ppsspp/Core/ControlMapper.cpp

767 lines
23 KiB
C++

#include <algorithm>
#include <sstream>
#include "Common/Math/math_util.h"
#include "Common/TimeUtil.h"
#include "Common/StringUtils.h"
#include "Common/Log.h"
#include "Core/HLE/sceCtrl.h"
#include "Core/KeyMap.h"
#include "Core/ControlMapper.h"
#include "Core/Config.h"
#include "Core/CoreParameter.h"
#include "Core/System.h"
using KeyMap::MultiInputMapping;
const float AXIS_BIND_THRESHOLD = 0.75f;
const float AXIS_BIND_THRESHOLD_MOUSE = 0.01f;
// We reduce the threshold of some axes when another axis on the same stick is active.
// This makes it easier to hit diagonals if you bind an analog stick to four face buttons or D-Pad.
static InputAxis GetCoAxis(InputAxis axis) {
switch (axis) {
case JOYSTICK_AXIS_X: return JOYSTICK_AXIS_Y;
case JOYSTICK_AXIS_Y: return JOYSTICK_AXIS_X;
// This looks weird, but it's simply how XInput axes are mapped.
case JOYSTICK_AXIS_Z: return JOYSTICK_AXIS_RZ;
case JOYSTICK_AXIS_RZ: return JOYSTICK_AXIS_Z;
// Not sure if these two are used.
case JOYSTICK_AXIS_RX: return JOYSTICK_AXIS_RY;
case JOYSTICK_AXIS_RY: return JOYSTICK_AXIS_RX;
default:
return JOYSTICK_AXIS_MAX; // invalid
}
}
float ControlMapper::GetDeviceAxisThreshold(int device, const InputMapping &mapping) {
if (device == DEVICE_ID_MOUSE) {
return AXIS_BIND_THRESHOLD_MOUSE;
}
if (mapping.IsAxis()) {
switch (KeyMap::GetAxisType((InputAxis)mapping.Axis(nullptr))) {
case KeyMap::AxisType::TRIGGER:
return g_Config.fAnalogTriggerThreshold;
case KeyMap::AxisType::STICK:
{
// Co-axis processing, see GetCoAxes comment.
InputAxis axis = (InputAxis)mapping.Axis(nullptr);
InputAxis coAxis = GetCoAxis(axis);
if (coAxis != JOYSTICK_AXIS_MAX) {
float absCoValue = fabsf(rawAxisValue_[(int)coAxis]);
if (absCoValue > 0.0f) {
// Bias down the threshold if the other axis is active.
float biasedThreshold = AXIS_BIND_THRESHOLD * (1.0f - absCoValue * 0.35f);
// INFO_LOG(SYSTEM, "coValue: %f threshold: %f", absCoValue, biasedThreshold);
return biasedThreshold;
}
}
break;
}
default:
break;
}
}
return AXIS_BIND_THRESHOLD;
}
static int GetOppositeVKey(int vkey) {
switch (vkey) {
case VIRTKEY_AXIS_X_MIN: return VIRTKEY_AXIS_X_MAX; break;
case VIRTKEY_AXIS_X_MAX: return VIRTKEY_AXIS_X_MIN; break;
case VIRTKEY_AXIS_Y_MIN: return VIRTKEY_AXIS_Y_MAX; break;
case VIRTKEY_AXIS_Y_MAX: return VIRTKEY_AXIS_Y_MIN; break;
case VIRTKEY_AXIS_RIGHT_X_MIN: return VIRTKEY_AXIS_RIGHT_X_MAX; break;
case VIRTKEY_AXIS_RIGHT_X_MAX: return VIRTKEY_AXIS_RIGHT_X_MIN; break;
case VIRTKEY_AXIS_RIGHT_Y_MIN: return VIRTKEY_AXIS_RIGHT_Y_MAX; break;
case VIRTKEY_AXIS_RIGHT_Y_MAX: return VIRTKEY_AXIS_RIGHT_Y_MIN; break;
default:
return 0;
}
}
static bool IsAxisVKey(int vkey) {
// Little hacky but works, of course.
return GetOppositeVKey(vkey) != 0;
}
static bool IsUnsignedMapping(int vkey) {
return vkey == VIRTKEY_SPEED_ANALOG;
}
static bool IsSignedAxis(int axis) {
switch (axis) {
case JOYSTICK_AXIS_X:
case JOYSTICK_AXIS_Y:
case JOYSTICK_AXIS_Z:
case JOYSTICK_AXIS_RX:
case JOYSTICK_AXIS_RY:
case JOYSTICK_AXIS_RZ:
return true;
default:
return false;
}
}
// This is applied on the circular radius, not directly on the axes.
