linux/drivers/mmc/au1xmmc.c

1022 lines
23 KiB
C
Raw Normal View History

/*
* linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
*
* Copyright (c) 2005, Advanced Micro Devices, Inc.
*
* Developed with help from the 2.4.30 MMC AU1XXX controller including
* the following copyright notices:
* Copyright (c) 2003-2004 Embedded Edge, LLC.
* Portions Copyright (C) 2002 Embedix, Inc
* Copyright 2002 Hewlett-Packard Company
* 2.6 version of this driver inspired by:
* (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
* All Rights Reserved.
* (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Why is a timer used to detect insert events?
*
* From the AU1100 MMC application guide:
* If the Au1100-based design is intended to support both MultiMediaCards
* and 1- or 4-data bit SecureDigital cards, then the solution is to
* connect a weak (560KOhm) pull-up resistor to connector pin 1.
* In doing so, a MMC card never enters SPI-mode communications,
* but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
* (the low to high transition will not occur).
*
* So we use the timer to check the status manually.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/protocol.h>
#include <asm/io.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#include <asm/scatterlist.h>
#include <au1xxx.h>
#include "au1xmmc.h"
#define DRIVER_NAME "au1xxx-mmc"
/* Set this to enable special debugging macros */
#ifdef DEBUG
#define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
#else
#define DBG(fmt, idx, args...)
#endif
const struct {
u32 iobase;
u32 tx_devid, rx_devid;
u16 bcsrpwr;
u16 bcsrstatus;
u16 wpstatus;
} au1xmmc_card_table[] = {
{ SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
#ifndef CONFIG_MIPS_DB1200
{ SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
#endif
};
#define AU1XMMC_CONTROLLER_COUNT \
(sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
/* This array stores pointers for the hosts (used by the IRQ handler) */
struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
static int dma = 1;
#ifdef MODULE
module_param(dma, bool, 0);
MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
#endif
static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
{
u32 val = au_readl(HOST_CONFIG(host));
val |= mask;
au_writel(val, HOST_CONFIG(host));
au_sync();
}
static inline void FLUSH_FIFO(struct au1xmmc_host *host)
{
u32 val = au_readl(HOST_CONFIG2(host));
au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
au_sync_delay(1);
/* SEND_STOP will turn off clock control - this re-enables it */
val &= ~SD_CONFIG2_DF;
au_writel(val, HOST_CONFIG2(host));
au_sync();
}
static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
{
u32 val = au_readl(HOST_CONFIG(host));
val &= ~mask;
au_writel(val, HOST_CONFIG(host));
au_sync();
}
static inline void SEND_STOP(struct au1xmmc_host *host)
{
/* We know the value of CONFIG2, so avoid a read we don't need */
u32 mask = SD_CONFIG2_EN;
WARN_ON(host->status != HOST_S_DATA);
host->status = HOST_S_STOP;
au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
au_sync();
/* Send the stop commmand */
au_writel(STOP_CMD, HOST_CMD(host));
}
static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
{
u32 val = au1xmmc_card_table[host->id].bcsrpwr;
bcsr->board &= ~val;
if (state) bcsr->board |= val;
au_sync_delay(1);
}
static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
{
return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
? 1 : 0;
}
static inline int au1xmmc_card_readonly(struct au1xmmc_host *host)
{
return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
? 1 : 0;
}
static void au1xmmc_finish_request(struct au1xmmc_host *host)
{
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
host->flags &= HOST_F_ACTIVE;
host->dma.len = 0;
host->dma.dir = 0;
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = 0;
host->status = HOST_S_IDLE;
bcsr->disk_leds |= (1 << 8);
mmc_request_done(host->mmc, mrq);
}
static void au1xmmc_tasklet_finish(unsigned long param)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) param;
au1xmmc_finish_request(host);
}
static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
struct mmc_command *cmd)
{
u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
switch (mmc_resp_type(cmd)) {
case MMC_RSP_R1:
mmccmd |= SD_CMD_RT_1;
break;
case MMC_RSP_R1B:
mmccmd |= SD_CMD_RT_1B;
break;
case MMC_RSP_R2:
mmccmd |= SD_CMD_RT_2;
break;
case MMC_RSP_R3:
mmccmd |= SD_CMD_RT_3;
break;
}
switch(cmd->opcode) {
case MMC_READ_SINGLE_BLOCK:
case SD_APP_SEND_SCR:
mmccmd |= SD_CMD_CT_2;
break;
case MMC_READ_MULTIPLE_BLOCK:
mmccmd |= SD_CMD_CT_4;
break;
case MMC_WRITE_BLOCK:
mmccmd |= SD_CMD_CT_1;
