linux/net/ieee802154/nl-phy.c

354 lines
8.0 KiB
C
Raw Normal View History

/*
* Netlink interface for IEEE 802.15.4 stack
*
* Copyright 2007, 2008 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Written by:
* Sergey Lapin <slapin@ossfans.org>
* Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
* Maxim Osipov <maxim.osipov@siemens.com>
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/if_arp.h>
#include <net/netlink.h>
#include <net/genetlink.h>
#include <net/cfg802154.h>
#include <net/af_ieee802154.h>
#include <net/ieee802154_netdev.h>
#include <net/rtnetlink.h> /* for rtnl_{un,}lock */
#include <linux/nl802154.h>
#include "ieee802154.h"
#include "rdev-ops.h"
#include "core.h"
static int ieee802154_nl_fill_phy(struct sk_buff *msg, u32 portid,
u32 seq, int flags, struct wpan_phy *phy)
{
void *hdr;
int i, pages = 0;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
uint32_t *buf = kcalloc(32, sizeof(uint32_t), GFP_KERNEL);
pr_debug("%s\n", __func__);
if (!buf)
return -EMSGSIZE;
hdr = genlmsg_put(msg, 0, seq, &nl802154_family, flags,
IEEE802154_LIST_PHY);
if (!hdr)
goto out;
rtnl_lock();
if (nla_put_string(msg, IEEE802154_ATTR_PHY_NAME, wpan_phy_name(phy)) ||
nla_put_u8(msg, IEEE802154_ATTR_PAGE, phy->current_page) ||
nla_put_u8(msg, IEEE802154_ATTR_CHANNEL, phy->current_channel))
goto nla_put_failure;
for (i = 0; i < 32; i++) {
if (phy->supported.channels[i])
buf[pages++] = phy->supported.channels[i] | (i << 27);
}
if (pages &&
nla_put(msg, IEEE802154_ATTR_CHANNEL_PAGE_LIST,
pages * sizeof(uint32_t), buf))
goto nla_put_failure;
rtnl_unlock();
kfree(buf);
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 21:09:00 +00:00
genlmsg_end(msg, hdr);
return 0;
nla_put_failure:
rtnl_unlock();
genlmsg_cancel(msg, hdr);
out:
kfree(buf);
return -EMSGSIZE;
}
int ieee802154_list_phy(struct sk_buff *skb, struct genl_info *info)
{
/* Request for interface name, index, type, IEEE address,
* PAN Id, short address
*/
struct sk_buff *msg;
struct wpan_phy *phy;
const char *name;
int rc = -ENOBUFS;
pr_debug("%s\n", __func__);
if (!info->attrs[IEEE802154_ATTR_PHY_NAME])
return -EINVAL;
name = nla_data(info->attrs[IEEE802154_ATTR_PHY_NAME]);
if (name[nla_len(info->attrs[IEEE802154_ATTR_PHY_NAME]) - 1] != '\0')
return -EINVAL; /* phy name should be null-terminated */
phy = wpan_phy_find(name);
if (!phy)
return -ENODEV;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
goto out_dev;
rc = ieee802154_nl_fill_phy(msg, info->snd_portid, info->snd_seq,
0, phy);
if (rc < 0)
goto out_free;
wpan_phy_put(phy);
return genlmsg_reply(msg, info);
out_free:
nlmsg_free(msg);
out_dev:
wpan_phy_put(phy);
return rc;
}
struct dump_phy_data {
struct sk_buff *skb;
struct netlink_callback *cb;
int idx, s_idx;
};
static int ieee802154_dump_phy_iter(struct wpan_phy *phy, void *_data)
{
int rc;
struct dump_phy_data *data = _data;
pr_debug("%s\n", __func__);
if (data->idx++ < data->s_idx)
return 0;
rc = ieee802154_nl_fill_phy(data->skb,
NETLINK_CB(data->cb->skb).portid,
data->cb->nlh->nlmsg_seq,
NLM_F_MULTI,
phy);
if (rc < 0) {
data->idx--;
return rc;
}
return 0;
}
int ieee802154_dump_phy(struct sk_buff *skb, struct netlink_callback *cb)
{
struct dump_phy_data data = {
.cb = cb,
.skb = skb,
.s_idx = cb->args[0],
.idx = 0,
};
pr_debug("%s\n", __func__);
wpan_phy_for_each(ieee802154_dump_phy_iter, &data);
cb->args[0] = data.idx;
return skb->len;
}
int ieee802154_add_iface(struct sk_buff *skb, struct genl_info *info)
{
struct sk_buff *msg;
struct wpan_phy *phy;
const char *name;
const char *devname;
int rc = -ENOBUFS;
struct net_device *dev;
int type = __IEEE802154_DEV_INVALID;
unsigned char name_assign_type;
pr_debug("%s\n", __func__);
if (!info->attrs[IEEE802154_ATTR_PHY_NAME])
return -EINVAL;