// TODO: Share logic with tilt?
static float MapAxisValue(float v) {
const float deadzone = g_Config.fAnalogDeadzone;
const float invDeadzone = g_Config.fAnalogInverseDeadzone;
const float sensitivity = g_Config.fAnalogSensitivity;
const float sign = v >= 0.0f ? 1.0f : -1.0f;
// Apply deadzone.
v = Clamp((fabsf(v) - deadzone) / (1.0f - deadzone), 0.0f, 1.0f);
// Apply sensitivity and inverse deadzone.
if (v != 0.0f) {
v = Clamp(invDeadzone + v * (sensitivity - invDeadzone), 0.0f, 1.0f);
}
return sign * v;
}
void ConvertAnalogStick(float x, float y, float *outX, float *outY) {
const bool isCircular = g_Config.bAnalogIsCircular;
float norm = std::max(fabsf(x), fabsf(y));
if (norm == 0.0f) {
*outX = x;
*outY = y;
return;
}
if (isCircular) {
float newNorm = sqrtf(x * x + y * y);
float factor = newNorm / norm;
x *= factor;
y *= factor;
norm = newNorm;
}
float mappedNorm = MapAxisValue(norm);
*outX = Clamp(x / norm * mappedNorm, -1.0f, 1.0f);
*outY = Clamp(y / norm * mappedNorm, -1.0f, 1.0f);
}
void ControlMapper::SetCallbacks(
std::function<void(int, bool)> onVKey,
std::function<void(int, float)> onVKeyAnalog,
std::function<void(uint32_t, uint32_t)> updatePSPButtons,
std::function<void(int, float, float)> setPSPAnalog,
std::function<void(int, float, float)> setRawAnalog) {
onVKey_ = onVKey;
onVKeyAnalog_ = onVKeyAnalog;
updatePSPButtons_ = updatePSPButtons;
setPSPAnalog_ = setPSPAnalog;
setRawAnalog_ = setRawAnalog;
}
void ControlMapper::SetPSPAxis(int device, int stick, char axis, float value) {
int axisId = axis == 'X' ? 0 : 1;
float position[2];
position[0] = history_[stick][0];
position[1] = history_[stick][1];
position[axisId] = value;
float x = position[0];
float y = position[1];
if (setRawAnalog_) {
setRawAnalog_(stick, x, y);
}
// NOTE: We need to use single-axis checks, since the other axis might be from another device,
// so we'll add a little leeway.
bool inDeadZone = fabsf(value) < g_Config.fAnalogDeadzone * 0.7f;
bool ignore = false;
if (inDeadZone && lastNonDeadzoneDeviceID_[stick] != device) {
// Ignore this event! See issue #15465
ignore = true;
}
if (!inDeadZone) {
lastNonDeadzoneDeviceID_[stick] = device;
}
if (!ignore) {
history_[stick][axisId] = value;
UpdateAnalogOutput(stick);
}
}
void ControlMapper::UpdateAnalogOutput(int stick) {
float x, y;
ConvertAnalogStick(history_[stick][0], history_[stick][1], &x, &y);
if (virtKeyOn_[VIRTKEY_ANALOG_LIGHTLY - VIRTKEY_FIRST]) {
x *= g_Config.fAnalogLimiterDeadzone;
y *= g_Config.fAnalogLimiterDeadzone;
}
converted_[stick][0] = x;
converted_[stick][1] = y;
setPSPAnalog_(stick, x, y);
}
void ControlMapper::ForceReleaseVKey(int vkey) {
// Note: This one is called from an onVKey_ handler, which already holds mutex_.
