ppsspp/GPU/Common/TextureCacheCommon.cpp
2017-11-05 17:59:34 -08:00

1655 lines
57 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include "Common/ColorConv.h"
#include "Common/MemoryUtil.h"
#include "Core/Config.h"
#include "Core/Host.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "GPU/Common/FramebufferCommon.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Common/TextureDecoder.h"
#include "GPU/Common/ShaderId.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/GPUState.h"
#include "GPU/GPUInterface.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
#if PPSSPP_ARCH(ARM_NEON)
#include <arm_neon.h>
#endif
// Videos should be updated every few frames, so we forget quickly.
#define VIDEO_DECIMATE_AGE 4
// If a texture hasn't been seen for this many frames, get rid of it.
#define TEXTURE_KILL_AGE 200
#define TEXTURE_KILL_AGE_LOWMEM 60
// Not used in lowmem mode.
#define TEXTURE_SECOND_KILL_AGE 100
// Try to be prime to other decimation intervals.
#define TEXCACHE_DECIMATION_INTERVAL 13
#define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in VRAM
#define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024
// Just for reference
// PSP Color formats:
// 565: BBBBBGGGGGGRRRRR
// 5551: ABBBBBGGGGGRRRRR
// 4444: AAAABBBBGGGGRRRR
// 8888: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (Bytes in memory: RGBA)
// D3D11/9 Color formats:
// DXGI_FORMAT_B4G4R4A4/D3DFMT_A4R4G4B4: AAAARRRRGGGGBBBB
// DXGI_FORMAT_B5G5R5A1/D3DFMT_A1R5G6B5: ARRRRRGGGGGBBBBB
// DXGI_FORMAT_B5G6R6/D3DFMT_R5G6B5: RRRRRGGGGGGBBBBB
// DXGI_FORMAT_B8G8R8A8: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB (Bytes in memory: BGRA)
// These are Data::Format:: A4R4G4B4_PACK16, A1R5G6B5_PACK16, R5G6B5_PACK16, B8G8R8A8.
// So these are good matches, just with R/B swapped.
// OpenGL ES color formats:
// GL_UNSIGNED_SHORT_4444: BBBBGGGGRRRRAAAA (4-bit rotation)
// GL_UNSIGNED_SHORT_565: BBBBBGGGGGGRRRRR (match)
// GL_UNSIGNED_SHORT_1555: BBBBBGGGGGRRRRRA (1-bit rotation)
// GL_UNSIGNED_BYTE/RGBA: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (match)
// These are Data::Format:: B4G4R4A4_PACK16, B5G6R6_PACK16, B5G5R5A1_PACK16, R8G8B8A8
// Vulkan color formats:
// TODO
TextureCacheCommon::TextureCacheCommon(Draw::DrawContext *draw)
: draw_(draw),
clearCacheNextFrame_(false),
lowMemoryMode_(false),
texelsScaledThisFrame_(0),
cacheSizeEstimate_(0),
secondCacheSizeEstimate_(0),
nextTexture_(nullptr),
clutLastFormat_(0xFFFFFFFF),
clutTotalBytes_(0),
clutMaxBytes_(0),
clutRenderAddress_(0xFFFFFFFF),
clutAlphaLinear_(false),
isBgraBackend_(false) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
// TODO: Clamp down to 256/1KB? Need to check mipmapShareClut and clamp loadclut.
clutBufRaw_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB
clutBufConverted_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB
// Zap so we get consistent behavior if the game fails to load some of the CLUT.
memset(clutBufRaw_, 0, 1024 * sizeof(u32));
memset(clutBufConverted_, 0, 1024 * sizeof(u32));
clutBuf_ = clutBufConverted_;
// These buffers will grow if necessary, but most won't need more than this.
tmpTexBuf32_.resize(512 * 512); // 1MB
tmpTexBuf16_.resize(512 * 512); // 0.5MB
tmpTexBufRearrange_.resize(512 * 512); // 1MB
replacer_.Init();
}
TextureCacheCommon::~TextureCacheCommon() {
FreeAlignedMemory(clutBufConverted_);
FreeAlignedMemory(clutBufRaw_);
}
int TextureCacheCommon::AttachedDrawingHeight() {
if (nextTexture_) {
if (nextTexture_->framebuffer) {
return nextTexture_->framebuffer->height;
}
u16 dim = nextTexture_->dim;
const u8 dimY = dim >> 8;
return 1 << dimY;
}
return 0;
}
// Produces a signed 1.23.8 value.
static int TexLog2(float delta) {
union FloatBits {
float f;
u32 u;
};
FloatBits f;
f.f = delta;
// Use the exponent as the tex level, and the top mantissa bits for a frac.
// We can't support more than 8 bits of frac, so truncate.
int useful = (f.u >> 15) & 0xFFFF;
// Now offset so the exponent aligns with log2f (exp=127 is 0.)
return useful - 127 * 256;
}
void TextureCacheCommon::GetSamplingParams(int &minFilt, int &magFilt, bool &sClamp, bool &tClamp, float &lodBias, u8 maxLevel, u32 addr, bool &autoMip) {
minFilt = gstate.texfilter & 0x7;
magFilt = gstate.isMagnifyFilteringEnabled();
sClamp = gstate.isTexCoordClampedS();
tClamp = gstate.isTexCoordClampedT();
GETexLevelMode mipMode = gstate.getTexLevelMode();
autoMip = mipMode == GE_TEXLEVEL_MODE_AUTO;
lodBias = (float)gstate.getTexLevelOffset16() * (1.0f / 16.0f);
if (mipMode == GE_TEXLEVEL_MODE_SLOPE) {
lodBias += 1.0f + TexLog2(gstate.getTextureLodSlope()) * (1.0f / 256.0f);
}
// If mip level is forced to zero, disable mipmapping.
bool noMip = maxLevel == 0 || (!autoMip && lodBias <= 0.0f);
if (IsFakeMipmapChange())
noMip = noMip || !autoMip;
if (noMip) {
// Enforce no mip filtering, for safety.
minFilt &= 1; // no mipmaps yet
lodBias = 0.0f;
}
if (g_Config.iTexFiltering == TEX_FILTER_LINEAR_VIDEO) {
bool isVideo = videos_.find(addr & 0x3FFFFFFF) != videos_.end();
if (isVideo) {
magFilt |= 1;
minFilt |= 1;
}
}
if (g_Config.iTexFiltering == TEX_FILTER_LINEAR && (!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue())) {
if (!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue()) {
magFilt |= 1;
minFilt |= 1;
}
}
bool forceNearest = g_Config.iTexFiltering == TEX_FILTER_NEAREST;
// Force Nearest when color test enabled and rendering resolution greater than 480x272
if ((gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue()) && g_Config.iInternalResolution != 1 && gstate.isModeThrough()) {
// Some games use 0 as the color test color, which won't be too bad if it bleeds.
