520 lines
13 KiB
C
Raw Normal View History

/*
* linux/arch/unicore32/mm/init.c
*
* Copyright (C) 2010 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/swap.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/initrd.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/memblock.h>
#include <linux/sort.h>
#include <linux/dma-mapping.h>
#include <linux/export.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
#include <asm/memblock.h>
#include <mach/map.h>
#include "mm.h"
static unsigned long phys_initrd_start __initdata = 0x01000000;
static unsigned long phys_initrd_size __initdata = SZ_8M;
static int __init early_initrd(char *p)
{
unsigned long start, size;
char *endp;
start = memparse(p, &endp);
if (*endp == ',') {
size = memparse(endp + 1, NULL);
phys_initrd_start = start;
phys_initrd_size = size;
}
return 0;
}
early_param("initrd", early_initrd);
/*
* This keeps memory configuration data used by a couple memory
* initialization functions, as well as show_mem() for the skipping
* of holes in the memory map. It is populated by uc32_add_memory().
*/
struct meminfo meminfo;
void show_mem(unsigned int filter)
{
int free = 0, total = 0, reserved = 0;
int shared = 0, cached = 0, slab = 0, i;
struct meminfo *mi = &meminfo;
printk(KERN_DEFAULT "Mem-info:\n");
show_free_areas(filter);
for_each_bank(i, mi) {
struct membank *bank = &mi->bank[i];
unsigned int pfn1, pfn2;
struct page *page, *end;
pfn1 = bank_pfn_start(bank);
pfn2 = bank_pfn_end(bank);
page = pfn_to_page(pfn1);
end = pfn_to_page(pfn2 - 1) + 1;
do {
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (PageSlab(page))
slab++;
else if (!page_count(page))
free++;
else
shared += page_count(page) - 1;
page++;
} while (page < end);
}
printk(KERN_DEFAULT "%d pages of RAM\n", total);
printk(KERN_DEFAULT "%d free pages\n", free);
printk(KERN_DEFAULT "%d reserved pages\n", reserved);
printk(KERN_DEFAULT "%d slab pages\n", slab);
printk(KERN_DEFAULT "%d pages shared\n", shared);
printk(KERN_DEFAULT "%d pages swap cached\n", cached);
}
static void __init find_limits(unsigned long *min, unsigned long *max_low,
unsigned long *max_high)
{
struct meminfo *mi = &meminfo;
int i;
*min = -1UL;
*max_low = *max_high = 0;
for_each_bank(i, mi) {
struct membank *bank = &mi->bank[i];
unsigned long start, end;
start = bank_pfn_start(bank);
end = bank_pfn_end(bank);
if (*min > start)
*min = start;
if (*max_high < end)
*max_high = end;
if (bank->highmem)
continue;
if (*max_low < end)
*max_low = end;
}
}
static void __init uc32_bootmem_init(unsigned long start_pfn,
unsigned long end_pfn)
{
struct memblock_region *reg;
unsigned int boot_pages;
phys_addr_t bitmap;
pg_data_t *pgdat;
/*
* Allocate the bootmem bitmap page. This must be in a region
* of memory which has already been mapped.
*/
boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
__pfn_to_phys(end_pfn));
/*
* Initialise the bootmem allocator, handing the
* memory banks over to bootmem.
*/
node_set_online(0);
pgdat = NODE_DATA(0);
init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
/* Free the lowmem regions from memblock into bootmem. */
for_each_memblock(memory, reg) {
unsigned long start = memblock_region_memory_base_pfn(reg);
unsigned long end = memblock_region_memory_end_pfn(reg);
if (end >= end_pfn)
end = end_pfn;
if (start >= end)
break;
free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
}
/* Reserve the lowmem memblock reserved regions in bootmem. */
for_each_memblock(reserved, reg) {
unsigned long start = memblock_region_reserved_base_pfn(reg);
unsigned long end = memblock_region_reserved_end_pfn(reg);
if (end >= end_pfn)
end = end_pfn;
if (start >= end)
break;
reserve_bootmem(__pfn_to_phys(start),
(end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
}
}
static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
unsigned long max_high)
{
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
struct memblock_region *reg;
/*
* initialise the zones.
