linux/drivers/net/ks8851_mll.c

1681 lines
42 KiB
C
Raw Normal View History

/**
* drivers/net/ks8851_mll.c
* Copyright (c) 2009 Micrel Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/**
* Supports:
* KS8851 16bit MLL chip from Micrel Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#define DRV_NAME "ks8851_mll"
static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
#define MAX_RECV_FRAMES 32
#define MAX_BUF_SIZE 2048
#define TX_BUF_SIZE 2000
#define RX_BUF_SIZE 2000
#define KS_CCR 0x08
#define CCR_EEPROM (1 << 9)
#define CCR_SPI (1 << 8)
#define CCR_8BIT (1 << 7)
#define CCR_16BIT (1 << 6)
#define CCR_32BIT (1 << 5)
#define CCR_SHARED (1 << 4)
#define CCR_32PIN (1 << 0)
/* MAC address registers */
#define KS_MARL 0x10
#define KS_MARM 0x12
#define KS_MARH 0x14
#define KS_OBCR 0x20
#define OBCR_ODS_16MA (1 << 6)
#define KS_EEPCR 0x22
#define EEPCR_EESA (1 << 4)
#define EEPCR_EESB (1 << 3)
#define EEPCR_EEDO (1 << 2)
#define EEPCR_EESCK (1 << 1)
#define EEPCR_EECS (1 << 0)
#define KS_MBIR 0x24
#define MBIR_TXMBF (1 << 12)
#define MBIR_TXMBFA (1 << 11)
#define MBIR_RXMBF (1 << 4)
#define MBIR_RXMBFA (1 << 3)
#define KS_GRR 0x26
#define GRR_QMU (1 << 1)
#define GRR_GSR (1 << 0)
#define KS_WFCR 0x2A
#define WFCR_MPRXE (1 << 7)
#define WFCR_WF3E (1 << 3)
#define WFCR_WF2E (1 << 2)
#define WFCR_WF1E (1 << 1)
#define WFCR_WF0E (1 << 0)
#define KS_WF0CRC0 0x30
#define KS_WF0CRC1 0x32
#define KS_WF0BM0 0x34
#define KS_WF0BM1 0x36
#define KS_WF0BM2 0x38
#define KS_WF0BM3 0x3A
#define KS_WF1CRC0 0x40
#define KS_WF1CRC1 0x42
#define KS_WF1BM0 0x44
#define KS_WF1BM1 0x46
#define KS_WF1BM2 0x48
#define KS_WF1BM3 0x4A
#define KS_WF2CRC0 0x50
#define KS_WF2CRC1 0x52
#define KS_WF2BM0 0x54
#define KS_WF2BM1 0x56
#define KS_WF2BM2 0x58
#define KS_WF2BM3 0x5A
#define KS_WF3CRC0 0x60
#define KS_WF3CRC1 0x62
#define KS_WF3BM0 0x64
#define KS_WF3BM1 0x66
#define KS_WF3BM2 0x68
#define KS_WF3BM3 0x6A
#define KS_TXCR 0x70
#define TXCR_TCGICMP (1 << 8)
#define TXCR_TCGUDP (1 << 7)
#define TXCR_TCGTCP (1 << 6)
#define TXCR_TCGIP (1 << 5)
#define TXCR_FTXQ (1 << 4)
#define TXCR_TXFCE (1 << 3)
#define TXCR_TXPE (1 << 2)
#define TXCR_TXCRC (1 << 1)
#define TXCR_TXE (1 << 0)
#define KS_TXSR 0x72
#define TXSR_TXLC (1 << 13)
#define TXSR_TXMC (1 << 12)
#define TXSR_TXFID_MASK (0x3f << 0)
#define TXSR_TXFID_SHIFT (0)
#define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
#define KS_RXCR1 0x74
#define RXCR1_FRXQ (1 << 15)
#define RXCR1_RXUDPFCC (1 << 14)
#define RXCR1_RXTCPFCC (1 << 13)
#define RXCR1_RXIPFCC (1 << 12)
#define RXCR1_RXPAFMA (1 << 11)
#define RXCR1_RXFCE (1 << 10)
#define RXCR1_RXEFE (1 << 9)
#define RXCR1_RXMAFMA (1 << 8)
#define RXCR1_RXBE (1 << 7)
#define RXCR1_RXME (1 << 6)
#define RXCR1_RXUE (1 << 5)
#define RXCR1_RXAE (1 << 4)
#define RXCR1_RXINVF (1 << 1)
#define RXCR1_RXE (1 << 0)
#define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
RXCR1_RXMAFMA | RXCR1_RXPAFMA)
#define KS_RXCR2 0x76
#define RXCR2_SRDBL_MASK (0x7 << 5)
#define RXCR2_SRDBL_SHIFT (5)
#define RXCR2_SRDBL_4B (0x0 << 5)
#define RXCR2_SRDBL_8B (0x1 << 5)
#define RXCR2_SRDBL_16B (0x2 << 5)
#define RXCR2_SRDBL_32B (0x3 << 5)
/* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
#define RXCR2_IUFFP (1 << 4)
#define RXCR2_RXIUFCEZ (1 << 3)
#define RXCR2_UDPLFE (1 << 2)
#define RXCR2_RXICMPFCC (1 << 1)
#define RXCR2_RXSAF (1 << 0)
#define KS_TXMIR 0x78
#define KS_RXFHSR 0x7C
#define RXFSHR_RXFV (1 << 15)
#define RXFSHR_RXICMPFCS (1 << 13)
#define RXFSHR_RXIPFCS (1 << 12)
#define RXFSHR_RXTCPFCS (1 << 11)
#define RXFSHR_RXUDPFCS (1 << 10)
#define RXFSHR_RXBF (1 << 7)