KeyMap::LockMappings();
std::vector<KeyMap::MultiInputMapping> multiMappings;
if (KeyMap::InputMappingsFromPspButtonNoLock(vkey, &multiMappings, true)) {
double now = time_now_d();
for (const auto &entry : multiMappings) {
for (const auto &mapping : entry.mappings) {
curInput_[mapping] = { 0.0f, now };
// Different logic for signed axes?
UpdatePSPState(mapping, now);
}
}
}
KeyMap::UnlockMappings();
}
void ControlMapper::ReleaseAll() {
std::vector<AxisInput> axes;
std::vector<KeyInput> keys;
{
std::lock_guard<std::mutex> guard(mutex_);
for (const auto &input : curInput_) {
if (input.first.IsAxis()) {
if (input.second.value != 0.0f) {
AxisInput axis;
axis.deviceId = input.first.deviceId;
int dir;
axis.axisId = (InputAxis)input.first.Axis(&dir);
axis.value = 0.0;
axes.push_back(axis);
}
} else {
if (input.second.value != 0.0) {
KeyInput key;
key.deviceId = input.first.deviceId;
key.flags = KEY_UP;
key.keyCode = (InputKeyCode)input.first.keyCode;
keys.push_back(key);
}
}
}
}
Axis(axes.data(), axes.size());;
for (const auto &key : keys) {
Key(key, nullptr);
}
}
static int RotatePSPKeyCode(int x) {
switch (x) {
case CTRL_UP: return CTRL_RIGHT;
case CTRL_RIGHT: return CTRL_DOWN;
case CTRL_DOWN: return CTRL_LEFT;
case CTRL_LEFT: return CTRL_UP;
default:
return x;
}
}
// Used to decay analog values when clashing with digital ones.
static ControlMapper::InputSample ReduceMagnitude(ControlMapper::InputSample sample, double now) {
float reduction = std::min(std::max(0.0f, (float)(now - sample.timestamp) - 2.0f), 1.0f);
if (reduction > 0.0f) {
sample.value *= (1.0f - reduction);
}
if ((sample.value > 0.0f && sample.value < 0.05f) || (sample.value < 0.0f && sample.value > -0.05f)) {
sample.value = 0.0f;
}
return sample;
}
float ControlMapper::MapAxisValue(float value, int vkId, const InputMapping &mapping, const InputMapping &changedMapping, bool *oppositeTouched) {
if (IsUnsignedMapping(vkId)) {
// If a signed axis is mapped to an unsigned mapping,
// convert it. This happens when mapping DirectInput triggers to analog speed,
// for example.
int direction;
if (IsSignedAxis(mapping.Axis(&direction))) {
// The value has been split up into two curInput values, so we need to go fetch the other
// and put them back together again. Kind of awkward, but at least makes the regular case simple...
InputMapping other = mapping.FlipDirection();
if (other == changedMapping) {
*oppositeTouched = true;
}
float valueOther = curInput_[other].value;
float signedValue = value - valueOther;
float ranged = (signedValue + 1.0f) * 0.5f;
if (direction == -1) {
ranged = 1.0f - ranged;
}
// NOTICE_LOG(SYSTEM, "rawValue: %f other: %f signed: %f ranged: %f", iter->second, valueOther, signedValue, ranged);
return ranged;
} else {
return value;
}
} else {
return value;
}
}
static bool IsSwappableVKey(uint32_t vkey) {
switch (vkey) {
case CTRL_UP:
case CTRL_LEFT:
case CTRL_DOWN:
case CTRL_RIGHT:
case VIRTKEY_AXIS_X_MIN:
case VIRTKEY_AXIS_X_MAX:
case VIRTKEY_AXIS_Y_MIN:
case VIRTKEY_AXIS_Y_MAX:
return true;
default:
return false;
}
}
void ControlMapper::SwapMappingIfEnabled(uint32_t *vkey) {
if (swapAxes_) {
switch (*vkey) {
case CTRL_UP: *vkey = VIRTKEY_AXIS_Y_MAX; break;
case VIRTKEY_AXIS_Y_MAX: *vkey = CTRL_UP; break;
case CTRL_DOWN: *vkey = VIRTKEY_AXIS_Y_MIN; break;
case VIRTKEY_AXIS_Y_MIN: *vkey = CTRL_DOWN; break;
case CTRL_LEFT: *vkey = VIRTKEY_AXIS_X_MIN; break;
case VIRTKEY_AXIS_X_MIN: *vkey = CTRL_LEFT; break;
case CTRL_RIGHT: *vkey = VIRTKEY_AXIS_X_MAX; break;
case VIRTKEY_AXIS_X_MAX: *vkey = CTRL_RIGHT; break;
}
}
}
// Can only be called from Key or Axis.