// Fuchsia and green, etc. are the problem colors.
if (gstate.getColorTestRef() != 0) {
forceNearest = true;
}
}
if (forceNearest) {
magFilt &= ~1;
minFilt &= ~1;
}
}
void TextureCacheCommon::UpdateMaxSeenV(TexCacheEntry *entry, bool throughMode) {
// If the texture is >= 512 pixels tall...
if (entry->dim >= 0x900) {
// Texture scale/offset and gen modes don't apply in through.
// So we can optimize how much of the texture we look at.
if (throughMode) {
if (entry->maxSeenV == 0 && gstate_c.vertBounds.maxV > 0) {
// Let's not hash less than 272, we might use more later and have to rehash. 272 is very common.
entry->maxSeenV = std::max((u16)272, gstate_c.vertBounds.maxV);
} else if (gstate_c.vertBounds.maxV > entry->maxSeenV) {
// The max height changed, so we're better off hashing the entire thing.
entry->maxSeenV = 512;
entry->status |= TexCacheEntry::STATUS_FREE_CHANGE;
}
} else {
// Otherwise, we need to reset to ensure we use the whole thing.
// Can't tell how much is used.
// TODO: We could tell for texcoord UV gen, and apply scale to max?
entry->maxSeenV = 512;
}
}
}
void TextureCacheCommon::SetTexture(bool force) {
#ifdef DEBUG_TEXTURES
if (SetDebugTexture()) {
// A different texture was bound, let's rebind next time.
InvalidateLastTexture();
return;
}
#endif
if (force) {
InvalidateLastTexture();
}
u8 level = 0;
if (IsFakeMipmapChange())
level = std::max(0, gstate.getTexLevelOffset16() / 16);
u32 texaddr = gstate.getTextureAddress(level);
if (!Memory::IsValidAddress(texaddr)) {
// Bind a null texture and return.
Unbind();
return;
}
const u16 dim = gstate.getTextureDimension(level);
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
GETextureFormat format = gstate.getTextureFormat();
if (format >= 11) {
ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format);
// TODO: Better assumption?
format = GE_TFMT_5650;
}
bool hasClut = gstate.isTextureFormatIndexed();
// Ignore uncached/kernel when caching.
u32 cluthash;
if (hasClut) {
if (clutLastFormat_ != gstate.clutformat) {
// We update here because the clut format can be specified after the load.
UpdateCurrentClut(gstate.getClutPaletteFormat(), gstate.getClutIndexStartPos(), gstate.isClutIndexSimple());
}
cluthash = clutHash_ ^ gstate.clutformat;
} else {
cluthash = 0;
}
u64 cachekey = TexCacheEntry::CacheKey(texaddr, format, dim, cluthash);
int bufw = GetTextureBufw(0, texaddr, format);
u8 maxLevel = gstate.getTextureMaxLevel();
u32 texhash = MiniHash((const u32 *)Memory::GetPointerUnchecked(texaddr));
TexCache::iterator iter = cache_.find(cachekey);
TexCacheEntry *entry = nullptr;
gstate_c.SetNeedShaderTexclamp(false);
gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE;
if (gstate_c.bgraTexture != isBgraBackend_) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
gstate_c.bgraTexture = isBgraBackend_;
if (iter != cache_.end()) {
entry = iter->second.get();
// Validate the texture still matches the cache entry.
bool match = entry->Matches(dim, format, maxLevel);
const char *reason = "different params";
// Check for FBO - slow!
if (entry->framebuffer) {
if (match) {
if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) {
WARN_LOG_REPORT_ONCE(clutAndTexRender, G3D, "Using rendered texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat());
}
SetTextureFramebuffer(entry, entry->framebuffer);
return;
} else {
// Make sure we re-evaluate framebuffers.
DetachFramebuffer(entry, texaddr, entry->framebuffer);
reason = "detached framebuf";
match = false;
}
}
bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE;
// First let's see if another texture with the same address had a hashfail.
if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) {
// Always rehash in this case, if one changed the rest all probably did.
rehash = true;
entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK;
} else if (!gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE)) {
// Okay, just some parameter change - the data didn't change, no need to rehash.
rehash = false;
}
if (match) {
if (entry->lastFrame != gpuStats.numFlips) {
u32 diff = gpuStats.numFlips - entry->lastFrame;
entry->numFrames++;
if (entry->framesUntilNextFullHash < diff) {
// Exponential backoff up to 512 frames. Textures are often reused.
if (entry->numFrames > 32) {
// Also, try to add some "randomness" to avoid rehashing several textures the same frame.
entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + (entry->textureName & 15);
} else {
entry->framesUntilNextFullHash = entry->numFrames;
}
rehash = true;
} else {
entry->framesUntilNextFullHash -= diff;
}
}
// If it's not huge or has been invalidated many times, recheck the whole texture.
if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) {
entry->invalidHint = 0;
rehash = true;
}
if (texhash != entry->hash) {
match = false;
} else if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
rehash = false;
}
}
if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && standardScaleFactor_ != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) {
if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) {
// INFO_LOG(G3D, "Reloading texture to do the scaling we skipped..");
match = false;
reason = "scaling";
}
}
if (match) {
// TODO: Mark the entry reliable if it's been safe for long enough?
//got one!
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
if (rehash) {
// Update in case any of these changed.
entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8;
entry->bufw = bufw;
entry->cluthash = cluthash;
}
nextTexture_ = entry;
nextNeedsRehash_ = rehash;
nextNeedsChange_ = false;
// Might need a rebuild if the hash fails, but that will be set later.
nextNeedsRebuild_ = false;
VERBOSE_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr);
return; //Done!
} else {
// Wasn't a match, we will rebuild.
nextChangeReason_ = reason;
nextNeedsChange_ = true;
}
} else {
VERBOSE_LOG(G3D, "No texture in cache, decoding...");
TexCacheEntry *entryNew = new TexCacheEntry{};
cache_[cachekey].reset(entryNew);
if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) {
WARN_LOG_REPORT_ONCE(clutUseRender, G3D, "Using texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat());
}
entry = entryNew;
if (g_Config.bTextureBackoffCache) {
entry->status = TexCacheEntry::STATUS_HASHING;
} else {
entry->status = TexCacheEntry::STATUS_UNRELIABLE;
}
nextNeedsChange_ = false;
}
// We have to decode it, let's setup the cache entry first.
entry->addr = texaddr;
entry->hash = texhash;
entry->dim = dim;
entry->format = format;
entry->maxLevel = maxLevel;
// This would overestimate the size in many case so we underestimate instead
// to avoid excessive clearing caused by cache invalidations.
entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8;
entry->bufw = bufw;
entry->cluthash = cluthash;
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
// Before we go reading the texture from memory, let's check for render-to-texture.