break;
case MMC_WRITE_MULTIPLE_BLOCK:
mmccmd |= SD_CMD_CT_3;
break;
case MMC_STOP_TRANSMISSION:
mmccmd |= SD_CMD_CT_7;
break;
}
au_writel(cmd->arg, HOST_CMDARG(host));
au_sync();
if (wait)
IRQ_OFF(host, SD_CONFIG_CR);
au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
au_sync();
/* Wait for the command to go on the line */
while(1) {
if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
break;
}
/* Wait for the command to come back */
if (wait) {
u32 status = au_readl(HOST_STATUS(host));
while(!(status & SD_STATUS_CR))
status = au_readl(HOST_STATUS(host));
/* Clear the CR status */
au_writel(SD_STATUS_CR, HOST_STATUS(host));
IRQ_ON(host, SD_CONFIG_CR);
}
return MMC_ERR_NONE;
}
static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data;
u32 crc;
WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
if (host->mrq == NULL)
return;
data = mrq->cmd->data;
if (status == 0)
status = au_readl(HOST_STATUS(host));
/* The transaction is really over when the SD_STATUS_DB bit is clear */
while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
status = au_readl(HOST_STATUS(host));
data->error = MMC_ERR_NONE;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
/* Process any errors */
crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
if (host->flags & HOST_F_XMIT)
crc |= ((status & 0x07) == 0x02) ? 0 : 1;
if (crc)
data->error = MMC_ERR_BADCRC;
/* Clear the CRC bits */
au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
data->bytes_xfered = 0;
if (data->error == MMC_ERR_NONE) {
if (host->flags & HOST_F_DMA) {
u32 chan = DMA_CHANNEL(host);
chan_tab_t *c = *((chan_tab_t **) chan);
au1x_dma_chan_t *cp = c->chan_ptr;
data->bytes_xfered = cp->ddma_bytecnt;
}
else
data->bytes_xfered =
(data->blocks * data->blksz) -
host->pio.len;
}
au1xmmc_finish_request(host);
}
static void au1xmmc_tasklet_data(unsigned long param)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) param;
u32 status = au_readl(HOST_STATUS(host));
au1xmmc_data_complete(host, status);
}
#define AU1XMMC_MAX_TRANSFER 8
static void au1xmmc_send_pio(struct au1xmmc_host *host)
{
struct mmc_data *data = 0;
int sg_len, max, count = 0;
unsigned char *sg_ptr;
u32 status = 0;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_XMIT))
return;
/* This is the pointer to the data buffer */
sg = &data->sg[host->pio.index];
sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = data->sg[host->pio.index].length - host->pio.offset;
/* Check to if we need less then the size of the sg_buffer */
max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
for(count = 0; count < max; count++ ) {
unsigned char val;
status = au_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_TH))
break;
val = *sg_ptr++;
au_writel((unsigned long) val, HOST_TXPORT(host));
au_sync();
}
host->pio.len -= count;
host->pio.offset += count;
if (count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
IRQ_OFF(host, SD_CONFIG_TH);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
static void au1xmmc_receive_pio(struct au1xmmc_host *host)
{
struct mmc_data *data = 0;
int sg_len = 0, max = 0, count = 0;
unsigned char *sg_ptr = 0;
u32 status = 0;
struct scatterlist *sg;
data = host->mrq->data;
if (!(host->flags & HOST_F_RECV))
return;
max = host->pio.len;
if (host->pio.index < host->dma.len) {
sg = &data->sg[host->pio.index];
sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
/* This is the space left inside the buffer */
sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
/* Check to if we need less then the size of the sg_buffer */
if (sg_len < max) max = sg_len;
}
if (max > AU1XMMC_MAX_TRANSFER)
max = AU1XMMC_MAX_TRANSFER;
for(count = 0; count < max; count++ ) {
u32 val;
status = au_readl(HOST_STATUS(host));
if (!(status & SD_STATUS_NE))
break;
if (status & SD_STATUS_RC) {
DBG("RX CRC Error [%d + %d].\n", host->id,
host->pio.len, count);
break;
}
if (status & SD_STATUS_RO) {
DBG("RX Overrun [%d + %d]\n", host->id,
host->pio.len, count);
break;
}
else if (status & SD_STATUS_RU) {
DBG("RX Underrun [%d + %d]\n", host->id,
host->pio.len, count);
break;
}
val = au_readl(HOST_RXPORT(host));
if (sg_ptr)
*sg_ptr++ = (unsigned char) (val & 0xFF);
}
host->pio.len -= count;
host->pio.offset += count;
if (sg_len && count == sg_len) {
host->pio.index++;
host->pio.offset = 0;
}
if (host->pio.len == 0) {
//IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
IRQ_OFF(host, SD_CONFIG_NE);
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
}
/* static void au1xmmc_cmd_complete
This is called when a command has been completed - grab the response
and check for errors. Then start the data transfer if it is indicated.