name = nla_data(info->attrs[IEEE802154_ATTR_PHY_NAME]);
if (name[nla_len(info->attrs[IEEE802154_ATTR_PHY_NAME]) - 1] != '\0')
return -EINVAL; /* phy name should be null-terminated */
if (info->attrs[IEEE802154_ATTR_DEV_NAME]) {
devname = nla_data(info->attrs[IEEE802154_ATTR_DEV_NAME]);
if (devname[nla_len(info->attrs[IEEE802154_ATTR_DEV_NAME]) - 1]
!= '\0')
return -EINVAL; /* phy name should be null-terminated */
name_assign_type = NET_NAME_USER;
} else {
devname = "wpan%d";
name_assign_type = NET_NAME_ENUM;
}
if (strlen(devname) >= IFNAMSIZ)
return -ENAMETOOLONG;
phy = wpan_phy_find(name);
if (!phy)
return -ENODEV;
msg = ieee802154_nl_new_reply(info, 0, IEEE802154_ADD_IFACE);
if (!msg)
goto out_dev;
if (info->attrs[IEEE802154_ATTR_HW_ADDR] &&
nla_len(info->attrs[IEEE802154_ATTR_HW_ADDR]) !=
IEEE802154_ADDR_LEN) {
rc = -EINVAL;
goto nla_put_failure;
}
if (info->attrs[IEEE802154_ATTR_DEV_TYPE]) {
type = nla_get_u8(info->attrs[IEEE802154_ATTR_DEV_TYPE]);
if (type >= __IEEE802154_DEV_MAX) {
rc = -EINVAL;
goto nla_put_failure;
}
}
dev = rdev_add_virtual_intf_deprecated(wpan_phy_to_rdev(phy), devname,
name_assign_type, type);
if (IS_ERR(dev)) {
rc = PTR_ERR(dev);
goto nla_put_failure;
}
dev_hold(dev);
if (info->attrs[IEEE802154_ATTR_HW_ADDR]) {
struct sockaddr addr;
addr.sa_family = ARPHRD_IEEE802154;
nla_memcpy(&addr.sa_data, info->attrs[IEEE802154_ATTR_HW_ADDR],
IEEE802154_ADDR_LEN);
/* strangely enough, some callbacks (inetdev_event) from
* dev_set_mac_address require RTNL_LOCK
*/
rtnl_lock();
rc = dev_set_mac_address(dev, &addr, NULL);
rtnl_unlock();
if (rc)
goto dev_unregister;
}
if (nla_put_string(msg, IEEE802154_ATTR_PHY_NAME, wpan_phy_name(phy)) ||
nla_put_string(msg, IEEE802154_ATTR_DEV_NAME, dev->name))
goto nla_put_failure;
dev_put(dev);
wpan_phy_put(phy);
return ieee802154_nl_reply(msg, info);
dev_unregister:
rtnl_lock(); /* del_iface must be called with RTNL lock */
rdev_del_virtual_intf_deprecated(wpan_phy_to_rdev(phy), dev);
dev_put(dev);
rtnl_unlock();
nla_put_failure:
nlmsg_free(msg);
out_dev:
wpan_phy_put(phy);
return rc;
}
int ieee802154_del_iface(struct sk_buff *skb, struct genl_info *info)
{
struct sk_buff *msg;
struct wpan_phy *phy;
const char *name;
int rc;
struct net_device *dev;
pr_debug("%s\n", __func__);
if (!info->attrs[IEEE802154_ATTR_DEV_NAME])
return -EINVAL;
name = nla_data(info->attrs[IEEE802154_ATTR_DEV_NAME]);
if (name[nla_len(info->attrs[IEEE802154_ATTR_DEV_NAME]) - 1] != '\0')
return -EINVAL; /* name should be null-terminated */
rc = -ENODEV;
dev = dev_get_by_name(genl_info_net(info), name);
if (!dev)
return rc;
if (dev->type != ARPHRD_IEEE802154)
goto out;
phy = dev->ieee802154_ptr->wpan_phy;
BUG_ON(!phy);
get_device(&phy->dev);
rc = -EINVAL;
/* phy name is optional, but should be checked if it's given */
if (info->attrs[IEEE802154_ATTR_PHY_NAME]) {
struct wpan_phy *phy2;
const char *pname =
nla_data(info->attrs[IEEE802154_ATTR_PHY_NAME]);
if (pname[nla_len(info->attrs[IEEE802154_ATTR_PHY_NAME]) - 1]
!= '\0')
/* name should be null-terminated */
goto out_dev;
phy2 = wpan_phy_find(pname);
if (!phy2)
goto out_dev;
if (phy != phy2) {
wpan_phy_put(phy2);
goto out_dev;
}
}
rc = -ENOBUFS;
msg = ieee802154_nl_new_reply(info, 0, IEEE802154_DEL_IFACE);
if (!msg)
goto out_dev;
rtnl_lock();
rdev_del_virtual_intf_deprecated(wpan_phy_to_rdev(phy), dev);
/* We don't have device anymore */
dev_put(dev);
dev = NULL;
rtnl_unlock();
if (nla_put_string(msg, IEEE802154_ATTR_PHY_NAME, wpan_phy_name(phy)) ||
nla_put_string(msg, IEEE802154_ATTR_DEV_NAME, name))
goto nla_put_failure;
wpan_phy_put(phy);
return ieee802154_nl_reply(msg, info);
nla_put_failure:
nlmsg_free(msg);
out_dev:
wpan_phy_put(phy);
out:
if (dev)
dev_put(dev);
return rc;
}