// We must do this early so we have the right w/h.
entry->framebuffer = 0;
for (size_t i = 0, n = fbCache_.size(); i < n; ++i) {
auto framebuffer = fbCache_[i];
AttachFramebuffer(entry, framebuffer->fb_address, framebuffer);
}
// If we ended up with a framebuffer, attach it - no texture decoding needed.
if (entry->framebuffer) {
SetTextureFramebuffer(entry, entry->framebuffer);
}
nextTexture_ = entry;
nextNeedsRehash_ = entry->framebuffer == nullptr;
// We still need to rebuild, to allocate a texture. But we'll bail early.
nextNeedsRebuild_ = true;
}
// Removes old textures.
void TextureCacheCommon::Decimate() {
if (--decimationCounter_ <= 0) {
decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL;
} else {
return;
}
if (cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) {
const u32 had = cacheSizeEstimate_;
ForgetLastTexture();
int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE;
for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ) {
if (iter->second->lastFrame + killAge < gpuStats.numFlips) {
DeleteTexture(iter++);
} else {
++iter;
}
}
VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_);
}
// If enabled, we also need to clear the secondary cache.
if (g_Config.bTextureSecondaryCache && secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE) {
const u32 had = secondCacheSizeEstimate_;
for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ) {
// In low memory mode, we kill them all since secondary cache is disabled.
if (lowMemoryMode_ || iter->second->lastFrame + TEXTURE_SECOND_KILL_AGE < gpuStats.numFlips) {
ReleaseTexture(iter->second.get(), true);
secondCacheSizeEstimate_ -= EstimateTexMemoryUsage(iter->second.get());
secondCache_.erase(iter++);
} else {
++iter;
}
}
VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_);
}
DecimateVideos();
}
void TextureCacheCommon::DecimateVideos() {
if (!videos_.empty()) {
for (auto iter = videos_.begin(); iter != videos_.end(); ) {
if (iter->second + VIDEO_DECIMATE_AGE < gpuStats.numFlips) {
videos_.erase(iter++);
} else {
++iter;
}
}
}
}
bool TextureCacheCommon::HandleTextureChange(TexCacheEntry *const entry, const char *reason, bool initialMatch, bool doDelete) {
bool replaceImages = false;
cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry);
entry->numInvalidated++;
gpuStats.numTextureInvalidations++;
DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x: %s", entry->addr, reason);
if (doDelete) {
if (initialMatch && standardScaleFactor_ == 1 && (entry->status & TexCacheEntry::STATUS_IS_SCALED) == 0) {
// Actually, if size and number of levels match, let's try to avoid deleting and recreating.
// Instead, let's use glTexSubImage to replace the images.
replaceImages = true;
} else {
InvalidateLastTexture();
ReleaseTexture(entry, true);
entry->status &= ~TexCacheEntry::STATUS_IS_SCALED;
}
}
// Clear the reliable bit if set.
if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
// Also, mark any textures with the same address but different clut. They need rechecking.
if (entry->cluthash != 0) {
const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32;
const u64 cachekeyMax = cachekeyMin + (1ULL << 32);
for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) {
if (it->second->cluthash != entry->cluthash) {
it->second->status |= TexCacheEntry::STATUS_CLUT_RECHECK;
}
}
}
entry->status |= TexCacheEntry::STATUS_UNRELIABLE;
if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) {
if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) {
entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE;
} else {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
}
entry->numFrames = 0;
return replaceImages;
}
void TextureCacheCommon::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer, FramebufferNotification msg) {
// Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors.
// These checks are mainly to reduce scanning all textures.
const u32 addr = (address | 0x04000000) & 0x3F9FFFFF;
const u32 bpp = framebuffer->format == GE_FORMAT_8888 ? 4 : 2;
const u64 cacheKey = (u64)addr << 32;
// If it has a clut, those are the low 32 bits, so it'll be inside this range.
// Also, if it's a subsample of the buffer, it'll also be within the FBO.
const u64 cacheKeyEnd = cacheKey + ((u64)(framebuffer->fb_stride * framebuffer->height * bpp) << 32);
// The first mirror starts at 0x04200000 and there are 3. We search all for framebuffers.
const u64 mirrorCacheKey = (u64)0x04200000 << 32;
const u64 mirrorCacheKeyEnd = (u64)0x04800000 << 32;
switch (msg) {
case NOTIFY_FB_CREATED:
case NOTIFY_FB_UPDATED:
// Ensure it's in the framebuffer cache.
if (std::find(fbCache_.begin(), fbCache_.end(), framebuffer) == fbCache_.end()) {
fbCache_.push_back(framebuffer);
}
for (auto it = cache_.lower_bound(cacheKey), end = cache_.upper_bound(cacheKeyEnd); it != end; ++it) {
AttachFramebuffer(it->second.get(), addr, framebuffer);
}
// Let's assume anything in mirrors is fair game to check.
for (auto it = cache_.lower_bound(mirrorCacheKey), end = cache_.upper_bound(mirrorCacheKeyEnd); it != end; ++it) {
const u64 mirrorlessKey = it->first & ~0x0060000000000000ULL;
// Let's still make sure it's in the cache range.
if (mirrorlessKey >= cacheKey && mirrorlessKey <= cacheKeyEnd) {
AttachFramebuffer(it->second.get(), addr, framebuffer);
}
}
break;
case NOTIFY_FB_DESTROYED:
fbCache_.erase(std::remove(fbCache_.begin(), fbCache_.end(), framebuffer), fbCache_.end());
// We may have an offset texture attached. So we use fbTexInfo as a guide.
// We're not likely to have many attached framebuffers.
for (auto it = fbTexInfo_.begin(); it != fbTexInfo_.end(); ) {
u64 cachekey = it->first;
// We might erase, so move to the next one already (which won't become invalid.)
++it;
DetachFramebuffer(cache_[cachekey].get(), addr, framebuffer);
}
break;
}
}
void TextureCacheCommon::AttachFramebufferValid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) {
const u64 cachekey = entry->CacheKey();
const bool hasInvalidFramebuffer = entry->framebuffer == nullptr || entry->invalidHint == -1;
const bool hasOlderFramebuffer = entry->framebuffer != nullptr && entry->framebuffer->last_frame_render < framebuffer->last_frame_render;
bool hasFartherFramebuffer = false;
if (!hasInvalidFramebuffer && !hasOlderFramebuffer) {
// If it's valid, but the offset is greater, then we still win.
