linux/drivers/crypto/omap-aes.c

1110 lines
26 KiB
C
Raw Normal View History

/*
* Cryptographic API.
*
* Support for OMAP AES HW acceleration.
*
* Copyright (c) 2010 Nokia Corporation
* Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
* Copyright (c) 2011 Texas Instruments Incorporated
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#define pr_fmt(fmt) "%20s: " fmt, __func__
#define prn(num) pr_debug(#num "=%d\n", num)
#define prx(num) pr_debug(#num "=%x\n", num)
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/omap-dma.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/io.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <crypto/scatterwalk.h>
#include <crypto/aes.h>
#define DST_MAXBURST 4
#define DMA_MIN (DST_MAXBURST * sizeof(u32))
/* OMAP TRM gives bitfields as start:end, where start is the higher bit
number. For example 7:0 */
#define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
#define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end))
#define AES_REG_KEY(dd, x) ((dd)->pdata->key_ofs - \
((x ^ 0x01) * 0x04))
#define AES_REG_IV(dd, x) ((dd)->pdata->iv_ofs + ((x) * 0x04))
#define AES_REG_CTRL(dd) ((dd)->pdata->ctrl_ofs)
#define AES_REG_CTRL_CTR_WIDTH_MASK (3 << 7)
#define AES_REG_CTRL_CTR_WIDTH_32 (0 << 7)
#define AES_REG_CTRL_CTR_WIDTH_64 (1 << 7)
#define AES_REG_CTRL_CTR_WIDTH_96 (2 << 7)
#define AES_REG_CTRL_CTR_WIDTH_128 (3 << 7)
#define AES_REG_CTRL_CTR (1 << 6)
#define AES_REG_CTRL_CBC (1 << 5)
#define AES_REG_CTRL_KEY_SIZE (3 << 3)
#define AES_REG_CTRL_DIRECTION (1 << 2)
#define AES_REG_CTRL_INPUT_READY (1 << 1)
#define AES_REG_CTRL_OUTPUT_READY (1 << 0)
#define AES_REG_DATA_N(dd, x) ((dd)->pdata->data_ofs + ((x) * 0x04))
#define AES_REG_REV(dd) ((dd)->pdata->rev_ofs)
#define AES_REG_MASK(dd) ((dd)->pdata->mask_ofs)
#define AES_REG_MASK_SIDLE (1 << 6)
#define AES_REG_MASK_START (1 << 5)
#define AES_REG_MASK_DMA_OUT_EN (1 << 3)
#define AES_REG_MASK_DMA_IN_EN (1 << 2)
#define AES_REG_MASK_SOFTRESET (1 << 1)
#define AES_REG_AUTOIDLE (1 << 0)
#define AES_REG_LENGTH_N(x) (0x54 + ((x) * 0x04))
#define DEFAULT_TIMEOUT (5*HZ)
#define FLAGS_MODE_MASK 0x000f
#define FLAGS_ENCRYPT BIT(0)
#define FLAGS_CBC BIT(1)
#define FLAGS_GIV BIT(2)
#define FLAGS_CTR BIT(3)
#define FLAGS_INIT BIT(4)
#define FLAGS_FAST BIT(5)
#define FLAGS_BUSY BIT(6)
struct omap_aes_ctx {
struct omap_aes_dev *dd;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
unsigned long flags;
};
struct omap_aes_reqctx {
unsigned long mode;
};
#define OMAP_AES_QUEUE_LENGTH 1
#define OMAP_AES_CACHE_SIZE 0
struct omap_aes_algs_info {
struct crypto_alg *algs_list;
unsigned int size;
unsigned int registered;
};
struct omap_aes_pdata {
struct omap_aes_algs_info *algs_info;
unsigned int algs_info_size;
void (*trigger)(struct omap_aes_dev *dd, int length);
u32 key_ofs;
u32 iv_ofs;
u32 ctrl_ofs;
u32 data_ofs;
u32 rev_ofs;
u32 mask_ofs;
u32 dma_enable_in;
u32 dma_enable_out;
u32 dma_start;
u32 major_mask;
u32 major_shift;
u32 minor_mask;
u32 minor_shift;
};
struct omap_aes_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct omap_aes_ctx *ctx;
struct device *dev;
unsigned long flags;
int err;
spinlock_t lock;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct ablkcipher_request *req;
size_t total;
struct scatterlist *in_sg;
struct scatterlist *out_sg;
int dma_in;
struct dma_chan *dma_lch_in;
int dma_out;