#define RXFSHR_RXMF (1 << 6)
#define RXFSHR_RXUF (1 << 5)
#define RXFSHR_RXMR (1 << 4)
#define RXFSHR_RXFT (1 << 3)
#define RXFSHR_RXFTL (1 << 2)
#define RXFSHR_RXRF (1 << 1)
#define RXFSHR_RXCE (1 << 0)
#define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
RXFSHR_RXFTL | RXFSHR_RXMR |\
RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
RXFSHR_RXTCPFCS)
#define KS_RXFHBCR 0x7E
#define RXFHBCR_CNT_MASK 0x0FFF
#define KS_TXQCR 0x80
#define TXQCR_AETFE (1 << 2)
#define TXQCR_TXQMAM (1 << 1)
#define TXQCR_METFE (1 << 0)
#define KS_RXQCR 0x82
#define RXQCR_RXDTTS (1 << 12)
#define RXQCR_RXDBCTS (1 << 11)
#define RXQCR_RXFCTS (1 << 10)
#define RXQCR_RXIPHTOE (1 << 9)
#define RXQCR_RXDTTE (1 << 7)
#define RXQCR_RXDBCTE (1 << 6)
#define RXQCR_RXFCTE (1 << 5)
#define RXQCR_ADRFE (1 << 4)
#define RXQCR_SDA (1 << 3)
#define RXQCR_RRXEF (1 << 0)
#define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
#define KS_TXFDPR 0x84
#define TXFDPR_TXFPAI (1 << 14)
#define TXFDPR_TXFP_MASK (0x7ff << 0)
#define TXFDPR_TXFP_SHIFT (0)
#define KS_RXFDPR 0x86
#define RXFDPR_RXFPAI (1 << 14)
#define KS_RXDTTR 0x8C
#define KS_RXDBCTR 0x8E
#define KS_IER 0x90
#define KS_ISR 0x92
#define IRQ_LCI (1 << 15)
#define IRQ_TXI (1 << 14)
#define IRQ_RXI (1 << 13)
#define IRQ_RXOI (1 << 11)
#define IRQ_TXPSI (1 << 9)
#define IRQ_RXPSI (1 << 8)
#define IRQ_TXSAI (1 << 6)
#define IRQ_RXWFDI (1 << 5)
#define IRQ_RXMPDI (1 << 4)
#define IRQ_LDI (1 << 3)
#define IRQ_EDI (1 << 2)
#define IRQ_SPIBEI (1 << 1)
#define IRQ_DEDI (1 << 0)
#define KS_RXFCTR 0x9C
#define RXFCTR_THRESHOLD_MASK 0x00FF
#define KS_RXFC 0x9D
#define RXFCTR_RXFC_MASK (0xff << 8)
#define RXFCTR_RXFC_SHIFT (8)
#define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
#define RXFCTR_RXFCT_MASK (0xff << 0)
#define RXFCTR_RXFCT_SHIFT (0)
#define KS_TXNTFSR 0x9E
#define KS_MAHTR0 0xA0
#define KS_MAHTR1 0xA2
#define KS_MAHTR2 0xA4
#define KS_MAHTR3 0xA6
#define KS_FCLWR 0xB0
#define KS_FCHWR 0xB2
#define KS_FCOWR 0xB4
#define KS_CIDER 0xC0
#define CIDER_ID 0x8870
#define CIDER_REV_MASK (0x7 << 1)
#define CIDER_REV_SHIFT (1)
#define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
#define KS_CGCR 0xC6
#define KS_IACR 0xC8
#define IACR_RDEN (1 << 12)
#define IACR_TSEL_MASK (0x3 << 10)
#define IACR_TSEL_SHIFT (10)
#define IACR_TSEL_MIB (0x3 << 10)
#define IACR_ADDR_MASK (0x1f << 0)
#define IACR_ADDR_SHIFT (0)
#define KS_IADLR 0xD0
#define KS_IAHDR 0xD2
#define KS_PMECR 0xD4
#define PMECR_PME_DELAY (1 << 14)
#define PMECR_PME_POL (1 << 12)
#define PMECR_WOL_WAKEUP (1 << 11)
#define PMECR_WOL_MAGICPKT (1 << 10)
#define PMECR_WOL_LINKUP (1 << 9)
#define PMECR_WOL_ENERGY (1 << 8)
#define PMECR_AUTO_WAKE_EN (1 << 7)
#define PMECR_WAKEUP_NORMAL (1 << 6)
#define PMECR_WKEVT_MASK (0xf << 2)
#define PMECR_WKEVT_SHIFT (2)
#define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
#define PMECR_WKEVT_ENERGY (0x1 << 2)
#define PMECR_WKEVT_LINK (0x2 << 2)
#define PMECR_WKEVT_MAGICPKT (0x4 << 2)
#define PMECR_WKEVT_FRAME (0x8 << 2)
#define PMECR_PM_MASK (0x3 << 0)
#define PMECR_PM_SHIFT (0)
#define PMECR_PM_NORMAL (0x0 << 0)
#define PMECR_PM_ENERGY (0x1 << 0)
#define PMECR_PM_SOFTDOWN (0x2 << 0)
#define PMECR_PM_POWERSAVE (0x3 << 0)
/* Standard MII PHY data */
#define KS_P1MBCR 0xE4
#define P1MBCR_FORCE_FDX (1 << 8)
#define KS_P1MBSR 0xE6
#define P1MBSR_AN_COMPLETE (1 << 5)
#define P1MBSR_AN_CAPABLE (1 << 3)
#define P1MBSR_LINK_UP (1 << 2)
#define KS_PHY1ILR 0xE8
#define KS_PHY1IHR 0xEA
#define KS_P1ANAR 0xEC
#define KS_P1ANLPR 0xEE
#define KS_P1SCLMD 0xF4
#define P1SCLMD_LEDOFF (1 << 15)
#define P1SCLMD_TXIDS (1 << 14)