*/
static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
{
struct mmc_request *mrq = host->mrq;
struct mmc_command *cmd;
int trans;
if (!host->mrq)
return;
cmd = mrq->cmd;
cmd->error = MMC_ERR_NONE;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
u32 r[4];
int i;
r[0] = au_readl(host->iobase + SD_RESP3);
r[1] = au_readl(host->iobase + SD_RESP2);
r[2] = au_readl(host->iobase + SD_RESP1);
r[3] = au_readl(host->iobase + SD_RESP0);
/* The CRC is omitted from the response, so really
* we only got 120 bytes, but the engine expects
* 128 bits, so we have to shift things up
*/
for(i = 0; i < 4; i++) {
cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
if (i != 3)
cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
}
} else {
/* Techincally, we should be getting all 48 bits of
* the response (SD_RESP1 + SD_RESP2), but because
* our response omits the CRC, our data ends up
* being shifted 8 bits to the right. In this case,
* that means that the OSR data starts at bit 31,
* so we can just read RESP0 and return that
*/
cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
}
}
/* Figure out errors */
if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
cmd->error = MMC_ERR_BADCRC;
trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
if (!trans || cmd->error != MMC_ERR_NONE) {
IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
tasklet_schedule(&host->finish_task);
return;
}
host->status = HOST_S_DATA;
if (host->flags & HOST_F_DMA) {
u32 channel = DMA_CHANNEL(host);
/* Start the DMA as soon as the buffer gets something in it */
if (host->flags & HOST_F_RECV) {
u32 mask = SD_STATUS_DB | SD_STATUS_NE;
while((status & mask) != mask)
status = au_readl(HOST_STATUS(host));
}
au1xxx_dbdma_start(channel);
}
}
static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
{
unsigned int pbus = get_au1x00_speed();
unsigned int divisor;
u32 config;
/* From databook:
divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
*/
pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
pbus /= 2;
divisor = ((pbus / rate) / 2) - 1;
config = au_readl(HOST_CONFIG(host));
config &= ~(SD_CONFIG_DIV);
config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
au_writel(config, HOST_CONFIG(host));
au_sync();
}
static int
au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
{
int datalen = data->blocks * data->blksz;
if (dma != 0)
host->flags |= HOST_F_DMA;
if (data->flags & MMC_DATA_READ)
host->flags |= HOST_F_RECV;
else
host->flags |= HOST_F_XMIT;
if (host->mrq->stop)
host->flags |= HOST_F_STOP;
host->dma.dir = DMA_BIDIRECTIONAL;
host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, host->dma.dir);
if (host->dma.len == 0)
return MMC_ERR_TIMEOUT;
au_writel(data->blksz - 1, HOST_BLKSIZE(host));
if (host->flags & HOST_F_DMA) {
int i;
u32 channel = DMA_CHANNEL(host);
au1xxx_dbdma_stop(channel);
for(i = 0; i < host->dma.len; i++) {
u32 ret = 0, flags = DDMA_FLAGS_NOIE;
struct scatterlist *sg = &data->sg[i];
int sg_len = sg->length;
int len = (datalen > sg_len) ? sg_len : datalen;
if (i == host->dma.len - 1)
flags = DDMA_FLAGS_IE;
if (host->flags & HOST_F_XMIT){
ret = au1xxx_dbdma_put_source_flags(channel,
(void *) (page_address(sg->page) +
sg->offset),
len, flags);
}
else {
ret = au1xxx_dbdma_put_dest_flags(channel,
(void *) (page_address(sg->page) +
sg->offset),
len, flags);
}
if (!ret)
goto dataerr;
datalen -= len;
}
}
else {
host->pio.index = 0;
host->pio.offset = 0;
host->pio.len = datalen;
if (host->flags & HOST_F_XMIT)
IRQ_ON(host, SD_CONFIG_TH);
else
IRQ_ON(host, SD_CONFIG_NE);
//IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
}
return MMC_ERR_NONE;
dataerr:
dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
return MMC_ERR_TIMEOUT;
}
/* static void au1xmmc_request
This actually starts a command or data transaction