struct dma_chan *dma_lch_out;
int in_sg_len;
int out_sg_len;
const struct omap_aes_pdata *pdata;
};
/* keep registered devices data here */
static LIST_HEAD(dev_list);
static DEFINE_SPINLOCK(list_lock);
#ifdef DEBUG
#define omap_aes_read(dd, offset) \
({ \
int _read_ret; \
_read_ret = __raw_readl(dd->io_base + offset); \
pr_debug("omap_aes_read(" #offset "=%#x)= %#x\n", \
offset, _read_ret); \
_read_ret; \
})
#else
static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
{
return __raw_readl(dd->io_base + offset);
}
#endif
#ifdef DEBUG
#define omap_aes_write(dd, offset, value) \
do { \
pr_debug("omap_aes_write(" #offset "=%#x) value=%#x\n", \
offset, value); \
__raw_writel(value, dd->io_base + offset); \
} while (0)
#else
static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
u32 value)
{
__raw_writel(value, dd->io_base + offset);
}
#endif
static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
u32 value, u32 mask)
{
u32 val;
val = omap_aes_read(dd, offset);
val &= ~mask;
val |= value;
omap_aes_write(dd, offset, val);
}
static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
omap_aes_write(dd, offset, *value);
}
static int omap_aes_hw_init(struct omap_aes_dev *dd)
{
if (!(dd->flags & FLAGS_INIT)) {
dd->flags |= FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static int omap_aes_write_ctrl(struct omap_aes_dev *dd)
{
unsigned int key32;
int i, err;
u32 val, mask = 0;
err = omap_aes_hw_init(dd);
if (err)
return err;
key32 = dd->ctx->keylen / sizeof(u32);
/* it seems a key should always be set even if it has not changed */
for (i = 0; i < key32; i++) {
omap_aes_write(dd, AES_REG_KEY(dd, i),
__le32_to_cpu(dd->ctx->key[i]));
}
if ((dd->flags & (FLAGS_CBC | FLAGS_CTR)) && dd->req->info)
omap_aes_write_n(dd, AES_REG_IV(dd, 0), dd->req->info, 4);
val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
if (dd->flags & FLAGS_CBC)
val |= AES_REG_CTRL_CBC;
if (dd->flags & FLAGS_CTR) {
val |= AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_32;
mask = AES_REG_CTRL_CTR | AES_REG_CTRL_CTR_WIDTH_MASK;
}
if (dd->flags & FLAGS_ENCRYPT)
val |= AES_REG_CTRL_DIRECTION;
mask |= AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION |
AES_REG_CTRL_KEY_SIZE;
omap_aes_write_mask(dd, AES_REG_CTRL(dd), val, mask);
return 0;
}
static void omap_aes_dma_trigger_omap2(struct omap_aes_dev *dd, int length)
{
u32 mask, val;
val = dd->pdata->dma_start;
if (dd->dma_lch_out != NULL)
val |= dd->pdata->dma_enable_out;
if (dd->dma_lch_in != NULL)
val |= dd->pdata->dma_enable_in;
mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
dd->pdata->dma_start;
omap_aes_write_mask(dd, AES_REG_MASK(dd), val, mask);
}
static void omap_aes_dma_trigger_omap4(struct omap_aes_dev *dd, int length)
{
omap_aes_write(dd, AES_REG_LENGTH_N(0), length);
omap_aes_write(dd, AES_REG_LENGTH_N(1), 0);
omap_aes_dma_trigger_omap2(dd, length);
}
static void omap_aes_dma_stop(struct omap_aes_dev *dd)
{
u32 mask;
mask = dd->pdata->dma_enable_out | dd->pdata->dma_enable_in |
dd->pdata->dma_start;
omap_aes_write_mask(dd, AES_REG_MASK(dd), 0, mask);
}
static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx)
{
struct omap_aes_dev *dd = NULL, *tmp;
spin_lock_bh(&list_lock);
if (!ctx->dd) {
list_for_each_entry(tmp, &dev_list, list) {
/* FIXME: take fist available aes core */
dd = tmp;
break;
}
ctx->dd = dd;
} else {
/* already found before */
dd = ctx->dd;
}