#define P1SCLMD_RESTARTAN (1 << 13)
#define P1SCLMD_DISAUTOMDIX (1 << 10)
#define P1SCLMD_FORCEMDIX (1 << 9)
#define P1SCLMD_AUTONEGEN (1 << 7)
#define P1SCLMD_FORCE100 (1 << 6)
#define P1SCLMD_FORCEFDX (1 << 5)
#define P1SCLMD_ADV_FLOW (1 << 4)
#define P1SCLMD_ADV_100BT_FDX (1 << 3)
#define P1SCLMD_ADV_100BT_HDX (1 << 2)
#define P1SCLMD_ADV_10BT_FDX (1 << 1)
#define P1SCLMD_ADV_10BT_HDX (1 << 0)
#define KS_P1CR 0xF6
#define P1CR_HP_MDIX (1 << 15)
#define P1CR_REV_POL (1 << 13)
#define P1CR_OP_100M (1 << 10)
#define P1CR_OP_FDX (1 << 9)
#define P1CR_OP_MDI (1 << 7)
#define P1CR_AN_DONE (1 << 6)
#define P1CR_LINK_GOOD (1 << 5)
#define P1CR_PNTR_FLOW (1 << 4)
#define P1CR_PNTR_100BT_FDX (1 << 3)
#define P1CR_PNTR_100BT_HDX (1 << 2)
#define P1CR_PNTR_10BT_FDX (1 << 1)
#define P1CR_PNTR_10BT_HDX (1 << 0)
/* TX Frame control */
#define TXFR_TXIC (1 << 15)
#define TXFR_TXFID_MASK (0x3f << 0)
#define TXFR_TXFID_SHIFT (0)
#define KS_P1SR 0xF8
#define P1SR_HP_MDIX (1 << 15)
#define P1SR_REV_POL (1 << 13)
#define P1SR_OP_100M (1 << 10)
#define P1SR_OP_FDX (1 << 9)
#define P1SR_OP_MDI (1 << 7)
#define P1SR_AN_DONE (1 << 6)
#define P1SR_LINK_GOOD (1 << 5)
#define P1SR_PNTR_FLOW (1 << 4)
#define P1SR_PNTR_100BT_FDX (1 << 3)
#define P1SR_PNTR_100BT_HDX (1 << 2)
#define P1SR_PNTR_10BT_FDX (1 << 1)
#define P1SR_PNTR_10BT_HDX (1 << 0)
#define ENUM_BUS_NONE 0
#define ENUM_BUS_8BIT 1
#define ENUM_BUS_16BIT 2
#define ENUM_BUS_32BIT 3
#define MAX_MCAST_LST 32
#define HW_MCAST_SIZE 8
/**
* union ks_tx_hdr - tx header data
* @txb: The header as bytes
* @txw: The header as 16bit, little-endian words
*
* A dual representation of the tx header data to allow
* access to individual bytes, and to allow 16bit accesses
* with 16bit alignment.
*/
union ks_tx_hdr {
u8 txb[4];
__le16 txw[2];
};
/**
* struct ks_net - KS8851 driver private data
* @net_device : The network device we're bound to
* @hw_addr : start address of data register.
* @hw_addr_cmd : start address of command register.
* @txh : temporaly buffer to save status/length.
* @lock : Lock to ensure that the device is not accessed when busy.
* @pdev : Pointer to platform device.
* @mii : The MII state information for the mii calls.
* @frame_head_info : frame header information for multi-pkt rx.
* @statelock : Lock on this structure for tx list.
* @msg_enable : The message flags controlling driver output (see ethtool).
* @frame_cnt : number of frames received.
* @bus_width : i/o bus width.
* @irq : irq number assigned to this device.
* @rc_rxqcr : Cached copy of KS_RXQCR.
* @rc_txcr : Cached copy of KS_TXCR.
* @rc_ier : Cached copy of KS_IER.
* @sharedbus : Multipex(addr and data bus) mode indicator.
* @cmd_reg_cache : command register cached.
* @cmd_reg_cache_int : command register cached. Used in the irq handler.
* @promiscuous : promiscuous mode indicator.
* @all_mcast : mutlicast indicator.
* @mcast_lst_size : size of multicast list.
* @mcast_lst : multicast list.
* @mcast_bits : multicast enabed.
* @mac_addr : MAC address assigned to this device.
* @fid : frame id.
* @extra_byte : number of extra byte prepended rx pkt.
* @enabled : indicator this device works.
*
* The @lock ensures that the chip is protected when certain operations are
* in progress. When the read or write packet transfer is in progress, most
* of the chip registers are not accessible until the transfer is finished and
* the DMA has been de-asserted.
*
* The @statelock is used to protect information in the structure which may
* need to be accessed via several sources, such as the network driver layer
* or one of the work queues.