*/
memset(zone_size, 0, sizeof(zone_size));
/*
* The memory size has already been determined. If we need
* to do anything fancy with the allocation of this memory
* to the zones, now is the time to do it.
*/
zone_size[0] = max_low - min;
/*
* Calculate the size of the holes.
* holes = node_size - sum(bank_sizes)
*/
memcpy(zhole_size, zone_size, sizeof(zhole_size));
for_each_memblock(memory, reg) {
unsigned long start = memblock_region_memory_base_pfn(reg);
unsigned long end = memblock_region_memory_end_pfn(reg);
if (start < max_low) {
unsigned long low_end = min(end, max_low);
zhole_size[0] -= low_end - start;
}
}
/*
* Adjust the sizes according to any special requirements for
* this machine type.
*/
arch_adjust_zones(zone_size, zhole_size);
free_area_init_node(0, zone_size, min, zhole_size);
}
int pfn_valid(unsigned long pfn)
{
return memblock_is_memory(pfn << PAGE_SHIFT);
}
EXPORT_SYMBOL(pfn_valid);
static void uc32_memory_present(void)
{
}
static int __init meminfo_cmp(const void *_a, const void *_b)
{
const struct membank *a = _a, *b = _b;
long cmp = bank_pfn_start(a) - bank_pfn_start(b);
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}
void __init uc32_memblock_init(struct meminfo *mi)
{
int i;
sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
meminfo_cmp, NULL);
memblock_init();
for (i = 0; i < mi->nr_banks; i++)
memblock_add(mi->bank[i].start, mi->bank[i].size);
/* Register the kernel text, kernel data and initrd with memblock. */
memblock_reserve(__pa(_text), _end - _text);
#ifdef CONFIG_BLK_DEV_INITRD
if (phys_initrd_size) {
memblock_reserve(phys_initrd_start, phys_initrd_size);
/* Now convert initrd to virtual addresses */
initrd_start = __phys_to_virt(phys_initrd_start);
initrd_end = initrd_start + phys_initrd_size;
}
#endif
uc32_mm_memblock_reserve();
memblock_analyze();
memblock_dump_all();
}
void __init bootmem_init(void)
{
unsigned long min, max_low, max_high;
max_low = max_high = 0;
find_limits(&min, &max_low, &max_high);
uc32_bootmem_init(min, max_low);
#ifdef CONFIG_SWIOTLB
swiotlb_init(1);
#endif
/*
* Sparsemem tries to allocate bootmem in memory_present(),
* so must be done after the fixed reservations
*/
uc32_memory_present();
/*
* sparse_init() needs the bootmem allocator up and running.
*/
sparse_init();
/*
* Now free the memory - free_area_init_node needs
* the sparse mem_map arrays initialized by sparse_init()
* for memmap_init_zone(), otherwise all PFNs are invalid.
*/
uc32_bootmem_free(min, max_low, max_high);
high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
/*
* This doesn't seem to be used by the Linux memory manager any
* more, but is used by ll_rw_block. If we can get rid of it, we
* also get rid of some of the stuff above as well.
*
* Note: max_low_pfn and max_pfn reflect the number of _pages_ in
* the system, not the maximum PFN.
*/
max_low_pfn = max_low - PHYS_PFN_OFFSET;
max_pfn = max_high - PHYS_PFN_OFFSET;
}
static inline int free_area(unsigned long pfn, unsigned long end, char *s)
{
unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
for (; pfn < end; pfn++) {
struct page *page = pfn_to_page(pfn);
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
pages++;
}
if (size && s)
printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
return pages;
}
static inline void
free_memmap(unsigned long start_pfn, unsigned long end_pfn)
{
struct page *start_pg, *end_pg;
unsigned long pg, pgend;
/*
* Convert start_pfn/end_pfn to a struct page pointer.
*/
start_pg = pfn_to_page(start_pfn - 1) + 1;
end_pg = pfn_to_page(end_pfn);
/*
* Convert to physical addresses, and
* round start upwards and end downwards.
*/
pg = PAGE_ALIGN(__pa(start_pg));
pgend = __pa(end_pg) & PAGE_MASK;
/*
* If there are free pages between these,
* free the section of the memmap array.
*/
if (pg < pgend)
free_bootmem(pg, pgend - pg);
}
/*
* The mem_map array can get very big. Free the unused area of the memory map.