spin_unlock_bh(&list_lock);
return dd;
}
static void omap_aes_dma_out_callback(void *data)
{
struct omap_aes_dev *dd = data;
/* dma_lch_out - completed */
tasklet_schedule(&dd->done_task);
}
static int omap_aes_dma_init(struct omap_aes_dev *dd)
{
int err = -ENOMEM;
dma_cap_mask_t mask;
dd->dma_lch_out = NULL;
dd->dma_lch_in = NULL;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dd->dma_lch_in = dma_request_slave_channel_compat(mask,
omap_dma_filter_fn,
&dd->dma_in,
dd->dev, "rx");
if (!dd->dma_lch_in) {
dev_err(dd->dev, "Unable to request in DMA channel\n");
goto err_dma_in;
}
dd->dma_lch_out = dma_request_slave_channel_compat(mask,
omap_dma_filter_fn,
&dd->dma_out,
dd->dev, "tx");
if (!dd->dma_lch_out) {
dev_err(dd->dev, "Unable to request out DMA channel\n");
goto err_dma_out;
}
return 0;
err_dma_out:
dma_release_channel(dd->dma_lch_in);
err_dma_in:
if (err)
pr_err("error: %d\n", err);
return err;
}
static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
{
dma_release_channel(dd->dma_lch_out);
dma_release_channel(dd->dma_lch_in);
}
static void sg_copy_buf(void *buf, struct scatterlist *sg,
unsigned int start, unsigned int nbytes, int out)
{
struct scatter_walk walk;
if (!nbytes)
return;
scatterwalk_start(&walk, sg);
scatterwalk_advance(&walk, start);
scatterwalk_copychunks(buf, &walk, nbytes, out);
scatterwalk_done(&walk, out, 0);
}
static int omap_aes_crypt_dma(struct crypto_tfm *tfm,
struct scatterlist *in_sg, struct scatterlist *out_sg,
int in_sg_len, int out_sg_len)
{
struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
struct omap_aes_dev *dd = ctx->dd;
struct dma_async_tx_descriptor *tx_in, *tx_out;
struct dma_slave_config cfg;
int ret;
dma_sync_sg_for_device(dd->dev, dd->in_sg, in_sg_len, DMA_TO_DEVICE);
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
cfg.dst_addr = dd->phys_base + AES_REG_DATA_N(dd, 0);
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = DST_MAXBURST;
cfg.dst_maxburst = DST_MAXBURST;
/* IN */
ret = dmaengine_slave_config(dd->dma_lch_in, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
return ret;
}
tx_in = dmaengine_prep_slave_sg(dd->dma_lch_in, in_sg, in_sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_in) {
dev_err(dd->dev, "IN prep_slave_sg() failed\n");
return -EINVAL;
}
/* No callback necessary */
tx_in->callback_param = dd;
/* OUT */
ret = dmaengine_slave_config(dd->dma_lch_out, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
ret);
return ret;
}
tx_out = dmaengine_prep_slave_sg(dd->dma_lch_out, out_sg, out_sg_len,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_out) {
dev_err(dd->dev, "OUT prep_slave_sg() failed\n");
return -EINVAL;
}
tx_out->callback = omap_aes_dma_out_callback;
tx_out->callback_param = dd;
dmaengine_submit(tx_in);
dmaengine_submit(tx_out);
dma_async_issue_pending(dd->dma_lch_in);
dma_async_issue_pending(dd->dma_lch_out);
/* start DMA */
dd->pdata->trigger(dd, dd->total);
return 0;
}
static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(
crypto_ablkcipher_reqtfm(dd->req));
int err;
pr_debug("total: %d\n", dd->total);
err = dma_map_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = dma_map_sg(dd->dev, dd->out_sg, dd->out_sg_len, DMA_FROM_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = omap_aes_crypt_dma(tfm, dd->in_sg, dd->out_sg, dd->in_sg_len,
dd->out_sg_len);
if (err) {
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len,