*
*/
/* Receive multiplex framer header info */
struct type_frame_head {
u16 sts; /* Frame status */
u16 len; /* Byte count */
};
struct ks_net {
struct net_device *netdev;
void __iomem *hw_addr;
void __iomem *hw_addr_cmd;
union ks_tx_hdr txh ____cacheline_aligned;
struct mutex lock; /* spinlock to be interrupt safe */
struct platform_device *pdev;
struct mii_if_info mii;
struct type_frame_head *frame_head_info;
spinlock_t statelock;
u32 msg_enable;
u32 frame_cnt;
int bus_width;
int irq;
u16 rc_rxqcr;
u16 rc_txcr;
u16 rc_ier;
u16 sharedbus;
u16 cmd_reg_cache;
u16 cmd_reg_cache_int;
u16 promiscuous;
u16 all_mcast;
u16 mcast_lst_size;
u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN];
u8 mcast_bits[HW_MCAST_SIZE];
u8 mac_addr[6];
u8 fid;
u8 extra_byte;
u8 enabled;
};
static int msg_enable;
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
/**
* register read/write calls.
*
* All these calls issue transactions to access the chip's registers. They
* all require that the necessary lock is held to prevent accesses when the
* chip is busy transfering packet data (RX/TX FIFO accesses).
*/
/**
* ks_rdreg8 - read 8 bit register from device
* @ks : The chip information
* @offset: The register address
*
* Read a 8bit register from the chip, returning the result
*/
static u8 ks_rdreg8(struct ks_net *ks, int offset)
{
u16 data;
u8 shift_bit = offset & 0x03;
u8 shift_data = (offset & 1) << 3;
ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit);
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
data = ioread16(ks->hw_addr);
return (u8)(data >> shift_data);
}
/**
* ks_rdreg16 - read 16 bit register from device
* @ks : The chip information
* @offset: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static u16 ks_rdreg16(struct ks_net *ks, int offset)
{
ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
return ioread16(ks->hw_addr);
}
/**
* ks_wrreg8 - write 8bit register value to chip
* @ks: The chip information
* @offset: The register address
* @value: The value to write
*
*/
static void ks_wrreg8(struct ks_net *ks, int offset, u8 value)
{
u8 shift_bit = (offset & 0x03);
u16 value_write = (u16)(value << ((offset & 1) << 3));
ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit);
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
iowrite16(value_write, ks->hw_addr);
}
/**
* ks_wrreg16 - write 16bit register value to chip
* @ks: The chip information
* @offset: The register address
* @value: The value to write
*
*/
static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
{
ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
iowrite16(value, ks->hw_addr);
}
/**
* ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
* @ks: The chip state
* @wptr: buffer address to save data
* @len: length in byte to read
*
*/
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = (u16)ioread16(ks->hw_addr);
}
/**
* ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
* @ks: The chip information
* @wptr: buffer address
* @len: length in byte to write
*
*/
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
iowrite16(*wptr++, ks->hw_addr);
}
static void ks_disable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, 0x0000);
} /* ks_disable_int */
static void ks_enable_int(struct ks_net *ks)
{
ks_wrreg16(ks, KS_IER, ks->rc_ier);
} /* ks_enable_int */
/**
* ks_tx_fifo_space - return the available hardware buffer size.
* @ks: The chip information
*
*/
static inline u16 ks_tx_fifo_space(struct ks_net *ks)
{
return ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
}
/**
* ks_save_cmd_reg - save the command register from the cache.
* @ks: The chip information
*
*/
static inline void ks_save_cmd_reg(struct ks_net *ks)
{
/*ks8851 MLL has a bug to read back the command register.
* So rely on software to save the content of command register.
*/
ks->cmd_reg_cache_int = ks->cmd_reg_cache;
}
/**
* ks_restore_cmd_reg - restore the command register from the cache and
* write to hardware register.
* @ks: The chip information
*
*/
static inline void ks_restore_cmd_reg(struct ks_net *ks)
{
ks->cmd_reg_cache = ks->cmd_reg_cache_int;
iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd);
}
/**
* ks_set_powermode - set power mode of the device
* @ks: The chip information
* @pwrmode: The power mode value to write to KS_PMECR.
*
* Change the power mode of the chip.
*/
static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode)
{
unsigned pmecr;
netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
ks_rdreg16(ks, KS_GRR);
pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks_wrreg16(ks, KS_PMECR, pmecr);
}
/**
* ks_read_config - read chip configuration of bus width.
* @ks: The chip information
*
*/
static void ks_read_config(struct ks_net *ks)
{
u16 reg_data = 0;
/* Regardless of bus width, 8 bit read should always work.*/
reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8;
/* addr/data bus are multiplexed */
ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
/* There are garbage data when reading data from QMU,
depending on bus-width.
*/
if (reg_data & CCR_8BIT) {
ks->bus_width = ENUM_BUS_8BIT;
ks->extra_byte = 1;
} else if (reg_data & CCR_16BIT) {
ks->bus_width = ENUM_BUS_16BIT;
ks->extra_byte = 2;
} else {
ks->bus_width = ENUM_BUS_32BIT;
ks->extra_byte = 4;
}
}
/**
* ks_soft_reset - issue one of the soft reset to the device
* @ks: The device state.
* @op: The bit(s) to set in the GRR
*
* Issue the relevant soft-reset command to the device's GRR register
* specified by @op.