*/
static void __init free_unused_memmap(struct meminfo *mi)
{
unsigned long bank_start, prev_bank_end = 0;
unsigned int i;
/*
* This relies on each bank being in address order.
* The banks are sorted previously in bootmem_init().
*/
for_each_bank(i, mi) {
struct membank *bank = &mi->bank[i];
bank_start = bank_pfn_start(bank);
/*
* If we had a previous bank, and there is a space
* between the current bank and the previous, free it.
*/
if (prev_bank_end && prev_bank_end < bank_start)
free_memmap(prev_bank_end, bank_start);
/*
* Align up here since the VM subsystem insists that the
* memmap entries are valid from the bank end aligned to
* MAX_ORDER_NR_PAGES.
*/
prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
}
}
/*
* mem_init() marks the free areas in the mem_map and tells us how much
* memory is free. This is done after various parts of the system have
* claimed their memory after the kernel image.
*/
void __init mem_init(void)
{
unsigned long reserved_pages, free_pages;
struct memblock_region *reg;
int i;
max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
/* this will put all unused low memory onto the freelists */
free_unused_memmap(&meminfo);
totalram_pages += free_all_bootmem();
reserved_pages = free_pages = 0;
for_each_bank(i, &meminfo) {
struct membank *bank = &meminfo.bank[i];
unsigned int pfn1, pfn2;
struct page *page, *end;
pfn1 = bank_pfn_start(bank);
pfn2 = bank_pfn_end(bank);
page = pfn_to_page(pfn1);
end = pfn_to_page(pfn2 - 1) + 1;
do {
if (PageReserved(page))
reserved_pages++;
else if (!page_count(page))
free_pages++;
page++;
} while (page < end);
}
/*
* Since our memory may not be contiguous, calculate the
* real number of pages we have in this system
*/
printk(KERN_INFO "Memory:");
num_physpages = 0;
for_each_memblock(memory, reg) {
unsigned long pages = memblock_region_memory_end_pfn(reg) -
memblock_region_memory_base_pfn(reg);
num_physpages += pages;
printk(" %ldMB", pages >> (20 - PAGE_SHIFT));
}
printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
nr_free_pages() << (PAGE_SHIFT-10),
free_pages << (PAGE_SHIFT-10),
reserved_pages << (PAGE_SHIFT-10),
totalhigh_pages << (PAGE_SHIFT-10));
printk(KERN_NOTICE "Virtual kernel memory layout:\n"
" vector : 0x%08lx - 0x%08lx (%4ld kB)\n"
" vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
" lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
" modules : 0x%08lx - 0x%08lx (%4ld MB)\n"
" .init : 0x%p" " - 0x%p" " (%4d kB)\n"
" .text : 0x%p" " - 0x%p" " (%4d kB)\n"
" .data : 0x%p" " - 0x%p" " (%4d kB)\n",
VECTORS_BASE, VECTORS_BASE + PAGE_SIZE,
DIV_ROUND_UP(PAGE_SIZE, SZ_1K),
VMALLOC_START, VMALLOC_END,
DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M),
PAGE_OFFSET, (unsigned long)high_memory,
DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
MODULES_VADDR, MODULES_END,
DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M),
__init_begin, __init_end,
DIV_ROUND_UP((__init_end - __init_begin), SZ_1K),
_stext, _etext,
DIV_ROUND_UP((_etext - _stext), SZ_1K),
_sdata, _edata,
DIV_ROUND_UP((_edata - _sdata), SZ_1K));
BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR);
BUG_ON(TASK_SIZE > MODULES_VADDR);
if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
/*
* On a machine this small we won't get
* anywhere without overcommit, so turn
* it on by default.
*/
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
}
}
void free_initmem(void)
{
totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
__phys_to_pfn(__pa(__init_end)),
"init");
}
#ifdef CONFIG_BLK_DEV_INITRD
static int keep_initrd;
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (!keep_initrd)
totalram_pages += free_area(__phys_to_pfn(__pa(start)),
__phys_to_pfn(__pa(end)),
"initrd");
}
static int __init keepinitrd_setup(char *__unused)
{
keep_initrd = 1;
return 1;
}
__setup("keepinitrd", keepinitrd_setup);
#endif