DMA_FROM_DEVICE);
}
return err;
}
static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
{
struct ablkcipher_request *req = dd->req;
pr_debug("err: %d\n", err);
dd->flags &= ~FLAGS_BUSY;
req->base.complete(&req->base, err);
}
static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
{
int err = 0;
pr_debug("total: %d\n", dd->total);
omap_aes_dma_stop(dd);
dmaengine_terminate_all(dd->dma_lch_in);
dmaengine_terminate_all(dd->dma_lch_out);
dma_unmap_sg(dd->dev, dd->in_sg, dd->in_sg_len, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, dd->out_sg_len, DMA_FROM_DEVICE);
return err;
}
static int omap_aes_handle_queue(struct omap_aes_dev *dd,
struct ablkcipher_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct omap_aes_ctx *ctx;
struct omap_aes_reqctx *rctx;
unsigned long flags;
int err, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ablkcipher_enqueue_request(&dd->queue, req);
if (dd->flags & FLAGS_BUSY) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
/* assign new request to device */
dd->req = req;
dd->total = req->nbytes;
dd->in_sg = req->src;
dd->out_sg = req->dst;
dd->in_sg_len = scatterwalk_bytes_sglen(dd->in_sg, dd->total);
dd->out_sg_len = scatterwalk_bytes_sglen(dd->out_sg, dd->total);
BUG_ON(dd->in_sg_len < 0 || dd->out_sg_len < 0);
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
ctx->dd = dd;
err = omap_aes_write_ctrl(dd);
if (!err)
err = omap_aes_crypt_dma_start(dd);
if (err) {
/* aes_task will not finish it, so do it here */
omap_aes_finish_req(dd, err);
tasklet_schedule(&dd->queue_task);
}
return ret; /* return ret, which is enqueue return value */
}
static void omap_aes_done_task(unsigned long data)
{
struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
pr_debug("enter done_task\n");
dma_sync_sg_for_cpu(dd->dev, dd->in_sg, dd->in_sg_len, DMA_FROM_DEVICE);
omap_aes_crypt_dma_stop(dd);
omap_aes_finish_req(dd, 0);
omap_aes_handle_queue(dd, NULL);
pr_debug("exit\n");
}
static void omap_aes_queue_task(unsigned long data)
{
struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
omap_aes_handle_queue(dd, NULL);
}
static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
struct omap_aes_dev *dd;
pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes,
!!(mode & FLAGS_ENCRYPT),
!!(mode & FLAGS_CBC));
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
dd = omap_aes_find_dev(ctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return omap_aes_handle_queue(dd, req);
}
/* ********************** ALG API ************************************ */
static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
pr_debug("enter, keylen: %d\n", keylen);
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int omap_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT);
}
static int omap_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, 0);
}
static int omap_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
}
static int omap_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_CBC);
}
static int omap_aes_ctr_encrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CTR);
}
static int omap_aes_ctr_decrypt(struct ablkcipher_request *req)
{
return omap_aes_crypt(req, FLAGS_CTR);
}
static int omap_aes_cra_init(struct crypto_tfm *tfm)
{