*
* Note, the delays are in there as a caution to ensure that the reset
* has time to take effect and then complete. Since the datasheet does
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks_soft_reset(struct ks_net *ks, unsigned op)
{
/* Disable interrupt first */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
void ks_enable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
/*
* RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
* Enable
*/
w = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
ks->enabled = true;
} /* ks_enable_qmu */
static void ks_disable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(ks, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
w &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, w);
ks->enabled = false;
} /* ks_disable_qmu */
/**
* ks_read_qmu - read 1 pkt data from the QMU.
* @ks: The chip information
* @buf: buffer address to save 1 pkt
* @len: Pkt length
* Here is the sequence to read 1 pkt:
* 1. set sudo DMA mode
* 2. read prepend data
* 3. read pkt data
* 4. reset sudo DMA Mode
*/
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
u32 r = ks->extra_byte & 0x1 ;
u32 w = ks->extra_byte - r;
/* 1. set sudo DMA mode */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
/* 2. read prepend data */
/**
* read 4 + extra bytes and discard them.
* extra bytes for dummy, 2 for status, 2 for len
*/
/* use likely(r) for 8 bit access for performance */
if (unlikely(r))
ioread8(ks->hw_addr);
ks_inblk(ks, buf, w + 2 + 2);
/* 3. read pkt data */
ks_inblk(ks, buf, ALIGN(len, 4));
/* 4. reset sudo DMA Mode */
ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
}
/**
* ks_rcv - read multiple pkts data from the QMU.
* @ks: The chip information
* @netdev: The network device being opened.
*
* Read all of header information before reading pkt content.
* It is not allowed only port of pkts in QMU after issuing
* interrupt ack.
*/
static void ks_rcv(struct ks_net *ks, struct net_device *netdev)
{
u32 i;
struct type_frame_head *frame_hdr = ks->frame_head_info;
struct sk_buff *skb;
ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
/* read all header information */
for (i = 0; i < ks->frame_cnt; i++) {
/* Checking Received packet status */
frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR);
/* Get packet len from hardware */
frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR);
frame_hdr++;
}
frame_hdr = ks->frame_head_info;
while (ks->frame_cnt--) {
skb = dev_alloc_skb(frame_hdr->len + 16);
if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) &&
(frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) {
skb_reserve(skb, 2);
/* read data block including CRC 4 bytes */
ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len);
skb_put(skb, frame_hdr->len);
skb->protocol = eth_type_trans(skb, netdev);
netif_rx(skb);
} else {
pr_err("%s: err:skb alloc\n", __func__);
ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF));
if (skb)
dev_kfree_skb_irq(skb);
}
frame_hdr++;
}
}
/**
* ks_update_link_status - link status update.
* @netdev: The network device being opened.
* @ks: The chip information
*
*/
static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks)
{
/* check the status of the link */
u32 link_up_status;
if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) {
netif_carrier_on(netdev);
link_up_status = true;
} else {
netif_carrier_off(netdev);
link_up_status = false;
}
netif_dbg(ks, link, ks->netdev,
"%s: %s\n", __func__, link_up_status ? "UP" : "DOWN");
}
/**
* ks_irq - device interrupt handler
* @irq: Interrupt number passed from the IRQ hnalder.
* @pw: The private word passed to register_irq(), our struct ks_net.
*
* This is the handler invoked to find out what happened
*
* Read the interrupt status, work out what needs to be done and then clear
* any of the interrupts that are not needed.
*/
static irqreturn_t ks_irq(int irq, void *pw)
{
struct net_device *netdev = pw;
struct ks_net *ks = netdev_priv(netdev);
u16 status;
/*this should be the first in IRQ handler */
ks_save_cmd_reg(ks);
status = ks_rdreg16(ks, KS_ISR);
if (unlikely(!status)) {
ks_restore_cmd_reg(ks);
return IRQ_NONE;
}
ks_wrreg16(ks, KS_ISR, status);
if (likely(status & IRQ_RXI))
ks_rcv(ks, netdev);
if (unlikely(status & IRQ_LCI))
ks_update_link_status(netdev, ks);
if (unlikely(status & IRQ_TXI))
netif_wake_queue(netdev);
if (unlikely(status & IRQ_LDI)) {
u16 pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
}
/* this should be the last in IRQ handler*/
ks_restore_cmd_reg(ks);
return IRQ_HANDLED;
}
/**
* ks_net_open - open network device
* @netdev: The network device being opened.
*
* Called when the network device is marked active, such as a user executing
* 'ifconfig up' on the device.
*/
static int ks_net_open(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
int err;
#define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
/* lock the card, even if we may not actually do anything
* else at the moment.
*/
netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__);
/* reset the HW */
err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev);
if (err) {
pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err);
return err;
}
/* wake up powermode to normal mode */
ks_set_powermode(ks, PMECR_PM_NORMAL);
mdelay(1); /* wait for normal mode to take effect */
ks_wrreg16(ks, KS_ISR, 0xffff);
ks_enable_int(ks);
ks_enable_qmu(ks);
netif_start_queue(ks->netdev);
netif_dbg(ks, ifup, ks->netdev, "network device up\n");
return 0;
}
/**
* ks_net_stop - close network device
* @netdev: The device being closed.
*
* Called to close down a network device which has been active. Cancell any
* work, shutdown the RX and TX process and then place the chip into a low
* power state whilst it is not being used.