if (fbTexInfo_[cachekey].yOffset == fbInfo.yOffset)
hasFartherFramebuffer = fbTexInfo_[cachekey].xOffset > fbInfo.xOffset;
else
hasFartherFramebuffer = fbTexInfo_[cachekey].yOffset > fbInfo.yOffset;
}
if (hasInvalidFramebuffer || hasOlderFramebuffer || hasFartherFramebuffer) {
if (entry->framebuffer == nullptr) {
cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry);
}
entry->framebuffer = framebuffer;
entry->invalidHint = 0;
entry->status &= ~TexCacheEntry::STATUS_DEPALETTIZE;
entry->maxLevel = 0;
fbTexInfo_[cachekey] = fbInfo;
framebuffer->last_frame_attached = gpuStats.numFlips;
host->GPUNotifyTextureAttachment(entry->addr);
} else if (entry->framebuffer == framebuffer) {
framebuffer->last_frame_attached = gpuStats.numFlips;
}
}
void TextureCacheCommon::AttachFramebufferInvalid(TexCacheEntry *entry, VirtualFramebuffer *framebuffer, const AttachedFramebufferInfo &fbInfo) {
const u64 cachekey = entry->CacheKey();
if (entry->framebuffer == nullptr || entry->framebuffer == framebuffer) {
if (entry->framebuffer == nullptr) {
cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry);
}
entry->framebuffer = framebuffer;
entry->invalidHint = -1;
entry->status &= ~TexCacheEntry::STATUS_DEPALETTIZE;
entry->maxLevel = 0;
fbTexInfo_[cachekey] = fbInfo;
host->GPUNotifyTextureAttachment(entry->addr);
}
}
void TextureCacheCommon::DetachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer) {
if (entry->framebuffer == framebuffer) {
const u64 cachekey = entry->CacheKey();
cacheSizeEstimate_ += EstimateTexMemoryUsage(entry);
entry->framebuffer = nullptr;
fbTexInfo_.erase(cachekey);
host->GPUNotifyTextureAttachment(entry->addr);
}
}
bool TextureCacheCommon::AttachFramebuffer(TexCacheEntry *entry, u32 address, VirtualFramebuffer *framebuffer, u32 texaddrOffset) {
static const u32 MAX_SUBAREA_Y_OFFSET_SAFE = 32;
AttachedFramebufferInfo fbInfo = { 0 };
const u64 mirrorMask = 0x00600000;
// Must be in VRAM so | 0x04000000 it is. Also, ignore memory mirrors.
const u32 addr = (address | 0x04000000) & 0x3FFFFFFF & ~mirrorMask;
const u32 texaddr = ((entry->addr + texaddrOffset) & ~mirrorMask);
const bool noOffset = texaddr == addr;
const bool exactMatch = noOffset && entry->format < 4;
const u32 w = 1 << ((entry->dim >> 0) & 0xf);
const u32 h = 1 << ((entry->dim >> 8) & 0xf);
// 512 on a 272 framebuffer is sane, so let's be lenient.
const u32 minSubareaHeight = h / 4;
// If they match exactly, it's non-CLUT and from the top left.
if (exactMatch) {
// Apply to non-buffered and buffered mode only.
if (!(g_Config.iRenderingMode == FB_NON_BUFFERED_MODE || g_Config.iRenderingMode == FB_BUFFERED_MODE))
return false;
DEBUG_LOG(G3D, "Render to texture detected at %08x!", address);
if (framebuffer->fb_stride != entry->bufw) {
WARN_LOG_REPORT_ONCE(diffStrides1, G3D, "Render to texture with different strides %d != %d", entry->bufw, framebuffer->fb_stride);
}
if (entry->format != (GETextureFormat)framebuffer->format) {
WARN_LOG_REPORT_ONCE(diffFormat1, G3D, "Render to texture with different formats %d != %d", entry->format, framebuffer->format);
// Let's avoid using it when we know the format is wrong. May be a video/etc. updating memory.
// However, some games use a different format to clear the buffer.
if (framebuffer->last_frame_attached + 1 < gpuStats.numFlips) {
DetachFramebuffer(entry, address, framebuffer);
}
} else {
AttachFramebufferValid(entry, framebuffer, fbInfo);
return true;
}
} else {
// Apply to buffered mode only.
if (!(g_Config.iRenderingMode == FB_BUFFERED_MODE))
return false;
const bool clutFormat =
(framebuffer->format == GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT32) ||
(framebuffer->format != GE_FORMAT_8888 && entry->format == GE_TFMT_CLUT16);
const u32 bitOffset = (texaddr - addr) * 8;
const u32 pixelOffset = bitOffset / std::max(1U, (u32)textureBitsPerPixel[entry->format]);
fbInfo.yOffset = entry->bufw == 0 ? 0 : pixelOffset / entry->bufw;
fbInfo.xOffset = entry->bufw == 0 ? 0 : pixelOffset % entry->bufw;
if (framebuffer->fb_stride != entry->bufw) {
if (noOffset) {
WARN_LOG_REPORT_ONCE(diffStrides2, G3D, "Render to texture using CLUT with different strides %d != %d", entry->bufw, framebuffer->fb_stride);
} else {
// Assume any render-to-tex with different bufw + offset is a render from ram.
DetachFramebuffer(entry, address, framebuffer);
return false;
}
}
// Check if it's in bufferWidth (which might be higher than width and may indicate the framebuffer includes the data.)
if (fbInfo.xOffset >= framebuffer->bufferWidth && fbInfo.xOffset + w <= (u32)framebuffer->fb_stride) {
// This happens in Brave Story, see #10045 - the texture is in the space between strides, with matching stride.
DetachFramebuffer(entry, address, framebuffer);
return false;
}
if (fbInfo.yOffset + minSubareaHeight >= framebuffer->height) {
// Can't be inside the framebuffer then, ram. Detach to be safe.
DetachFramebuffer(entry, address, framebuffer);
return false;
}
// Trying to play it safe. Below 0x04110000 is almost always framebuffers.
// TODO: Maybe we can reduce this check and find a better way above 0x04110000?
if (fbInfo.yOffset > MAX_SUBAREA_Y_OFFSET_SAFE && addr > 0x04110000) {
WARN_LOG_REPORT_ONCE(subareaIgnored, G3D, "Ignoring possible render to texture at %08x +%dx%d / %dx%d", address, fbInfo.xOffset, fbInfo.yOffset, framebuffer->width, framebuffer->height);
DetachFramebuffer(entry, address, framebuffer);
return false;
}
// Check for CLUT. The framebuffer is always RGB, but it can be interpreted as a CLUT texture.
// 3rd Birthday (and a bunch of other games) render to a 16 bit clut texture.
if (clutFormat) {
if (!noOffset) {
WARN_LOG_REPORT_ONCE(subareaClut, G3D, "Render to texture using CLUT with offset at %08x +%dx%d", address, fbInfo.xOffset, fbInfo.yOffset);
}
AttachFramebufferValid(entry, framebuffer, fbInfo);
entry->status |= TexCacheEntry::STATUS_DEPALETTIZE;
// We'll validate it compiles later.
return true;
} else if (entry->format == GE_TFMT_CLUT8 || entry->format == GE_TFMT_CLUT4) {
ERROR_LOG_REPORT_ONCE(fourEightBit, G3D, "4 and 8-bit CLUT format not supported for framebuffers");
}
// This is either normal or we failed to generate a shader to depalettize
if (framebuffer->format == entry->format || clutFormat) {
if (framebuffer->format != entry->format) {
WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with different formats %d != %d at %08x", entry->format, framebuffer->format, address);
AttachFramebufferValid(entry, framebuffer, fbInfo);
return true;
} else {
WARN_LOG_REPORT_ONCE(subarea, G3D, "Render to area containing texture at %08x +%dx%d", address, fbInfo.xOffset, fbInfo.yOffset);
// If "AttachFramebufferValid" , God of War Ghost of Sparta/Chains of Olympus will be missing special effect.
