || !pipeline->pipeline) {
// Already logged, let's bail out.
return;
}
BindShaderBlendTex(); // This might cause copies so super important to do before BindPipeline.
// If have a new render pass, dirty our dynamic state so it gets re-set.
// WARNING: We have to do this AFTER the last possible place in DoFlush that can cause a renderpass switch
// like a shader blend blit or similar. But before we actually set the state!
int curRenderStepId = renderManager->GetCurrentStepId();
if (lastRenderStepId_ != curRenderStepId) {
// Dirty everything that has dynamic state that will need re-recording.
gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_BLEND_STATE);
lastRenderStepId_ = curRenderStepId;
}
renderManager->BindPipeline(pipeline->pipeline, (PipelineFlags)pipeline->flags);
if (pipeline != lastPipeline_) {
if (lastPipeline_ && !lastPipeline_->UsesBlendConstant() && pipeline->UsesBlendConstant()) {
gstate_c.Dirty(DIRTY_BLEND_STATE);
}
lastPipeline_ = pipeline;
}
ApplyDrawStateLate(renderManager, result.setStencil, result.stencilValue, pipeline->UsesBlendConstant());
gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE);
lastPipeline_ = pipeline;
// Must dirty blend state here so we re-copy next time. Example: Lunar's spell effects.
if (fboTexBound_)
gstate_c.Dirty(DIRTY_BLEND_STATE);
}
lastPrim_ = prim;
dirtyUniforms_ |= shaderManager_->UpdateUniforms(framebufferManager_->UseBufferedRendering());
// Even if the first draw is through-mode, make sure we at least have one copy of these uniforms buffered
UpdateUBOs(frame);
VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf, tess);
const uint32_t dynamicUBOOffsets[3] = {
baseUBOOffset, lightUBOOffset, boneUBOOffset,
};
PROFILE_THIS_SCOPE("renderman_q");
if (result.drawIndexed) {
VkBuffer vbuf, ibuf;
vbOffset = (uint32_t)frame->pushVertex->Push(result.drawBuffer, maxIndex * sizeof(TransformedVertex), &vbuf);
ibOffset = (uint32_t)frame->pushIndex->Push(inds, sizeof(short) * result.drawNumTrans, &ibuf);
VkDeviceSize offsets[1] = { vbOffset };
renderManager->DrawIndexed(pipelineLayout_, ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, result.drawNumTrans, 1, VK_INDEX_TYPE_UINT16);
} else {
VkBuffer vbuf;
vbOffset = (uint32_t)frame->pushVertex->Push(result.drawBuffer, result.drawNumTrans * sizeof(TransformedVertex), &vbuf);
VkDeviceSize offsets[1] = { vbOffset };
renderManager->Draw(pipelineLayout_, ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, result.drawNumTrans);
}
} else if (result.action == SW_CLEAR) {
// Note: we won't get here if the clear is alpha but not color, or color but not alpha.
// We let the framebuffer manager handle the clear. It can use renderpasses to optimize on tilers.
// If non-buffered though, it'll just do a plain clear.
framebufferManager_->NotifyClear(gstate.isClearModeColorMask(), gstate.isClearModeAlphaMask(), gstate.isClearModeDepthMask(), result.color, result.depth);
if (gstate_c.Supports(GPU_USE_CLEAR_RAM_HACK) && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) {
int scissorX1 = gstate.getScissorX1();
int scissorY1 = gstate.getScissorY1();
int scissorX2 = gstate.getScissorX2() + 1;
int scissorY2 = gstate.getScissorY2() + 1;
framebufferManager_->ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, result.color);
}
}
}
gpuStats.numDrawCalls += numDrawCalls;
gpuStats.numVertsSubmitted += vertexCountInDrawCalls_;
indexGen.Reset();
decodedVerts_ = 0;
numDrawCalls = 0;
vertexCountInDrawCalls_ = 0;
decodeCounter_ = 0;
dcid_ = 0;
prevPrim_ = GE_PRIM_INVALID;
gstate_c.vertexFullAlpha = true;
framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason);
// Now seems as good a time as any to reset the min/max coords, which we may examine later.
gstate_c.vertBounds.minU = 512;
gstate_c.vertBounds.minV = 512;
gstate_c.vertBounds.maxU = 0;
gstate_c.vertBounds.maxV = 0;
GPUDebug::NotifyDraw();
}
void DrawEngineVulkan::UpdateUBOs(FrameData *frame) {
if ((dirtyUniforms_ & DIRTY_BASE_UNIFORMS) || baseBuf == VK_NULL_HANDLE) {
baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushUBO, &baseBuf);
dirtyUniforms_ &= ~DIRTY_BASE_UNIFORMS;
}
if ((dirtyUniforms_ & DIRTY_LIGHT_UNIFORMS) || lightBuf == VK_NULL_HANDLE) {
lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushUBO, &lightBuf);
dirtyUniforms_ &= ~DIRTY_LIGHT_UNIFORMS;
}
if ((dirtyUniforms_ & DIRTY_BONE_UNIFORMS) || boneBuf == VK_NULL_HANDLE) {
boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushUBO, &boneBuf);
dirtyUniforms_ &= ~DIRTY_BONE_UNIFORMS;
}
}
void TessellationDataTransferVulkan::SendDataToShader(const SimpleVertex *const *points, int size_u, int size_v, u32 vertType, const Spline::Weight2D &weights) {
// SSBOs that are not simply float1 or float2 need to be padded up to a float4 size. vec3 members
// also need to be 16-byte aligned, hence the padding.
struct TessData {
float pos[3]; float pad1;
float uv[2]; float pad2[2];
float color[4];
};
int size = size_u * size_v;
int ssboAlignment = vulkan_->GetPhysicalDeviceProperties().properties.limits.minStorageBufferOffsetAlignment;
uint8_t *data = (uint8_t *)push_->PushAligned(size * sizeof(TessData), (uint32_t *)&bufInfo_[0].offset, &bufInfo_[0].buffer, ssboAlignment);
bufInfo_[0].range = size * sizeof(TessData);
float *pos = (float *)(data);
float *tex = (float *)(data + offsetof(TessData, uv));
float *col = (float *)(data + offsetof(TessData, color));
int stride = sizeof(TessData) / sizeof(float);
CopyControlPoints(pos, tex, col, stride, stride, stride, points, size, vertType);
using Spline::Weight;
// Weights U
data = (uint8_t *)push_->PushAligned(weights.size_u * sizeof(Weight), (uint32_t *)&bufInfo_[1].offset, &bufInfo_[1].buffer, ssboAlignment);
memcpy(data, weights.u, weights.size_u * sizeof(Weight));
bufInfo_[1].range = weights.size_u * sizeof(Weight);
// Weights V
data = (uint8_t *)push_->PushAligned(weights.size_v * sizeof(Weight), (uint32_t *)&bufInfo_[2].offset, &bufInfo_[2].buffer, ssboAlignment);
memcpy(data, weights.v, weights.size_v * sizeof(Weight));
bufInfo_[2].range = weights.size_v * sizeof(Weight);
}