*/
static int ks_net_stop(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
netif_info(ks, ifdown, netdev, "shutting down\n");
netif_stop_queue(netdev);
mutex_lock(&ks->lock);
/* turn off the IRQs and ack any outstanding */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_ISR, 0xffff);
/* shutdown RX/TX QMU */
ks_disable_qmu(ks);
/* set powermode to soft power down to save power */
ks_set_powermode(ks, PMECR_PM_SOFTDOWN);
free_irq(ks->irq, netdev);
mutex_unlock(&ks->lock);
return 0;
}
/**
* ks_write_qmu - write 1 pkt data to the QMU.
* @ks: The chip information
* @pdata: buffer address to save 1 pkt
* @len: Pkt length in byte
* Here is the sequence to write 1 pkt:
* 1. set sudo DMA mode
* 2. write status/length
* 3. write pkt data
* 4. reset sudo DMA Mode
* 5. reset sudo DMA mode
* 6. Wait until pkt is out
*/
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
/* start header at txb[0] to align txw entries */
ks->txh.txw[0] = 0;
ks->txh.txw[1] = cpu_to_le16(len);
/* 1. set sudo-DMA mode */
ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff);
/* 2. write status/lenth info */
ks_outblk(ks, ks->txh.txw, 4);
/* 3. write pkt data */
ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
/* 4. reset sudo-DMA mode */
ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr);
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
/* 6. wait until TXQCR_METFE is auto-cleared */
while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE)
;
}
/**
* ks_start_xmit - transmit packet
* @skb : The buffer to transmit
* @netdev : The device used to transmit the packet.
*
* Called by the network layer to transmit the @skb.
* spin_lock_irqsave is required because tx and rx should be mutual exclusive.
* So while tx is in-progress, prevent IRQ interrupt from happenning.
*/
static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
int retv = NETDEV_TX_OK;
struct ks_net *ks = netdev_priv(netdev);
disable_irq(netdev->irq);
ks_disable_int(ks);
spin_lock(&ks->statelock);
/* Extra space are required:
* 4 byte for alignment, 4 for status/length, 4 for CRC
*/
if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) {
ks_write_qmu(ks, skb->data, skb->len);
dev_kfree_skb(skb);
} else
retv = NETDEV_TX_BUSY;
spin_unlock(&ks->statelock);
ks_enable_int(ks);
enable_irq(netdev->irq);
return retv;
}
/**
* ks_start_rx - ready to serve pkts
* @ks : The chip information
*
*/
static void ks_start_rx(struct ks_net *ks)
{
u16 cntl;
/* Enables QMU Receive (RXCR1). */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl |= RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, cntl);
} /* ks_start_rx */
/**
* ks_stop_rx - stop to serve pkts
* @ks : The chip information
*
*/
static void ks_stop_rx(struct ks_net *ks)
{
u16 cntl;
/* Disables QMU Receive (RXCR1). */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, cntl);
} /* ks_stop_rx */
static unsigned long const ethernet_polynomial = 0x04c11db7U;
static unsigned long ether_gen_crc(int length, u8 *data)
{
long crc = -1;
while (--length >= 0) {
u8 current_octet = *data++;
int bit;
for (bit = 0; bit < 8; bit++, current_octet >>= 1) {
crc = (crc << 1) ^
((crc < 0) ^ (current_octet & 1) ?
ethernet_polynomial : 0);
}
}
return (unsigned long)crc;
} /* ether_gen_crc */
/**
* ks_set_grpaddr - set multicast information
* @ks : The chip information
*/
static void ks_set_grpaddr(struct ks_net *ks)
{
u8 i;
u32 index, position, value;
memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE);
for (i = 0; i < ks->mcast_lst_size; i++) {
position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f;
index = position >> 3;
value = 1 << (position & 7);
ks->mcast_bits[index] |= (u8)value;
}
for (i = 0; i < HW_MCAST_SIZE; i++) {
if (i & 1) {
ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1),
(ks->mcast_bits[i] << 8) |
ks->mcast_bits[i - 1]);
}
}
} /* ks_set_grpaddr */
/*
* ks_clear_mcast - clear multicast information
*
* @ks : The chip information
* This routine removes all mcast addresses set in the hardware.
*/
static void ks_clear_mcast(struct ks_net *ks)
{
u16 i, mcast_size;
for (i = 0; i < HW_MCAST_SIZE; i++)
ks->mcast_bits[i] = 0;
mcast_size = HW_MCAST_SIZE >> 2;
for (i = 0; i < mcast_size; i++)
ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0);
}
static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode)
{
u16 cntl;
ks->promiscuous = promiscuous_mode;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_FILTER_MASK;
if (promiscuous_mode)
/* Enable Promiscuous mode */
cntl |= RXCR1_RXAE | RXCR1_RXINVF;
else
/* Disable Promiscuous mode (default normal mode) */
cntl |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, cntl);
if (ks->enabled)
ks_start_rx(ks);
} /* ks_set_promis */
static void ks_set_mcast(struct ks_net *ks, u16 mcast)
{
u16 cntl;
ks->all_mcast = mcast;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
cntl = ks_rdreg16(ks, KS_RXCR1);
cntl &= ~RXCR1_FILTER_MASK;
if (mcast)
/* Enable "Perfect with Multicast address passed mode" */
cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
else
/**
* Disable "Perfect with Multicast address passed
* mode" (normal mode).