AttachFramebufferInvalid(entry, framebuffer, fbInfo);
return true;
}
} else {
WARN_LOG_REPORT_ONCE(diffFormat2, G3D, "Render to texture with incompatible formats %d != %d at %08x", entry->format, framebuffer->format, address);
}
}
return false;
}
void TextureCacheCommon::SetTextureFramebuffer(TexCacheEntry *entry, VirtualFramebuffer *framebuffer) {
_dbg_assert_msg_(G3D, framebuffer != nullptr, "Framebuffer must not be null.");
framebuffer->usageFlags |= FB_USAGE_TEXTURE;
bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE;
if (useBufferedRendering) {
const u64 cachekey = entry->CacheKey();
const auto &fbInfo = fbTexInfo_[cachekey];
// Keep the framebuffer alive.
framebuffer->last_frame_used = gpuStats.numFlips;
// We need to force it, since we may have set it on a texture before attaching.
gstate_c.curTextureWidth = framebuffer->bufferWidth;
gstate_c.curTextureHeight = framebuffer->bufferHeight;
if (gstate_c.bgraTexture) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
} else if ((gstate_c.curTextureXOffset == 0) != (fbInfo.xOffset == 0) || (gstate_c.curTextureYOffset == 0) != (fbInfo.yOffset == 0)) {
gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE);
}
gstate_c.bgraTexture = false;
gstate_c.curTextureXOffset = fbInfo.xOffset;
gstate_c.curTextureYOffset = fbInfo.yOffset;
gstate_c.SetNeedShaderTexclamp(gstate_c.curTextureWidth != (u32)gstate.getTextureWidth(0) || gstate_c.curTextureHeight != (u32)gstate.getTextureHeight(0));
if (gstate_c.curTextureXOffset != 0 || gstate_c.curTextureYOffset != 0) {
gstate_c.SetNeedShaderTexclamp(true);
}
nextTexture_ = entry;
} else {
if (framebuffer->fbo) {
framebuffer->fbo->Release();
framebuffer->fbo = nullptr;
}
Unbind();
gstate_c.SetNeedShaderTexclamp(false);
}
nextNeedsRehash_ = false;
nextNeedsChange_ = false;
nextNeedsRebuild_ = false;
}
bool TextureCacheCommon::SetOffsetTexture(u32 offset) {
if (g_Config.iRenderingMode != FB_BUFFERED_MODE) {
return false;
}
u32 texaddr = gstate.getTextureAddress(0);
if (!Memory::IsValidAddress(texaddr) || !Memory::IsValidAddress(texaddr + offset)) {
return false;
}
const u16 dim = gstate.getTextureDimension(0);
u64 cachekey = TexCacheEntry::CacheKey(texaddr, gstate.getTextureFormat(), dim, 0);
TexCache::iterator iter = cache_.find(cachekey);
if (iter == cache_.end()) {
return false;
}
TexCacheEntry *entry = iter->second.get();
bool success = false;
for (size_t i = 0, n = fbCache_.size(); i < n; ++i) {
auto framebuffer = fbCache_[i];
if (AttachFramebuffer(entry, framebuffer->fb_address, framebuffer, offset)) {
success = true;
}
}
if (success && entry->framebuffer) {
// This will not apply the texture immediately.
SetTextureFramebuffer(entry, entry->framebuffer);
return true;
}
return false;
}
void TextureCacheCommon::NotifyConfigChanged() {
int scaleFactor;
// 0 means automatic texture scaling, up to 5x, based on resolution.
if (g_Config.iTexScalingLevel == 0) {
scaleFactor = g_Config.iInternalResolution;
// Automatic resolution too? Okay.
if (scaleFactor == 0) {
if (!g_Config.IsPortrait()) {
scaleFactor = (PSP_CoreParameter().pixelWidth + 479) / 480;
} else {
scaleFactor = (PSP_CoreParameter().pixelHeight + 479) / 480;
}
}
// Mobile devices don't get the higher scale factors, too expensive. Very rough way to decide though...
if (!gstate_c.Supports(GPU_IS_MOBILE)) {
scaleFactor = std::min(5, scaleFactor);
} else {
scaleFactor = std::min(3, scaleFactor);
}
} else {
scaleFactor = g_Config.iTexScalingLevel;
}
if (!gstate_c.Supports(GPU_SUPPORTS_OES_TEXTURE_NPOT)) {
// Reduce the scale factor to a power of two (e.g. 2 or 4) if textures must be a power of two.
while ((scaleFactor & (scaleFactor - 1)) != 0) {
--scaleFactor;
}
}
// Just in case, small display with auto resolution or something.
if (scaleFactor <= 0) {
scaleFactor = 1;
}
standardScaleFactor_ = scaleFactor;
replacer_.NotifyConfigChanged();
}
void TextureCacheCommon::NotifyVideoUpload(u32 addr, int size, int width, GEBufferFormat fmt) {
addr &= 0x3FFFFFFF;
videos_[addr] = gpuStats.numFlips;
}
void TextureCacheCommon::LoadClut(u32 clutAddr, u32 loadBytes) {
clutTotalBytes_ = loadBytes;
clutRenderAddress_ = 0xFFFFFFFF;
if (Memory::IsValidAddress(clutAddr)) {
if (Memory::IsVRAMAddress(clutAddr)) {
// Clear the uncached bit, etc. to match framebuffers.
const u32 clutFramebufAddr = clutAddr & 0x3FFFFFFF;
const u32 clutFramebufEnd = clutFramebufAddr + loadBytes;
static const u32 MAX_CLUT_OFFSET = 4096;
clutRenderOffset_ = MAX_CLUT_OFFSET;
for (size_t i = 0, n = fbCache_.size(); i < n; ++i) {
auto framebuffer = fbCache_[i];
const u32 fb_address = framebuffer->fb_address | 0x04000000;
const u32 bpp = framebuffer->drawnFormat == GE_FORMAT_8888 ? 4 : 2;
u32 offset = clutFramebufAddr - fb_address;
// Is this inside the framebuffer at all?
bool matchRange = fb_address + framebuffer->fb_stride * bpp > clutFramebufAddr && fb_address < clutFramebufEnd;
// And is it inside the rendered area? Sometimes games pack data outside.
bool matchRegion = ((offset / bpp) % framebuffer->fb_stride) < framebuffer->width;
if (matchRange && matchRegion && offset < clutRenderOffset_) {
framebuffer->last_frame_clut = gpuStats.numFlips;
framebuffer->usageFlags |= FB_USAGE_CLUT;
clutRenderAddress_ = framebuffer->fb_address;
clutRenderOffset_ = offset;
if (offset == 0) {
break;
}
}
}
}
// It's possible for a game to (successfully) access outside valid memory.