*/
static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
{
struct au1xmmc_host *host = mmc_priv(mmc);
int ret = MMC_ERR_NONE;
WARN_ON(irqs_disabled());
WARN_ON(host->status != HOST_S_IDLE);
host->mrq = mrq;
host->status = HOST_S_CMD;
bcsr->disk_leds &= ~(1 << 8);
if (mrq->data) {
FLUSH_FIFO(host);
ret = au1xmmc_prepare_data(host, mrq->data);
}
if (ret == MMC_ERR_NONE)
ret = au1xmmc_send_command(host, 0, mrq->cmd);
if (ret != MMC_ERR_NONE) {
mrq->cmd->error = ret;
au1xmmc_finish_request(host);
}
}
static void au1xmmc_reset_controller(struct au1xmmc_host *host)
{
/* Apply the clock */
au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
au_sync_delay(1);
au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
au_sync_delay(5);
au_writel(~0, HOST_STATUS(host));
au_sync();
au_writel(0, HOST_BLKSIZE(host));
au_writel(0x001fffff, HOST_TIMEOUT(host));
au_sync();
au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
au_sync();
au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
au_sync_delay(1);
au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
au_sync();
/* Configure interrupts */
au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
au_sync();
}
static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
{
struct au1xmmc_host *host = mmc_priv(mmc);
if (ios->power_mode == MMC_POWER_OFF)
au1xmmc_set_power(host, 0);
else if (ios->power_mode == MMC_POWER_ON) {
au1xmmc_set_power(host, 1);
}
if (ios->clock && ios->clock != host->clock) {
au1xmmc_set_clock(host, ios->clock);
host->clock = ios->clock;
}
}
static void au1xmmc_dma_callback(int irq, void *dev_id)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
/* Avoid spurious interrupts */
if (!host->mrq)
return;
if (host->flags & HOST_F_STOP)
SEND_STOP(host);
tasklet_schedule(&host->data_task);
}
#define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
#define STATUS_DATA_IN (SD_STATUS_NE)
#define STATUS_DATA_OUT (SD_STATUS_TH)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t au1xmmc_irq(int irq, void *dev_id)
{
u32 status;
int i, ret = 0;
disable_irq(AU1100_SD_IRQ);
for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
struct au1xmmc_host * host = au1xmmc_hosts[i];
u32 handled = 1;
status = au_readl(HOST_STATUS(host));
if (host->mrq && (status & STATUS_TIMEOUT)) {
if (status & SD_STATUS_RAT)
host->mrq->cmd->error = MMC_ERR_TIMEOUT;
else if (status & SD_STATUS_DT)
host->mrq->data->error = MMC_ERR_TIMEOUT;
/* In PIO mode, interrupts might still be enabled */
IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
//IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
tasklet_schedule(&host->finish_task);
}
#if 0
else if (status & SD_STATUS_DD) {
/* Sometimes we get a DD before a NE in PIO mode */
if (!(host->flags & HOST_F_DMA) &&
(status & SD_STATUS_NE))
au1xmmc_receive_pio(host);
else {
au1xmmc_data_complete(host, status);
//tasklet_schedule(&host->data_task);
}
}
#endif
else if (status & (SD_STATUS_CR)) {
if (host->status == HOST_S_CMD)
au1xmmc_cmd_complete(host,status);
}
else if (!(host->flags & HOST_F_DMA)) {
if ((host->flags & HOST_F_XMIT) &&
(status & STATUS_DATA_OUT))
au1xmmc_send_pio(host);
else if ((host->flags & HOST_F_RECV) &&
(status & STATUS_DATA_IN))
au1xmmc_receive_pio(host);
}
else if (status & 0x203FBC70) {
DBG("Unhandled status %8.8x\n", host->id, status);
handled = 0;
}
au_writel(status, HOST_STATUS(host));
au_sync();
ret |= handled;
}
enable_irq(AU1100_SD_IRQ);
return ret;
}
static void au1xmmc_poll_event(unsigned long arg)
{
struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
int card = au1xmmc_card_inserted(host);
int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
if (card != controller) {
host->flags &= ~HOST_F_ACTIVE;
if (card) host->flags |= HOST_F_ACTIVE;
mmc_detect_change(host->mmc, 0);
}