*/
cntl |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, cntl);
if (ks->enabled)
ks_start_rx(ks);
} /* ks_set_mcast */
static void ks_set_rx_mode(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
struct netdev_hw_addr *ha;
/* Turn on/off promiscuous mode. */
if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC)
ks_set_promis(ks,
(u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC));
/* Turn on/off all mcast mode. */
else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)
ks_set_mcast(ks,
(u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI));
else
ks_set_promis(ks, false);
if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) {
if (netdev_mc_count(netdev) <= MAX_MCAST_LST) {
int i = 0;
netdev_for_each_mc_addr(ha, netdev) {
if (!(*ha->addr & 1))
continue;
if (i >= MAX_MCAST_LST)
break;
memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN);
}
ks->mcast_lst_size = (u8)i;
ks_set_grpaddr(ks);
} else {
/**
* List too big to support so
* turn on all mcast mode.
*/
ks->mcast_lst_size = MAX_MCAST_LST;
ks_set_mcast(ks, true);
}
} else {
ks->mcast_lst_size = 0;
ks_clear_mcast(ks);
}
} /* ks_set_rx_mode */
static void ks_set_mac(struct ks_net *ks, u8 *data)
{
u16 *pw = (u16 *)data;
u16 w, u;
ks_stop_rx(ks); /* Stop receiving for reconfiguration */
u = *pw++;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARH, w);
u = *pw++;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARM, w);
u = *pw;
w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF);
ks_wrreg16(ks, KS_MARL, w);
memcpy(ks->mac_addr, data, 6);
if (ks->enabled)
ks_start_rx(ks);
}
static int ks_set_mac_address(struct net_device *netdev, void *paddr)
{
struct ks_net *ks = netdev_priv(netdev);
struct sockaddr *addr = paddr;
u8 *da;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
da = (u8 *)netdev->dev_addr;
ks_set_mac(ks, da);
return 0;
}
static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
{
struct ks_net *ks = netdev_priv(netdev);
if (!netif_running(netdev))
return -EINVAL;
return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
}
static const struct net_device_ops ks_netdev_ops = {
.ndo_open = ks_net_open,
.ndo_stop = ks_net_stop,
.ndo_do_ioctl = ks_net_ioctl,
.ndo_start_xmit = ks_start_xmit,
.ndo_set_mac_address = ks_set_mac_address,
.ndo_set_rx_mode = ks_set_rx_mode,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
};
/* ethtool support */
static void ks_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *di)
{
strlcpy(di->driver, DRV_NAME, sizeof(di->driver));
strlcpy(di->version, "1.00", sizeof(di->version));
strlcpy(di->bus_info, dev_name(netdev->dev.parent),
sizeof(di->bus_info));
}
static u32 ks_get_msglevel(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return ks->msg_enable;
}
static void ks_set_msglevel(struct net_device *netdev, u32 to)
{
struct ks_net *ks = netdev_priv(netdev);
ks->msg_enable = to;
}
static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_ethtool_gset(&ks->mii, cmd);
}
static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_ethtool_sset(&ks->mii, cmd);
}
static u32 ks_get_link(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_link_ok(&ks->mii);
}
static int ks_nway_reset(struct net_device *netdev)
{
struct ks_net *ks = netdev_priv(netdev);
return mii_nway_restart(&ks->mii);
}
static const struct ethtool_ops ks_ethtool_ops = {
.get_drvinfo = ks_get_drvinfo,
.get_msglevel = ks_get_msglevel,
.set_msglevel = ks_set_msglevel,
.get_settings = ks_get_settings,
.set_settings = ks_set_settings,
.get_link = ks_get_link,
.nway_reset = ks_nway_reset,
};
/* MII interface controls */
/**
* ks_phy_reg - convert MII register into a KS8851 register
* @reg: MII register number.
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible. Return zero if the MII register has no direct mapping to the
* KS8851 register set.
*/
static int ks_phy_reg(int reg)
{
switch (reg) {
case MII_BMCR:
return KS_P1MBCR;
case MII_BMSR:
return KS_P1MBSR;
case MII_PHYSID1:
return KS_PHY1ILR;
case MII_PHYSID2:
return KS_PHY1IHR;
case MII_ADVERTISE:
return KS_P1ANAR;
case MII_LPA:
return KS_P1ANLPR;
}
return 0x0;
}
/**
* ks_phy_read - MII interface PHY register read.
* @netdev: The network device the PHY is on.
* @phy_addr: Address of PHY (ignored as we only have one)
* @reg: The register to read.
*
* This call reads data from the PHY register specified in @reg. Since the
* device does not support all the MII registers, the non-existant values
* are always returned as zero.
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status, and simply returns it to the
* caller. The mii-tool that the driver was tested with takes any -ve error
* as real PHY capabilities, thus displaying incorrect data to the user.