u32 bytes = Memory::ValidSize(clutAddr, loadBytes);
if (clutRenderAddress_ != 0xFFFFFFFF && !g_Config.bDisableSlowFramebufEffects) {
framebufferManager_->DownloadFramebufferForClut(clutRenderAddress_, clutRenderOffset_ + bytes);
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
} else {
#ifdef _M_SSE
if (bytes == loadBytes) {
const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr);
__m128i *dest = (__m128i *)clutBufRaw_;
int numBlocks = bytes / 32;
for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) {
__m128i data1 = _mm_loadu_si128(source);
__m128i data2 = _mm_loadu_si128(source + 1);
_mm_store_si128(dest, data1);
_mm_store_si128(dest + 1, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#elif PPSSPP_ARCH(ARM_NEON)
if (bytes == loadBytes) {
const uint32_t *source = (const uint32_t *)Memory::GetPointerUnchecked(clutAddr);
uint32_t *dest = (uint32_t *)clutBufRaw_;
int numBlocks = bytes / 32;
for (int i = 0; i < numBlocks; i++, source += 8, dest += 8) {
uint32x4_t data1 = vld1q_u32(source);
uint32x4_t data2 = vld1q_u32(source + 4);
vst1q_u32(dest, data1);
vst1q_u32(dest + 4, data2);
}
} else {
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
}
#else
Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes);
if (bytes < loadBytes) {
memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes);
}
#endif
}
} else {
memset(clutBufRaw_, 0x00, loadBytes);
}
// Reload the clut next time.
clutLastFormat_ = 0xFFFFFFFF;
clutMaxBytes_ = std::max(clutMaxBytes_, loadBytes);
}
void TextureCacheCommon::UnswizzleFromMem(u32 *dest, u32 destPitch, const u8 *texptr, u32 bufw, u32 height, u32 bytesPerPixel) {
// Note: bufw is always aligned to 16 bytes, so rowWidth is always >= 16.
const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2);
// A visual mapping of unswizzling, where each letter is 16-byte and 8 letters is a block:
//
// ABCDEFGH IJKLMNOP
// ->
// AI
// BJ
// CK
// ...
//
// bxc is the number of blocks in the x direction, and byc the number in the y direction.
const int bxc = rowWidth / 16;
// The height is not always aligned to 8, but rounds up.
int byc = (height + 7) / 8;
DoUnswizzleTex16(texptr, dest, bxc, byc, destPitch);
}
bool TextureCacheCommon::GetCurrentClutBuffer(GPUDebugBuffer &buffer) {
const u32 bpp = gstate.getClutPaletteFormat() == GE_CMODE_32BIT_ABGR8888 ? 4 : 2;
const u32 pixels = 1024 / bpp;
buffer.Allocate(pixels, 1, (GEBufferFormat)gstate.getClutPaletteFormat());
memcpy(buffer.GetData(), clutBufRaw_, 1024);
return true;
}
// Host memory usage, not PSP memory usage.
u32 TextureCacheCommon::EstimateTexMemoryUsage(const TexCacheEntry *entry) {
const u16 dim = entry->dim;
// TODO: This does not take into account the HD remaster's larger textures.
const u8 dimW = ((dim >> 0) & 0xf);
const u8 dimH = ((dim >> 8) & 0xf);
u32 pixelSize = 2;
switch (entry->format) {
case GE_TFMT_CLUT4:
case GE_TFMT_CLUT8:
case GE_TFMT_CLUT16:
case GE_TFMT_CLUT32:
// We assume cluts always point to 8888 for simplicity.
pixelSize = 4;
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
break;
case GE_TFMT_8888:
case GE_TFMT_DXT1:
case GE_TFMT_DXT3:
case GE_TFMT_DXT5:
default:
pixelSize = 4;
break;
}
// This in other words multiplies by w and h.
return pixelSize << (dimW + dimH);
}
static void ReverseColors(void *dstBuf, const void *srcBuf, GETextureFormat fmt, int numPixels, bool useBGRA) {
switch (fmt) {
case GE_TFMT_4444:
ConvertRGBA4444ToABGR4444((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
// Final Fantasy 2 uses this heavily in animated textures.
case GE_TFMT_5551:
ConvertRGBA5551ToABGR1555((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
case GE_TFMT_5650:
ConvertRGB565ToBGR565((u16 *)dstBuf, (const u16 *)srcBuf, numPixels);
break;
default:
if (useBGRA) {
ConvertRGBA8888ToBGRA8888((u32 *)dstBuf, (const u32 *)srcBuf, numPixels);
} else {
// No need to convert RGBA8888, right order already
if (dstBuf != srcBuf)
memcpy(dstBuf, srcBuf, numPixels * sizeof(u32));
}
break;
}
}
static inline void ConvertFormatToRGBA8888(GETextureFormat format, u32 *dst, const u16 *src, u32 numPixels) {
switch (format) {
case GE_TFMT_4444:
ConvertRGBA4444ToRGBA8888(dst, src, numPixels);
break;
case GE_TFMT_5551:
ConvertRGBA5551ToRGBA8888(dst, src, numPixels);
break;
case GE_TFMT_5650:
ConvertRGBA565ToRGBA8888(dst, src, numPixels);
break;
default:
_dbg_assert_msg_(G3D, false, "Incorrect texture format.");
break;
}
}
static inline void ConvertFormatToRGBA8888(GEPaletteFormat format, u32 *dst, const u16 *src, u32 numPixels) {
// The supported values are 1:1 identical.
ConvertFormatToRGBA8888(GETextureFormat(format), dst, src, numPixels);
}
void TextureCacheCommon::DecodeTextureLevel(u8 *out, int outPitch, GETextureFormat format, GEPaletteFormat clutformat, uint32_t texaddr, int level, int bufw, bool reverseColors, bool useBGRA, bool expandTo32bit) {
bool swizzled = gstate.isTextureSwizzled();
if ((texaddr & 0x00600000) != 0 && Memory::IsVRAMAddress(texaddr)) {
// This means it's in a mirror, possibly a swizzled mirror. Let's report.
WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, swizzled ? 1 : 0);
if ((texaddr & 0x00200000) == 0x00200000) {
// Technically 2 and 6 are slightly different, but this is better than nothing probably.
swizzled = !swizzled;
}
// Note that (texaddr & 0x00600000) == 0x00600000 is very likely to be depth texturing.
}
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
const u8 *texptr = Memory::GetPointer(texaddr);
switch (format) {
case GE_TFMT_CLUT4:
{
const bool mipmapShareClut = gstate.isClutSharedForMipmaps();
const int clutSharingOffset = mipmapShareClut ? 0 : level * 16;
if (swizzled) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw / 2, texptr, bufw, h, 0);
texptr = (u8 *)tmpTexBuf32_.data();
}
switch (clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
const u16 *clut = GetCurrentClut<u16>() + clutSharingOffset;
if (clutAlphaLinear_ && mipmapShareClut && !expandTo32bit) {
// Here, reverseColors means the CLUT is already reversed.
if (reverseColors) {
for (int y = 0; y < h; ++y) {
DeIndexTexture4Optimal((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_);
}
} else {
for (int y = 0; y < h; ++y) {
DeIndexTexture4OptimalRev((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_);
}
}
} else {
if (expandTo32bit && !reverseColors) {
// We simply expand the CLUT to 32-bit, then we deindex as usual. Probably the fastest way.