crypto: omap-aes - Don't idle/start AES device between Encrypt operations Calling runtime PM API for every block causes serious perf hit to crypto operations that are done on a long buffer. As crypto is performed on a page boundary, encrypting large buffers can cause a series of crypto operations divided by page. The runtime PM API is also called those many times. We call runtime_pm_get_sync only at beginning on the session (cra_init) and runtime_pm_put at the end. This result in upto a 50% speedup as below. This doesn't make the driver to keep the system awake as runtime get/put is only called during a crypto session which completes usually quickly. Before: root@beagleboard:~# time -v openssl speed -evp aes-128-cbc Doing aes-128-cbc for 3s on 16 size blocks: 13310 aes-128-cbc's in 0.01s Doing aes-128-cbc for 3s on 64 size blocks: 13040 aes-128-cbc's in 0.04s Doing aes-128-cbc for 3s on 256 size blocks: 9134 aes-128-cbc's in 0.03s Doing aes-128-cbc for 3s on 1024 size blocks: 8939 aes-128-cbc's in 0.01s Doing aes-128-cbc for 3s on 8192 size blocks: 4299 aes-128-cbc's in 0.00s After: root@beagleboard:~# time -v openssl speed -evp aes-128-cbc Doing aes-128-cbc for 3s on 16 size blocks: 18911 aes-128-cbc's in 0.02s Doing aes-128-cbc for 3s on 64 size blocks: 18878 aes-128-cbc's in 0.02s Doing aes-128-cbc for 3s on 256 size blocks: 11878 aes-128-cbc's in 0.10s Doing aes-128-cbc for 3s on 1024 size blocks: 11538 aes-128-cbc's in 0.05s Doing aes-128-cbc for 3s on 8192 size blocks: 4857 aes-128-cbc's in 0.03s While at it, also drop enter and exit pr_debugs, in related code. tracers can be used for that. Tested on a Beaglebone (AM335x SoC) board. Signed-off-by: Joel A Fernandes <joelagnel@ti.com> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-05-29 00:02:55 +00:00
struct omap_aes_dev *dd = NULL;
/* Find AES device, currently picks the first device */
spin_lock_bh(&list_lock);
list_for_each_entry(dd, &dev_list, list) {
break;
}
spin_unlock_bh(&list_lock);
crypto: omap-aes - Don't idle/start AES device between Encrypt operations Calling runtime PM API for every block causes serious perf hit to crypto operations that are done on a long buffer. As crypto is performed on a page boundary, encrypting large buffers can cause a series of crypto operations divided by page. The runtime PM API is also called those many times. We call runtime_pm_get_sync only at beginning on the session (cra_init) and runtime_pm_put at the end. This result in upto a 50% speedup as below. This doesn't make the driver to keep the system awake as runtime get/put is only called during a crypto session which completes usually quickly. Before: root@beagleboard:~# time -v openssl speed -evp aes-128-cbc Doing aes-128-cbc for 3s on 16 size blocks: 13310 aes-128-cbc's in 0.01s Doing aes-128-cbc for 3s on 64 size blocks: 13040 aes-128-cbc's in 0.04s Doing aes-128-cbc for 3s on 256 size blocks: 9134 aes-128-cbc's in 0.03s Doing aes-128-cbc for 3s on 1024 size blocks: 8939 aes-128-cbc's in 0.01s Doing aes-128-cbc for 3s on 8192 size blocks: 4299 aes-128-cbc's in 0.00s After: root@beagleboard:~# time -v openssl speed -evp aes-128-cbc Doing aes-128-cbc for 3s on 16 size blocks: 18911 aes-128-cbc's in 0.02s Doing aes-128-cbc for 3s on 64 size blocks: 18878 aes-128-cbc's in 0.02s Doing aes-128-cbc for 3s on 256 size blocks: 11878 aes-128-cbc's in 0.10s Doing aes-128-cbc for 3s on 1024 size blocks: 11538 aes-128-cbc's in 0.05s Doing aes-128-cbc for 3s on 8192 size blocks: 4857 aes-128-cbc's in 0.03s While at it, also drop enter and exit pr_debugs, in related code. tracers can be used for that. Tested on a Beaglebone (AM335x SoC) board. Signed-off-by: Joel A Fernandes <joelagnel@ti.com> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-05-29 00:02:55 +00:00