// mutex_ should be locked, and also KeyMap::LockMappings().
// TODO: We should probably make a batched version of this.
bool ControlMapper::UpdatePSPState(const InputMapping &changedMapping, double now) {
// Instead of taking an input key and finding what it outputs, we loop through the OUTPUTS and
// see if the input that corresponds to it has a value. That way we can easily implement all sorts
// of crazy input combos if needed.
int rotations = 0;
switch (g_Config.iInternalScreenRotation) {
case ROTATION_LOCKED_HORIZONTAL180: rotations = 2; break;
case ROTATION_LOCKED_VERTICAL: rotations = 1; break;
case ROTATION_LOCKED_VERTICAL180: rotations = 3; break;
}
// For the PSP's digital button inputs, we just go through and put the flags together.
uint32_t buttonMask = 0;
uint32_t changedButtonMask = 0;
std::vector<MultiInputMapping> inputMappings;
for (int i = 0; i < 32; i++) {
uint32_t mask = 1 << i;
if (!(mask & CTRL_MASK_USER)) {
// Not a mappable button bit
continue;
}
uint32_t mappingBit = mask;
for (int i = 0; i < rotations; i++) {
mappingBit = RotatePSPKeyCode(mappingBit);
}
SwapMappingIfEnabled(&mappingBit);
if (!KeyMap::InputMappingsFromPspButtonNoLock(mappingBit, &inputMappings, false))
continue;
// If a mapping could consist of a combo, we could trivially check it here.
for (auto &multiMapping : inputMappings) {
// Check if the changed mapping was involved in this PSP key.
if (multiMapping.mappings.contains(changedMapping)) {
changedButtonMask |= mask;
}
// Check if all inputs are "on".
bool all = true;
double curTime = 0.0;
for (auto mapping : multiMapping.mappings) {
auto iter = curInput_.find(mapping);
if (iter == curInput_.end()) {
all = false;
continue;
}
// Stop reverse ordering from triggering.
if (g_Config.bStrictComboOrder && iter->second.timestamp < curTime) {
all = false;
break;
} else {
curTime = iter->second.timestamp;
}
bool down = iter->second.value > 0.0f && iter->second.value > GetDeviceAxisThreshold(iter->first.deviceId, mapping);
if (!down)
all = false;
}
if (all) {
buttonMask |= mask;
}
}
}
// We only request changing the buttons where the mapped input was involved.
updatePSPButtons_(buttonMask & changedButtonMask, (~buttonMask) & changedButtonMask);
bool keyInputUsed = changedButtonMask != 0;
bool updateAnalogSticks = false;
// OK, handle all the virtual keys next. For these we need to do deltas here and send events.
// Note that virtual keys include the analog directions, as they are driven by them.
for (int i = 0; i < VIRTKEY_COUNT; i++) {
int vkId = i + VIRTKEY_FIRST;
uint32_t idForMapping = vkId;
SwapMappingIfEnabled(&idForMapping);
if (!KeyMap::InputMappingsFromPspButtonNoLock(idForMapping, &inputMappings, false))
continue;
// If a mapping could consist of a combo, we could trivially check it here.
// Save the first device ID so we can pass it into onVKeyDown, which in turn needs it for the analog
// mapping which gets a little hacky.
float threshold = 1.0f;
bool touchedByMapping = false;
float value = 0.0f;
for (auto &multiMapping : inputMappings) {
if (multiMapping.mappings.contains(changedMapping)) {
touchedByMapping = true;
}
float product = 1.0f; // We multiply the various inputs in a combo mapping with each other.
double curTime = 0.0;
for (auto mapping : multiMapping.mappings) {
auto iter = curInput_.find(mapping);
if (iter != curInput_.end()) {
// Stop reverse ordering from triggering.