ConvertFormatToRGBA8888(clutformat, expandClut_, clut, 16);
for (int y = 0; y < h; ++y) {
DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, expandClut_);
}
} else {
for (int y = 0; y < h; ++y) {
DeIndexTexture4((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut);
}
}
}
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
const u32 *clut = GetCurrentClut<u32>() + clutSharingOffset;
for (int y = 0; y < h; ++y) {
DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut);
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat());
return;
}
}
break;
case GE_TFMT_CLUT8:
ReadIndexedTex(out, outPitch, level, texptr, 1, bufw, expandTo32bit);
break;
case GE_TFMT_CLUT16:
ReadIndexedTex(out, outPitch, level, texptr, 2, bufw, expandTo32bit);
break;
case GE_TFMT_CLUT32:
ReadIndexedTex(out, outPitch, level, texptr, 4, bufw, expandTo32bit);
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (!swizzled) {
// Just a simple copy, we swizzle the color format.
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u16) * y, format, w, useBGRA);
}
} else if (expandTo32bit) {
for (int y = 0; y < h; ++y) {
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)texptr + bufw * y, w);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, texptr + bufw * sizeof(u16) * y, w * sizeof(u16));
}
}
} else if (h >= 8) {
// Note: this is always safe since h must be a power of 2, so a multiple of 8.
if (!expandTo32bit) {
UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 2);
if (reverseColors) {
ReverseColors(out, out, format, h * outPitch / 2, useBGRA);
}
} else if (expandTo32bit) {
UnswizzleFromMem((u32 *)out, outPitch / 2, texptr, bufw, h, 2);
for (int y = h - 1; y >= 0; --y) {
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)(out + outPitch / 2 * y), w);
}
}
} else {
// We don't have enough space for all rows in out, so use a temp buffer.
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 2, texptr, bufw, h, 2);
const u8 *unswizzled = (u8 *)tmpTexBuf32_.data();
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, format, w, useBGRA);
}
} else if (expandTo32bit) {
for (int y = 0; y < h; ++y) {
ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)unswizzled + bufw * y, w);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, w * sizeof(u16));
}
}
}
break;
case GE_TFMT_8888:
if (!swizzled) {
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u32) * y, format, w, useBGRA);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, texptr + bufw * sizeof(u32) * y, w * sizeof(u32));
}
}
} else if (h >= 8) {
UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 4);
if (reverseColors) {
ReverseColors(out, out, format, h * outPitch / 4, useBGRA);
}
} else {
// We don't have enough space for all rows in out, so use a temp buffer.
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 4, texptr, bufw, h, 4);
const u8 *unswizzled = (u8 *)tmpTexBuf32_.data();
if (reverseColors) {
for (int y = 0; y < h; ++y) {
ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, format, w, useBGRA);
}
} else {
for (int y = 0; y < h; ++y) {
memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, w * sizeof(u32));
}
}
}
break;
case GE_TFMT_DXT1:
{
int minw = std::min(bufw, w);
u32 *dst = (u32 *)out;
int outPitch32 = outPitch / sizeof(u32);
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT1Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32, blockHeight, false);
blockIndex++;
}
}
w = (w + 3) & ~3;
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA);
}
break;
}
case GE_TFMT_DXT3:
{
int minw = std::min(bufw, w);
u32 *dst = (u32 *)out;
int outPitch32 = outPitch / sizeof(u32);
DXT3Block *src = (DXT3Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT3Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32, blockHeight);
blockIndex++;
}
}
w = (w + 3) & ~3;
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA);
}
break;
}
case GE_TFMT_DXT5:
{
int minw = std::min(bufw, w);
u32 *dst = (u32 *)out;
int outPitch32 = outPitch / sizeof(u32);
DXT5Block *src = (DXT5Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
int blockHeight = std::min(h - y, 4);
for (int x = 0; x < minw; x += 4) {
DecodeDXT5Block(dst + outPitch32 * y + x, src + blockIndex, outPitch32, blockHeight);
blockIndex++;
}
}
w = (w + 3) & ~3;
if (reverseColors) {
ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA);
}
break;
}
default:
ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format);
break;
}
}
void TextureCacheCommon::ReadIndexedTex(u8 *out, int outPitch, int level, const u8 *texptr, int bytesPerIndex, int bufw, bool expandTo32Bit) {
int w = gstate.getTextureWidth(level);
int h = gstate.getTextureHeight(level);
if (gstate.isTextureSwizzled()) {
tmpTexBuf32_.resize(bufw * ((h + 7) & ~7));
UnswizzleFromMem(tmpTexBuf32_.data(), bufw * bytesPerIndex, texptr, bufw, h, bytesPerIndex);
texptr = (u8 *)tmpTexBuf32_.data();
}
int palFormat = gstate.getClutPaletteFormat();
const u16 *clut16 = (const u16 *)clutBuf_;
const u32 *clut32 = (const u32 *)clutBuf_;
if (expandTo32Bit && palFormat != GE_CMODE_32BIT_ABGR8888) {
ConvertFormatToRGBA8888(GEPaletteFormat(palFormat), expandClut_, clut16, 256);
clut32 = expandClut_;
palFormat = GE_CMODE_32BIT_ABGR8888;
}
switch (palFormat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
switch (bytesPerIndex) {
case 1:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut16);
}
break;
case 2:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut16);
}
break;
case 4:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u16 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut16);
}
break;
}
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
switch (bytesPerIndex) {
case 1:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut32);
}
break;
case 2:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut32);
}
break;
case 4:
for (int y = 0; y < h; ++y) {
DeIndexTexture((u32 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut32);
}
break;
}
}
break;
default:
ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", gstate.getClutPaletteFormat());
break;
}
}
void TextureCacheCommon::ApplyTexture() {
TexCacheEntry *entry = nextTexture_;
if (entry == nullptr) {
return;
}
nextTexture_ = nullptr;
UpdateMaxSeenV(entry, gstate.isModeThrough());
bool replaceImages = false;
if (nextNeedsRebuild_) {
// Regardless of hash fails or otherwise, if this is a video, mark it frequently changing.
// This prevents temporary scaling perf hits on the first second of video.
bool isVideo = videos_.find(entry->addr & 0x3FFFFFFF) != videos_.end();
if (isVideo) {
entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
if (nextNeedsRehash_) {
// Update the hash on the texture.
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
entry->fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry);
// TODO: Here we could check the secondary cache; maybe the texture is in there?
// We would need to abort the build if so.
}
if (nextNeedsChange_) {
// This texture existed previously, let's handle the change.
replaceImages = HandleTextureChange(entry, nextChangeReason_, false, true);
}
// We actually build afterward (shared with rehash rebuild.)