pm_runtime_get_sync(dd->dev);
tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
return 0;
}
static void omap_aes_cra_exit(struct crypto_tfm *tfm)
{
crypto: omap-aes - Don't idle/start AES device between Encrypt operations Calling runtime PM API for every block causes serious perf hit to crypto operations that are done on a long buffer. As crypto is performed on a page boundary, encrypting large buffers can cause a series of crypto operations divided by page. The runtime PM API is also called those many times. We call runtime_pm_get_sync only at beginning on the session (cra_init) and runtime_pm_put at the end. This result in upto a 50% speedup as below. This doesn't make the driver to keep the system awake as runtime get/put is only called during a crypto session which completes usually quickly. Before: root@beagleboard:~# time -v openssl speed -evp aes-128-cbc Doing aes-128-cbc for 3s on 16 size blocks: 13310 aes-128-cbc's in 0.01s Doing aes-128-cbc for 3s on 64 size blocks: 13040 aes-128-cbc's in 0.04s Doing aes-128-cbc for 3s on 256 size blocks: 9134 aes-128-cbc's in 0.03s Doing aes-128-cbc for 3s on 1024 size blocks: 8939 aes-128-cbc's in 0.01s Doing aes-128-cbc for 3s on 8192 size blocks: 4299 aes-128-cbc's in 0.00s After: root@beagleboard:~# time -v openssl speed -evp aes-128-cbc Doing aes-128-cbc for 3s on 16 size blocks: 18911 aes-128-cbc's in 0.02s Doing aes-128-cbc for 3s on 64 size blocks: 18878 aes-128-cbc's in 0.02s Doing aes-128-cbc for 3s on 256 size blocks: 11878 aes-128-cbc's in 0.10s Doing aes-128-cbc for 3s on 1024 size blocks: 11538 aes-128-cbc's in 0.05s Doing aes-128-cbc for 3s on 8192 size blocks: 4857 aes-128-cbc's in 0.03s While at it, also drop enter and exit pr_debugs, in related code. tracers can be used for that. Tested on a Beaglebone (AM335x SoC) board. Signed-off-by: Joel A Fernandes <joelagnel@ti.com> Acked-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-05-29 00:02:55 +00:00
struct omap_aes_dev *dd = NULL;
/* Find AES device, currently picks the first device */
spin_lock_bh(&list_lock);
list_for_each_entry(dd, &dev_list, list) {
break;
}
spin_unlock_bh(&list_lock);
pm_runtime_put_sync(dd->dev);
}
/* ********************** ALGS ************************************ */
static struct crypto_alg algs_ecb_cbc[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-omap",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = omap_aes_cra_init,
.cra_exit = omap_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_ecb_encrypt,
.decrypt = omap_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-omap",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = omap_aes_cra_init,
.cra_exit = omap_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_cbc_encrypt,
.decrypt = omap_aes_cbc_decrypt,
}
}
};
static struct crypto_alg algs_ctr[] = {
{
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-omap",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct omap_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = omap_aes_cra_init,
.cra_exit = omap_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.geniv = "eseqiv",
