mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-20 08:40:47 +00:00
143 lines
6.2 KiB
Plaintext
143 lines
6.2 KiB
Plaintext
|
Kernel Memory Leak Detector
|
||
|
===========================
|
||
|
|
||
|
Introduction
|
||
|
------------
|
||
|
|
||
|
Kmemleak provides a way of detecting possible kernel memory leaks in a
|
||
|
way similar to a tracing garbage collector
|
||
|
(http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors),
|
||
|
with the difference that the orphan objects are not freed but only
|
||
|
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
|
||
|
Valgrind tool (memcheck --leak-check) to detect the memory leaks in
|
||
|
user-space applications.
|
||
|
|
||
|
Usage
|
||
|
-----
|
||
|
|
||
|
CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel
|
||
|
thread scans the memory every 10 minutes (by default) and prints any new
|
||
|
unreferenced objects found. To trigger an intermediate scan and display
|
||
|
all the possible memory leaks:
|
||
|
|
||
|
# mount -t debugfs nodev /sys/kernel/debug/
|
||
|
# cat /sys/kernel/debug/kmemleak
|
||
|
|
||
|
Note that the orphan objects are listed in the order they were allocated
|
||
|
and one object at the beginning of the list may cause other subsequent
|
||
|
objects to be reported as orphan.
|
||
|
|
||
|
Memory scanning parameters can be modified at run-time by writing to the
|
||
|
/sys/kernel/debug/kmemleak file. The following parameters are supported:
|
||
|
|
||
|
off - disable kmemleak (irreversible)
|
||
|
stack=on - enable the task stacks scanning
|
||
|
stack=off - disable the tasks stacks scanning
|
||
|
scan=on - start the automatic memory scanning thread
|
||
|
scan=off - stop the automatic memory scanning thread
|
||
|
scan=<secs> - set the automatic memory scanning period in seconds (0
|
||
|
to disable it)
|
||
|
|
||
|
Kmemleak can also be disabled at boot-time by passing "kmemleak=off" on
|
||
|
the kernel command line.
|
||
|
|
||
|
Basic Algorithm
|
||
|
---------------
|
||
|
|
||
|
The memory allocations via kmalloc, vmalloc, kmem_cache_alloc and
|
||
|
friends are traced and the pointers, together with additional
|
||
|
information like size and stack trace, are stored in a prio search tree.
|
||
|
The corresponding freeing function calls are tracked and the pointers
|
||
|
removed from the kmemleak data structures.
|
||
|
|
||
|
An allocated block of memory is considered orphan if no pointer to its
|
||
|
start address or to any location inside the block can be found by
|
||
|
scanning the memory (including saved registers). This means that there
|
||
|
might be no way for the kernel to pass the address of the allocated
|
||
|
block to a freeing function and therefore the block is considered a
|
||
|
memory leak.
|
||
|
|
||
|
The scanning algorithm steps:
|
||
|
|
||
|
1. mark all objects as white (remaining white objects will later be
|
||
|
considered orphan)
|
||
|
2. scan the memory starting with the data section and stacks, checking
|
||
|
the values against the addresses stored in the prio search tree. If
|
||
|
a pointer to a white object is found, the object is added to the
|
||
|
gray list
|
||
|
3. scan the gray objects for matching addresses (some white objects
|
||
|
can become gray and added at the end of the gray list) until the
|
||
|
gray set is finished
|
||
|
4. the remaining white objects are considered orphan and reported via
|
||
|
/sys/kernel/debug/kmemleak
|
||
|
|
||
|
Some allocated memory blocks have pointers stored in the kernel's
|
||
|
internal data structures and they cannot be detected as orphans. To
|
||
|
avoid this, kmemleak can also store the number of values pointing to an
|
||
|
address inside the block address range that need to be found so that the
|
||
|
block is not considered a leak. One example is __vmalloc().
|
||
|
|
||
|
Kmemleak API
|
||
|
------------
|
||
|
|
||
|
See the include/linux/kmemleak.h header for the functions prototype.
|
||
|
|
||
|
kmemleak_init - initialize kmemleak
|
||
|
kmemleak_alloc - notify of a memory block allocation
|
||
|
kmemleak_free - notify of a memory block freeing
|
||
|
kmemleak_not_leak - mark an object as not a leak
|
||
|
kmemleak_ignore - do not scan or report an object as leak
|
||
|
kmemleak_scan_area - add scan areas inside a memory block
|
||
|
kmemleak_no_scan - do not scan a memory block
|
||
|
kmemleak_erase - erase an old value in a pointer variable
|
||
|
kmemleak_alloc_recursive - as kmemleak_alloc but checks the recursiveness
|
||
|
kmemleak_free_recursive - as kmemleak_free but checks the recursiveness
|
||
|
|
||
|
Dealing with false positives/negatives
|
||
|
--------------------------------------
|
||
|
|
||
|
The false negatives are real memory leaks (orphan objects) but not
|
||
|
reported by kmemleak because values found during the memory scanning
|
||
|
point to such objects. To reduce the number of false negatives, kmemleak
|
||
|
provides the kmemleak_ignore, kmemleak_scan_area, kmemleak_no_scan and
|
||
|
kmemleak_erase functions (see above). The task stacks also increase the
|
||
|
amount of false negatives and their scanning is not enabled by default.
|
||
|
|
||
|
The false positives are objects wrongly reported as being memory leaks
|
||
|
(orphan). For objects known not to be leaks, kmemleak provides the
|
||
|
kmemleak_not_leak function. The kmemleak_ignore could also be used if
|
||
|
the memory block is known not to contain other pointers and it will no
|
||
|
longer be scanned.
|
||
|
|
||
|
Some of the reported leaks are only transient, especially on SMP
|
||
|
systems, because of pointers temporarily stored in CPU registers or
|
||
|
stacks. Kmemleak defines MSECS_MIN_AGE (defaulting to 1000) representing
|
||
|
the minimum age of an object to be reported as a memory leak.
|
||
|
|
||
|
Limitations and Drawbacks
|
||
|
-------------------------
|
||
|
|
||
|
The main drawback is the reduced performance of memory allocation and
|
||
|
freeing. To avoid other penalties, the memory scanning is only performed
|
||
|
when the /sys/kernel/debug/kmemleak file is read. Anyway, this tool is
|
||
|
intended for debugging purposes where the performance might not be the
|
||
|
most important requirement.
|
||
|
|
||
|
To keep the algorithm simple, kmemleak scans for values pointing to any
|
||
|
address inside a block's address range. This may lead to an increased
|
||
|
number of false negatives. However, it is likely that a real memory leak
|
||
|
will eventually become visible.
|
||
|
|
||
|
Another source of false negatives is the data stored in non-pointer
|
||
|
values. In a future version, kmemleak could only scan the pointer
|
||
|
members in the allocated structures. This feature would solve many of
|
||
|
the false negative cases described above.
|
||
|
|
||
|
The tool can report false positives. These are cases where an allocated
|
||
|
block doesn't need to be freed (some cases in the init_call functions),
|
||
|
the pointer is calculated by other methods than the usual container_of
|
||
|
macro or the pointer is stored in a location not scanned by kmemleak.
|
||
|
|
||
|
Page allocations and ioremap are not tracked. Only the ARM and x86
|
||
|
architectures are currently supported.
|