if (g_Config.bStrictComboOrder && iter->second.timestamp < curTime) {
product = 0.0f;
break;
} else {
curTime = iter->second.timestamp;
}
if (mapping.IsAxis()) {
threshold = GetDeviceAxisThreshold(iter->first.deviceId, mapping);
float value = MapAxisValue(iter->second.value, idForMapping, mapping, changedMapping, &touchedByMapping);
product *= value;
} else {
product *= iter->second.value;
}
} else {
product = 0.0f;
}
}
value += product;
}
if (!touchedByMapping) {
continue;
}
keyInputUsed = true;
// Small values from analog inputs like gamepad sticks can linger around, which is bad here because we sum
// up before applying deadzone etc. This means that it can be impossible to reach the min/max values with digital input!
// So if non-analog events clash with analog ones mapped to the same input, decay the analog input,
// which will quickly get things back to normal, while if it's intentional to use both at the same time for some reason,
// that still works, though a bit weaker. We could also zero here, but you never know who relies on such strange tricks..
// Note: This is an old problem, it didn't appear with the refactoring.
if (!changedMapping.IsAxis()) {
for (auto &multiMapping : inputMappings) {
for (auto &mapping : multiMapping.mappings) {
if (mapping != changedMapping && curInput_[mapping].value > 0.0f) {
// Note that this takes the time into account now - values will
// decay after a while, not immediately.
curInput_[mapping] = ReduceMagnitude(curInput_[mapping], now);
}
}
}
}
value = clamp_value(value, 0.0f, 1.0f);
// Derive bools from the floats using the device's threshold.
// NOTE: This must be before the equality check below.
bool bPrevValue = virtKeys_[i] >= threshold;
bool bValue = value >= threshold;
if (virtKeys_[i] != value) {
// INFO_LOG(G3D, "vkeyanalog %s : %f", KeyMap::GetVirtKeyName(vkId), value);
onVKeyAnalog(changedMapping.deviceId, vkId, value);
virtKeys_[i] = value;
}
if (!bPrevValue && bValue) {
// INFO_LOG(G3D, "vkeyon %s", KeyMap::GetVirtKeyName(vkId));
onVKey(vkId, true);
virtKeyOn_[vkId - VIRTKEY_FIRST] = true;
if (vkId == VIRTKEY_ANALOG_LIGHTLY) {
updateAnalogSticks = true;
}
} else if (bPrevValue && !bValue) {
// INFO_LOG(G3D, "vkeyoff %s", KeyMap::GetVirtKeyName(vkId));
onVKey(vkId, false);
virtKeyOn_[vkId - VIRTKEY_FIRST] = false;
if (vkId == VIRTKEY_ANALOG_LIGHTLY) {
updateAnalogSticks = true;
}
}
}
if (updateAnalogSticks) {
// If "lightly" (analog limiter) was toggled, we need to update both computed stick outputs.
UpdateAnalogOutput(0);
UpdateAnalogOutput(1);
}
return keyInputUsed;
}
bool ControlMapper::Key(const KeyInput &key, bool *pauseTrigger) {
if (key.flags & KEY_IS_REPEAT) {
// Claim that we handled this. Prevents volume key repeats from popping up the volume control on Android.
return true;
}
double now = time_now_d();
InputMapping mapping(key.deviceId, key.keyCode);
std::lock_guard<std::mutex> guard(mutex_);
if (key.deviceId < DEVICE_ID_COUNT) {
deviceTimestamps_[(int)key.deviceId] = now;
}
if (key.flags & KEY_DOWN) {
curInput_[mapping] = { 1.0f, now };
} else if (key.flags & KEY_UP) {
curInput_[mapping] = { 0.0f, now};
}
// TODO: See if this can be simplified further somehow.
if ((key.flags & KEY_DOWN) && key.keyCode == NKCODE_BACK) {
bool mappingFound = KeyMap::InputMappingToPspButton(mapping, nullptr);
DEBUG_LOG(SYSTEM, "Key: %d DeviceId: %d", key.keyCode, key.deviceId);
if (!mappingFound || key.deviceId == DEVICE_ID_DEFAULT) {
*pauseTrigger = true;
return true;
}
}
KeyMap::LockMappings();
bool retval = UpdatePSPState(mapping, now);
KeyMap::UnlockMappings();
return retval;
}
void ControlMapper::ToggleSwapAxes() {
// Note: The lock is already locked here.