.ivsize = AES_BLOCK_SIZE,
.setkey = omap_aes_setkey,
.encrypt = omap_aes_ctr_encrypt,
.decrypt = omap_aes_ctr_decrypt,
}
} ,
};
static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc[] = {
{
.algs_list = algs_ecb_cbc,
.size = ARRAY_SIZE(algs_ecb_cbc),
},
};
static const struct omap_aes_pdata omap_aes_pdata_omap2 = {
.algs_info = omap_aes_algs_info_ecb_cbc,
.algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc),
.trigger = omap_aes_dma_trigger_omap2,
.key_ofs = 0x1c,
.iv_ofs = 0x20,
.ctrl_ofs = 0x30,
.data_ofs = 0x34,
.rev_ofs = 0x44,
.mask_ofs = 0x48,
.dma_enable_in = BIT(2),
.dma_enable_out = BIT(3),
.dma_start = BIT(5),
.major_mask = 0xf0,
.major_shift = 4,
.minor_mask = 0x0f,
.minor_shift = 0,
};
#ifdef CONFIG_OF
static struct omap_aes_algs_info omap_aes_algs_info_ecb_cbc_ctr[] = {
{
.algs_list = algs_ecb_cbc,
.size = ARRAY_SIZE(algs_ecb_cbc),
},
{
.algs_list = algs_ctr,
.size = ARRAY_SIZE(algs_ctr),
},
};
static const struct omap_aes_pdata omap_aes_pdata_omap3 = {
.algs_info = omap_aes_algs_info_ecb_cbc_ctr,
.algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
.trigger = omap_aes_dma_trigger_omap2,
.key_ofs = 0x1c,
.iv_ofs = 0x20,
.ctrl_ofs = 0x30,
.data_ofs = 0x34,
.rev_ofs = 0x44,
.mask_ofs = 0x48,
.dma_enable_in = BIT(2),
.dma_enable_out = BIT(3),
.dma_start = BIT(5),
.major_mask = 0xf0,
.major_shift = 4,
.minor_mask = 0x0f,
.minor_shift = 0,
};
static const struct omap_aes_pdata omap_aes_pdata_omap4 = {
.algs_info = omap_aes_algs_info_ecb_cbc_ctr,
.algs_info_size = ARRAY_SIZE(omap_aes_algs_info_ecb_cbc_ctr),
.trigger = omap_aes_dma_trigger_omap4,
.key_ofs = 0x3c,
.iv_ofs = 0x40,
.ctrl_ofs = 0x50,
.data_ofs = 0x60,
.rev_ofs = 0x80,
.mask_ofs = 0x84,
.dma_enable_in = BIT(5),
.dma_enable_out = BIT(6),
.major_mask = 0x0700,
.major_shift = 8,
.minor_mask = 0x003f,
.minor_shift = 0,
};
static const struct of_device_id omap_aes_of_match[] = {
{
.compatible = "ti,omap2-aes",
.data = &omap_aes_pdata_omap2,
},
{
.compatible = "ti,omap3-aes",
.data = &omap_aes_pdata_omap3,
},
{
.compatible = "ti,omap4-aes",
.data = &omap_aes_pdata_omap4,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_aes_of_match);
static int omap_aes_get_res_of(struct omap_aes_dev *dd,
struct device *dev, struct resource *res)
{
struct device_node *node = dev->of_node;
const struct of_device_id *match;
int err = 0;
match = of_match_device(of_match_ptr(omap_aes_of_match), dev);
if (!match) {
dev_err(dev, "no compatible OF match\n");
err = -EINVAL;
goto err;
}
err = of_address_to_resource(node, 0, res);
if (err < 0) {
dev_err(dev, "can't translate OF node address\n");
err = -EINVAL;
goto err;
}
dd->dma_out = -1; /* Dummy value that's unused */
dd->dma_in = -1; /* Dummy value that's unused */
dd->pdata = match->data;
err:
return err;
}
#else
static const struct of_device_id omap_aes_of_match[] = {
{},
};
static int omap_aes_get_res_of(struct omap_aes_dev *dd,
struct device *dev, struct resource *res)
{
return -EINVAL;
}
#endif
static int omap_aes_get_res_pdev(struct omap_aes_dev *dd,
struct platform_device *pdev, struct resource *res)
{
struct device *dev = &pdev->dev;
struct resource *r;
int err = 0;
/* Get the base address */
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto err;
}
memcpy(res, r, sizeof(*res));
/* Get the DMA out channel */
r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (!r) {
dev_err(dev, "no DMA out resource info\n");