*/
static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg)
{
struct ks_net *ks = netdev_priv(netdev);
int ksreg;
int result;
ksreg = ks_phy_reg(reg);
if (!ksreg)
return 0x0; /* no error return allowed, so use zero */
mutex_lock(&ks->lock);
result = ks_rdreg16(ks, ksreg);
mutex_unlock(&ks->lock);
return result;
}
static void ks_phy_write(struct net_device *netdev,
int phy, int reg, int value)
{
struct ks_net *ks = netdev_priv(netdev);
int ksreg;
ksreg = ks_phy_reg(reg);
if (ksreg) {
mutex_lock(&ks->lock);
ks_wrreg16(ks, ksreg, value);
mutex_unlock(&ks->lock);
}
}
/**
* ks_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct ks_net *ks)
{
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
int ret = 0;
unsigned rd;
rd = ks_rdreg16(ks, KS_MBIR);
if ((rd & both_done) != both_done) {
netdev_warn(ks->netdev, "Memory selftest not finished\n");
return 0;
}
if (rd & MBIR_TXMBFA) {
netdev_err(ks->netdev, "TX memory selftest fails\n");
ret |= 1;
}
if (rd & MBIR_RXMBFA) {
netdev_err(ks->netdev, "RX memory selftest fails\n");
ret |= 2;
}
netdev_info(ks->netdev, "the selftest passes\n");
return ret;
}
static void ks_setup(struct ks_net *ks)
{
u16 w;
/**
* Configure QMU Transmit
*/
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks->rc_rxqcr = RXQCR_CMD_CNTL;
ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
/**
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(ks, KS_P1MBCR);
w &= ~P1MBCR_FORCE_FDX;
ks_wrreg16(ks, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(ks, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
if (ks->promiscuous) /* bPromiscuous */
w |= (RXCR1_RXAE | RXCR1_RXINVF);
else if (ks->all_mcast) /* Multicast address passed mode */
w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA);
else /* Normal mode */
w |= RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, w);
} /*ks_setup */
static void ks_setup_int(struct ks_net *ks)
{
ks->rc_ier = 0x00;
/* Clear the interrupts status of the hardware. */
ks_wrreg16(ks, KS_ISR, 0xffff);
/* Enables the interrupts of the hardware. */
ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI);
} /* ks_setup_int */
static int ks_hw_init(struct ks_net *ks)
{
#define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
ks->promiscuous = 0;
ks->all_mcast = 0;
ks->mcast_lst_size = 0;
ks->frame_head_info = (struct type_frame_head *) \
kmalloc(MHEADER_SIZE, GFP_KERNEL);
if (!ks->frame_head_info) {
pr_err("Error: Fail to allocate frame memory\n");
return false;
}
ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS);
return true;
}
static int __devinit ks8851_probe(struct platform_device *pdev)
{
int err = -ENOMEM;
struct resource *io_d, *io_c;
struct net_device *netdev;
struct ks_net *ks;
u16 id, data;
io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0);
io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME))
goto err_mem_region;
if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME))
goto err_mem_region1;
netdev = alloc_etherdev(sizeof(struct ks_net));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
ks = netdev_priv(netdev);
ks->netdev = netdev;
ks->hw_addr = ioremap(io_d->start, resource_size(io_d));
if (!ks->hw_addr)
goto err_ioremap;
ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c));
if (!ks->hw_addr_cmd)
goto err_ioremap1;
ks->irq = platform_get_irq(pdev, 0);
if (ks->irq < 0) {
err = ks->irq;
goto err_get_irq;
}
ks->pdev = pdev;
mutex_init(&ks->lock);
spin_lock_init(&ks->statelock);
netdev->netdev_ops = &ks_netdev_ops;
netdev->ethtool_ops = &ks_ethtool_ops;
/* setup mii state */
ks->mii.dev = netdev;
ks->mii.phy_id = 1,
ks->mii.phy_id_mask = 1;
ks->mii.reg_num_mask = 0xf;
ks->mii.mdio_read = ks_phy_read;
ks->mii.mdio_write = ks_phy_write;
netdev_info(netdev, "message enable is %d\n", msg_enable);
/* set the default message enable */
ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
NETIF_MSG_PROBE |
NETIF_MSG_LINK));
ks_read_config(ks);
/* simple check for a valid chip being connected to the bus */
if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
netdev_err(netdev, "failed to read device ID\n");
err = -ENODEV;
goto err_register;
}
if (ks_read_selftest(ks)) {
netdev_err(netdev, "failed to read device ID\n");
err = -ENODEV;
goto err_register;
}
err = register_netdev(netdev);
if (err)
goto err_register;
platform_set_drvdata(pdev, netdev);
ks_soft_reset(ks, GRR_GSR);
ks_hw_init(ks);
ks_disable_qmu(ks);
ks_setup(ks);
ks_setup_int(ks);
memcpy(netdev->dev_addr, ks->mac_addr, 6);
data = ks_rdreg16(ks, KS_OBCR);
ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
/**
* If you want to use the default MAC addr,
* comment out the 2 functions below.
*/
random_ether_addr(netdev->dev_addr);
ks_set_mac(ks, netdev->dev_addr);
id = ks_rdreg16(ks, KS_CIDER);
netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
(id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
return 0;
err_register:
err_get_irq:
iounmap(ks->hw_addr_cmd);
err_ioremap1:
iounmap(ks->hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
release_mem_region(io_c->start, resource_size(io_c));
err_mem_region1:
release_mem_region(io_d->start, resource_size(io_d));
err_mem_region:
return err;
}
static int __devexit ks8851_remove(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct ks_net *ks = netdev_priv(netdev);
struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
kfree(ks->frame_head_info);
unregister_netdev(netdev);
iounmap(ks->hw_addr);
free_netdev(netdev);
release_mem_region(iomem->start, resource_size(iomem));
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver ks8851_platform_driver = {
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
.probe = ks8851_probe,
.remove = __devexit_p(ks8851_remove),
};
static int __init ks8851_init(void)
{
return platform_driver_register(&ks8851_platform_driver);
}
static void __exit ks8851_exit(void)
{
platform_driver_unregister(&ks8851_platform_driver);
}
module_init(ks8851_init);
module_exit(ks8851_exit);
MODULE_DESCRIPTION("KS8851 MLL Network driver");
MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");