} else if (nextNeedsRehash_) {
// Okay, this matched and didn't change - but let's check the hash. Maybe it will change.
bool doDelete = true;
if (!CheckFullHash(entry, doDelete)) {
replaceImages = HandleTextureChange(entry, "hash fail", true, doDelete);
nextNeedsRebuild_ = true;
} else if (nextTexture_ != nullptr) {
// The secondary cache may choose an entry from its storage by setting nextTexture_.
// This means we should set that, instead of our previous entry.
entry = nextTexture_;
nextTexture_ = nullptr;
UpdateMaxSeenV(entry, gstate.isModeThrough());
}
}
// Okay, now actually rebuild the texture if needed.
if (nextNeedsRebuild_) {
BuildTexture(entry, replaceImages);
}
entry->lastFrame = gpuStats.numFlips;
if (entry->framebuffer) {
ApplyTextureFramebuffer(entry, entry->framebuffer);
} else {
BindTexture(entry);
gstate_c.SetTextureFullAlpha(entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL);
gstate_c.SetTextureSimpleAlpha(entry->GetAlphaStatus() != TexCacheEntry::STATUS_ALPHA_UNKNOWN);
}
}
void TextureCacheCommon::Clear(bool delete_them) {
ForgetLastTexture();
for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ++iter) {
ReleaseTexture(iter->second.get(), delete_them);
}
// In case the setting was changed, we ALWAYS clear the secondary cache (enabled or not.)
for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ++iter) {
ReleaseTexture(iter->second.get(), delete_them);
}
if (cache_.size() + secondCache_.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache_.size() + secondCache_.size()));
cache_.clear();
secondCache_.clear();
cacheSizeEstimate_ = 0;
secondCacheSizeEstimate_ = 0;
}
fbTexInfo_.clear();
videos_.clear();
}
void TextureCacheCommon::DeleteTexture(TexCache::iterator it) {
ReleaseTexture(it->second.get(), true);
auto fbInfo = fbTexInfo_.find(it->first);
if (fbInfo != fbTexInfo_.end()) {
fbTexInfo_.erase(fbInfo);
}
cacheSizeEstimate_ -= EstimateTexMemoryUsage(it->second.get());
cache_.erase(it);
}
bool TextureCacheCommon::CheckFullHash(TexCacheEntry *entry, bool &doDelete) {
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
u32 fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry);
if (fullhash == entry->fullhash) {
if (g_Config.bTextureBackoffCache) {
if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) {
// Reset to STATUS_HASHING.
entry->SetHashStatus(TexCacheEntry::STATUS_HASHING);
entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
} else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) {
entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
return true;
}
// Don't give up just yet. Let's try the secondary cache if it's been invalidated before.
if (g_Config.bTextureSecondaryCache) {
// Don't forget this one was unreliable (in case we match a secondary entry.)
entry->status |= TexCacheEntry::STATUS_UNRELIABLE;
// If it's failed a bunch of times, then the second cache is just wasting time and VRAM.
// In that case, skip.
if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) {
// We have a new hash: look for that hash in the secondary cache.
u64 secondKey = fullhash | (u64)entry->cluthash << 32;
TexCache::iterator secondIter = secondCache_.find(secondKey);
if (secondIter != secondCache_.end()) {
// Found it, but does it match our current params? If not, abort.
TexCacheEntry *secondEntry = secondIter->second.get();
if (secondEntry->Matches(entry->dim, entry->format, entry->maxLevel)) {
// Reset the numInvalidated value lower, we got a match.
if (entry->numInvalidated > 8) {
--entry->numInvalidated;
}
// Now just use our archived texture, instead of entry.
nextTexture_ = secondEntry;
return true;
}
} else {
// It wasn't found, so we're about to throw away entry and rebuild a texture.
// Let's save this in the secondary cache in case it gets used again.
secondKey = entry->fullhash | ((u64)entry->cluthash << 32);
secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry);
// If the entry already exists in the secondary texture cache, drop it nicely.
auto oldIter = secondCache_.find(secondKey);
if (oldIter != secondCache_.end()) {
ReleaseTexture(oldIter->second.get(), true);
}
// Archive the entire texture entry as is, since we'll use its params if it is seen again.
// We keep parameters on the current entry, since we are STILL building a new texture here.
secondCache_[secondKey].reset(new TexCacheEntry(*entry));
// Make sure we don't delete the texture we just archived.
entry->texturePtr = nullptr;
doDelete = false;
}
}
}
// We know it failed, so update the full hash right away.
entry->fullhash = fullhash;
return false;
}
void TextureCacheCommon::Invalidate(u32 addr, int size, GPUInvalidationType type) {
// They could invalidate inside the texture, let's just give a bit of leeway.
const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4;
addr &= 0x3FFFFFFF;
const u32 addr_end = addr + size;
if (type == GPU_INVALIDATE_ALL) {
// This is an active signal from the game that something in the texture cache may have changed.
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
} else {
// Do a quick check to see if the current texture is in range.
const u32 currentAddr = gstate.getTextureAddress(0);
if (addr_end >= currentAddr && addr < currentAddr + LARGEST_TEXTURE_SIZE) {
gstate_c.Dirty(DIRTY_TEXTURE_IMAGE);
}
}
// If we're hashing every use, without backoff, then this isn't needed.
if (!g_Config.bTextureBackoffCache) {
return;
}
const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32;
u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32;
if (endKey < startKey) {
endKey = (u64)-1;
}
for (TexCache::iterator iter = cache_.lower_bound(startKey), end = cache_.upper_bound(endKey); iter != end; ++iter) {
u32 texAddr = iter->second->addr;
u32 texEnd = iter->second->addr + iter->second->sizeInRAM;
if (texAddr < addr_end && addr < texEnd) {
if (iter->second->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
iter->second->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
if (type != GPU_INVALIDATE_ALL) {
gpuStats.numTextureInvalidations++;
// Start it over from 0 (unless it's safe.)
iter->second->numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0;
if (type == GPU_INVALIDATE_SAFE) {
u32 diff = gpuStats.numFlips - iter->second->lastFrame;
// We still need to mark if the texture is frequently changing, even if it's safely changing.
if (diff < TEXCACHE_FRAME_CHANGE_FREQUENT) {
iter->second->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT;
}
}
iter->second->framesUntilNextFullHash = 0;
} else if (!iter->second->framebuffer) {
iter->second->invalidHint++;
}
}
}
}
void TextureCacheCommon::InvalidateAll(GPUInvalidationType /*unused*/) {
// If we're hashing every use, without backoff, then this isn't needed.
if (!g_Config.bTextureBackoffCache) {
return;
}
if (timesInvalidatedAllThisFrame_ > 5) {
return;
}
timesInvalidatedAllThisFrame_++;
for (TexCache::iterator iter = cache_.begin(), end = cache_.end(); iter != end; ++iter) {
if (iter->second->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) {
iter->second->SetHashStatus(TexCacheEntry::STATUS_HASHING);
}
if (!iter->second->framebuffer) {
iter->second->invalidHint++;
}
}
}
void TextureCacheCommon::ClearNextFrame() {
clearCacheNextFrame_ = true;
}