swapAxes_ = !swapAxes_;
updatePSPButtons_(0, CTRL_LEFT | CTRL_RIGHT | CTRL_UP | CTRL_DOWN);
for (uint32_t vkey = VIRTKEY_FIRST; vkey < VIRTKEY_LAST; vkey++) {
if (IsSwappableVKey(vkey)) {
if (virtKeyOn_[vkey - VIRTKEY_FIRST]) {
onVKey_(vkey, false);
virtKeyOn_[vkey - VIRTKEY_FIRST] = false;
}
if (virtKeys_[vkey - VIRTKEY_FIRST] > 0.0f) {
onVKeyAnalog_(vkey, 0.0f);
virtKeys_[vkey - VIRTKEY_FIRST] = 0.0f;
}
}
}
history_[0][0] = 0.0f;
history_[0][1] = 0.0f;
UpdateAnalogOutput(0);
UpdateAnalogOutput(1);
}
void ControlMapper::UpdateCurInputAxis(const InputMapping &mapping, float value, double timestamp) {
InputSample &input = curInput_[mapping];
input.value = value;
if (value >= GetDeviceAxisThreshold(mapping.deviceId, mapping)) {
if (input.timestamp == 0.0) {
input.timestamp = time_now_d();
}
} else {
input.timestamp = 0.0;
}
}
void ControlMapper::Axis(const AxisInput *axes, size_t count) {
double now = time_now_d();
std::lock_guard<std::mutex> guard(mutex_);
KeyMap::LockMappings();
for (size_t i = 0; i < count; i++) {
const AxisInput &axis = axes[i];
if (axis.deviceId == DEVICE_ID_MOUSE && !g_Config.bMouseControl) {
continue;
}
size_t deviceIndex = (size_t)axis.deviceId; // this wraps -1 up high, so will get rejected on the next line.
if (deviceIndex < (size_t)DEVICE_ID_COUNT) {
deviceTimestamps_[deviceIndex] = now;
}
rawAxisValue_[axis.axisId] = axis.value; // these are only used for co-axis mapping
if (axis.value >= 0.0f) {
InputMapping mapping(axis.deviceId, axis.axisId, 1);
InputMapping opposite(axis.deviceId, axis.axisId, -1);
UpdateCurInputAxis(mapping, axis.value, now);
UpdateCurInputAxis(opposite, 0.0f, now);
UpdatePSPState(mapping, now);
UpdatePSPState(opposite, now);
} else if (axis.value < 0.0f) {
InputMapping mapping(axis.deviceId, axis.axisId, -1);
InputMapping opposite(axis.deviceId, axis.axisId, 1);
UpdateCurInputAxis(mapping, -axis.value, now);
UpdateCurInputAxis(opposite, 0.0f, now);
UpdatePSPState(mapping, now);
UpdatePSPState(opposite, now);
}
}
KeyMap::UnlockMappings();
}
void ControlMapper::Update(double now) {
if (autoRotatingAnalogCW_) {
// Clamp to a square
float x = std::min(1.0f, std::max(-1.0f, 1.42f * (float)cos(now * -g_Config.fAnalogAutoRotSpeed)));
float y = std::min(1.0f, std::max(-1.0f, 1.42f * (float)sin(now * -g_Config.fAnalogAutoRotSpeed)));
setPSPAnalog_(0, x, y);
} else if (autoRotatingAnalogCCW_) {
float x = std::min(1.0f, std::max(-1.0f, 1.42f * (float)cos(now * g_Config.fAnalogAutoRotSpeed)));
float y = std::min(1.0f, std::max(-1.0f, 1.42f * (float)sin(now * g_Config.fAnalogAutoRotSpeed)));
setPSPAnalog_(0, x, y);
}
}
void ControlMapper::PSPKey(int deviceId, int pspKeyCode, int flags) {
std::lock_guard<std::mutex> guard(mutex_);
if (pspKeyCode >= VIRTKEY_FIRST) {
int vk = pspKeyCode - VIRTKEY_FIRST;
if (flags & KEY_DOWN) {
virtKeys_[vk] = 1.0f;
onVKey(pspKeyCode, true);
onVKeyAnalog(deviceId, pspKeyCode, 1.0f);
}
if (flags & KEY_UP) {
virtKeys_[vk] = 0.0f;
onVKey(pspKeyCode, false);
onVKeyAnalog(deviceId, pspKeyCode, 0.0f);
}
} else {
// INFO_LOG(SYSTEM, "pspKey %d %d", pspKeyCode, flags);
if (flags & KEY_DOWN)
updatePSPButtons_(pspKeyCode, 0);
if (flags & KEY_UP)
updatePSPButtons_(0, pspKeyCode);
}
}
void ControlMapper::onVKeyAnalog(int deviceId, int vkey, float value) {
// Unfortunately, for digital->analog inputs to work sanely, we need to sum up
// with the opposite value too.