if (host->mrq != NULL) {
u32 status = au_readl(HOST_STATUS(host));
DBG("PENDING - %8.8x\n", host->id, status);
}
mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
}
static dbdev_tab_t au1xmmc_mem_dbdev =
{
DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
};
static void au1xmmc_init_dma(struct au1xmmc_host *host)
{
u32 rxchan, txchan;
int txid = au1xmmc_card_table[host->id].tx_devid;
int rxid = au1xmmc_card_table[host->id].rx_devid;
/* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
of 8 bits. And since devices are shared, we need to create
our own to avoid freaking out other devices
*/
int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
txchan = au1xxx_dbdma_chan_alloc(memid, txid,
au1xmmc_dma_callback, (void *) host);
rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
au1xmmc_dma_callback, (void *) host);
au1xxx_dbdma_set_devwidth(txchan, 8);
au1xxx_dbdma_set_devwidth(rxchan, 8);
au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
host->tx_chan = txchan;
host->rx_chan = rxchan;
}
static const struct mmc_host_ops au1xmmc_ops = {
.request = au1xmmc_request,
.set_ios = au1xmmc_set_ios,
};
static int __devinit au1xmmc_probe(struct platform_device *pdev)
{
int i, ret = 0;
/* THe interrupt is shared among all controllers */
ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, IRQF_DISABLED, "MMC", 0);
if (ret) {
printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
AU1100_SD_IRQ, ret);
return -ENXIO;
}
disable_irq(AU1100_SD_IRQ);
for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
struct au1xmmc_host *host = 0;
if (!mmc) {
printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
au1xmmc_hosts[i] = 0;
continue;
}
mmc->ops = &au1xmmc_ops;
mmc->f_min = 450000;
mmc->f_max = 24000000;
mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
mmc->ocr_avail = AU1XMMC_OCR;
host = mmc_priv(mmc);
host->mmc = mmc;
host->id = i;
host->iobase = au1xmmc_card_table[host->id].iobase;
host->clock = 0;
host->power_mode = MMC_POWER_OFF;
host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
host->status = HOST_S_IDLE;
init_timer(&host->timer);
host->timer.function = au1xmmc_poll_event;
host->timer.data = (unsigned long) host;
host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
tasklet_init(&host->data_task, au1xmmc_tasklet_data,
(unsigned long) host);
tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
(unsigned long) host);
spin_lock_init(&host->lock);
if (dma != 0)
au1xmmc_init_dma(host);
au1xmmc_reset_controller(host);
mmc_add_host(mmc);
au1xmmc_hosts[i] = host;
add_timer(&host->timer);
printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
host->id, host->iobase, dma ? "dma" : "pio");
}
enable_irq(AU1100_SD_IRQ);
return 0;
}
static int __devexit au1xmmc_remove(struct platform_device *pdev)
{
int i;
disable_irq(AU1100_SD_IRQ);
for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
struct au1xmmc_host *host = au1xmmc_hosts[i];
if (!host) continue;
tasklet_kill(&host->data_task);
tasklet_kill(&host->finish_task);
del_timer_sync(&host->timer);
au1xmmc_set_power(host, 0);
mmc_remove_host(host->mmc);
au1xxx_dbdma_chan_free(host->tx_chan);
au1xxx_dbdma_chan_free(host->rx_chan);
au_writel(0x0, HOST_ENABLE(host));
au_sync();
}
free_irq(AU1100_SD_IRQ, 0);
return 0;
}
static struct platform_driver au1xmmc_driver = {
.probe = au1xmmc_probe,
.remove = au1xmmc_remove,
.suspend = NULL,
.resume = NULL,
.driver = {
.name = DRIVER_NAME,
},
};
static int __init au1xmmc_init(void)
{
return platform_driver_register(&au1xmmc_driver);
}
static void __exit au1xmmc_exit(void)
{
platform_driver_unregister(&au1xmmc_driver);
}
module_init(au1xmmc_init);
module_exit(au1xmmc_exit);
#ifdef MODULE
MODULE_AUTHOR("Advanced Micro Devices, Inc");
MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
MODULE_LICENSE("GPL");
#endif