err = -ENODEV;
goto err;
}
dd->dma_out = r->start;
/* Get the DMA in channel */
r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (!r) {
dev_err(dev, "no DMA in resource info\n");
err = -ENODEV;
goto err;
}
dd->dma_in = r->start;
/* Only OMAP2/3 can be non-DT */
dd->pdata = &omap_aes_pdata_omap2;
err:
return err;
}
static int omap_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct omap_aes_dev *dd;
struct crypto_alg *algp;
struct resource res;
int err = -ENOMEM, i, j;
u32 reg;
dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL);
if (dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
goto err_data;
}
dd->dev = dev;
platform_set_drvdata(pdev, dd);
spin_lock_init(&dd->lock);
crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH);
err = (dev->of_node) ? omap_aes_get_res_of(dd, dev, &res) :
omap_aes_get_res_pdev(dd, pdev, &res);
if (err)
goto err_res;
dd->io_base = devm_ioremap_resource(dev, &res);
if (IS_ERR(dd->io_base)) {
err = PTR_ERR(dd->io_base);
goto err_res;
}
dd->phys_base = res.start;
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
omap_aes_dma_stop(dd);
reg = omap_aes_read(dd, AES_REG_REV(dd));
pm_runtime_put_sync(dev);
dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
(reg & dd->pdata->major_mask) >> dd->pdata->major_shift,
(reg & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd);
err = omap_aes_dma_init(dd);
if (err)
goto err_dma;
INIT_LIST_HEAD(&dd->list);
spin_lock(&list_lock);
list_add_tail(&dd->list, &dev_list);
spin_unlock(&list_lock);
for (i = 0; i < dd->pdata->algs_info_size; i++) {
for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
algp = &dd->pdata->algs_info[i].algs_list[j];
pr_debug("reg alg: %s\n", algp->cra_name);
INIT_LIST_HEAD(&algp->cra_list);
err = crypto_register_alg(algp);
if (err)
goto err_algs;
dd->pdata->algs_info[i].registered++;
}
}
return 0;
err_algs:
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_unregister_alg(
&dd->pdata->algs_info[i].algs_list[j]);
omap_aes_dma_cleanup(dd);
err_dma:
tasklet_kill(&dd->done_task);
tasklet_kill(&dd->queue_task);
pm_runtime_disable(dev);
err_res:
kfree(dd);
dd = NULL;
err_data:
dev_err(dev, "initialization failed.\n");
return err;
}
static int omap_aes_remove(struct platform_device *pdev)
{
struct omap_aes_dev *dd = platform_get_drvdata(pdev);
int i, j;
if (!dd)
return -ENODEV;
spin_lock(&list_lock);
list_del(&dd->list);
spin_unlock(&list_lock);
for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
crypto_unregister_alg(
&dd->pdata->algs_info[i].algs_list[j]);
tasklet_kill(&dd->done_task);
tasklet_kill(&dd->queue_task);
omap_aes_dma_cleanup(dd);
pm_runtime_disable(dd->dev);
kfree(dd);
dd = NULL;
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int omap_aes_suspend(struct device *dev)
{
pm_runtime_put_sync(dev);
return 0;
}
static int omap_aes_resume(struct device *dev)
{
pm_runtime_get_sync(dev);
return 0;
}
#endif
static const struct dev_pm_ops omap_aes_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(omap_aes_suspend, omap_aes_resume)
};
static struct platform_driver omap_aes_driver = {
.probe = omap_aes_probe,
.remove = omap_aes_remove,
.driver = {
.name = "omap-aes",
.owner = THIS_MODULE,
.pm = &omap_aes_pm_ops,
.of_match_table = omap_aes_of_match,
},
};
module_platform_driver(omap_aes_driver);
MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Dmitry Kasatkin");