int stick = 0;
int axis = 'X';
int oppositeVKey = GetOppositeVKey(vkey);
float sign = 1.0f;
switch (vkey) {
case VIRTKEY_AXIS_X_MIN: sign = -1.0f; break;
case VIRTKEY_AXIS_X_MAX: break;
case VIRTKEY_AXIS_Y_MIN: axis = 'Y'; sign = -1.0f; break;
case VIRTKEY_AXIS_Y_MAX: axis = 'Y'; break;
case VIRTKEY_AXIS_RIGHT_X_MIN: stick = CTRL_STICK_RIGHT; sign = -1.0f; break;
case VIRTKEY_AXIS_RIGHT_X_MAX: stick = CTRL_STICK_RIGHT; break;
case VIRTKEY_AXIS_RIGHT_Y_MIN: stick = CTRL_STICK_RIGHT; axis = 'Y'; sign = -1.0f; break;
case VIRTKEY_AXIS_RIGHT_Y_MAX: stick = CTRL_STICK_RIGHT; axis = 'Y'; break;
default:
if (onVKeyAnalog_)
onVKeyAnalog_(vkey, value);
return;
}
if (oppositeVKey != 0) {
float oppVal = virtKeys_[oppositeVKey - VIRTKEY_FIRST];
if (oppVal != 0.0f) {
value -= oppVal;
// NOTICE_LOG(SCECTRL, "Reducing %f by %f (from %08x : %s)", value, oppVal, oppositeVKey, KeyMap::GetPspButtonName(oppositeVKey).c_str());
}
}
SetPSPAxis(deviceId, stick, axis, sign * value);
}
void ControlMapper::onVKey(int vkey, bool down) {
switch (vkey) {
case VIRTKEY_ANALOG_ROTATE_CW:
if (down) {
autoRotatingAnalogCW_ = true;
autoRotatingAnalogCCW_ = false;
} else {
autoRotatingAnalogCW_ = false;
setPSPAnalog_(0, 0.0f, 0.0f);
}
break;
case VIRTKEY_ANALOG_ROTATE_CCW:
if (down) {
autoRotatingAnalogCW_ = false;
autoRotatingAnalogCCW_ = true;
} else {
autoRotatingAnalogCCW_ = false;
setPSPAnalog_(0, 0.0f, 0.0f);
}
break;
default:
if (onVKey_)
onVKey_(vkey, down);
break;
}
}
void ControlMapper::GetDebugString(char *buffer, size_t bufSize) const {
std::stringstream str;
for (auto iter : curInput_) {
char temp[256];
iter.first.FormatDebug(temp, sizeof(temp));
str << temp << ": " << iter.second.value << std::endl;
}
for (int i = 0; i < ARRAY_SIZE(virtKeys_); i++) {
int vkId = VIRTKEY_FIRST + i;
if ((vkId >= VIRTKEY_AXIS_X_MIN && vkId <= VIRTKEY_AXIS_Y_MAX) || vkId == VIRTKEY_ANALOG_LIGHTLY || vkId == VIRTKEY_SPEED_ANALOG) {
str << KeyMap::GetPspButtonName(vkId) << ": " << virtKeys_[i] << std::endl;
}
}
str << "Lstick: " << converted_[0][0] << ", " << converted_[0][1] << std::endl;
truncate_cpy(buffer, bufSize, str.str().c_str());
}