linux/net/ipv6/syncookies.c

253 lines
7.2 KiB
C
Raw Normal View History

/*
* IPv6 Syncookies implementation for the Linux kernel
*
* Authors:
* Glenn Griffin <ggriffin.kernel@gmail.com>
*
* Based on IPv4 implementation by Andi Kleen
* linux/net/ipv4/syncookies.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/tcp.h>
#include <linux/random.h>
#include <linux/cryptohash.h>
#include <linux/kernel.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#define COOKIEBITS 24 /* Upper bits store count */
#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
static u32 syncookie6_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
/* RFC 2460, Section 8.3:
* [ipv6 tcp] MSS must be computed as the maximum packet size minus 60 [..]
*
* Due to IPV6_MIN_MTU=1280 the lowest possible MSS is 1220, which allows
* using higher values than ipv4 tcp syncookies.
* The other values are chosen based on ethernet (1500 and 9k MTU), plus
* one that accounts for common encap (PPPoe) overhead. Table must be sorted.
*/
static __u16 const msstab[] = {
1280 - 60, /* IPV6_MIN_MTU - 60 */
1480 - 60,
1500 - 60,
9000 - 60,
};
tags: Fix DEFINE_PER_CPU expansions $ make tags GEN tags ctags: Warning: drivers/acpi/processor_idle.c:64: null expansion of name pattern "\1" ctags: Warning: drivers/xen/events/events_2l.c:41: null expansion of name pattern "\1" ctags: Warning: kernel/locking/lockdep.c:151: null expansion of name pattern "\1" ctags: Warning: kernel/rcu/rcutorture.c:133: null expansion of name pattern "\1" ctags: Warning: kernel/rcu/rcutorture.c:135: null expansion of name pattern "\1" ctags: Warning: kernel/workqueue.c:323: null expansion of name pattern "\1" ctags: Warning: net/ipv4/syncookies.c:53: null expansion of name pattern "\1" ctags: Warning: net/ipv6/syncookies.c:44: null expansion of name pattern "\1" ctags: Warning: net/rds/page.c:45: null expansion of name pattern "\1" Which are all the result of the DEFINE_PER_CPU pattern: scripts/tags.sh:200: '/\<DEFINE_PER_CPU([^,]*, *\([[:alnum:]_]*\)/\1/v/' scripts/tags.sh:201: '/\<DEFINE_PER_CPU_SHARED_ALIGNED([^,]*, *\([[:alnum:]_]*\)/\1/v/' The below cures them. All except the workqueue one are within reasonable distance of the 80 char limit. TJ do you have any preference on how to fix the wq one, or shall we just not care its too long? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Tejun Heo <tj@kernel.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 14:52:49 -07:00
static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS], ipv6_cookie_scratch);
static u32 cookie_hash(const struct in6_addr *saddr, const struct in6_addr *daddr,
__be16 sport, __be16 dport, u32 count, int c)
{
__u32 *tmp;
net_get_random_once(syncookie6_secret, sizeof(syncookie6_secret));
tmp = this_cpu_ptr(ipv6_cookie_scratch);
/*
* we have 320 bits of information to hash, copy in the remaining
* 192 bits required for sha_transform, from the syncookie6_secret
* and overwrite the digest with the secret
*/
memcpy(tmp + 10, syncookie6_secret[c], 44);
memcpy(tmp, saddr, 16);
memcpy(tmp + 4, daddr, 16);
tmp[8] = ((__force u32)sport << 16) + (__force u32)dport;
tmp[9] = count;
sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
return tmp[17];
}
static __u32 secure_tcp_syn_cookie(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__be16 sport, __be16 dport, __u32 sseq,
__u32 data)
{
u32 count = tcp_cookie_time();
return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
sseq + (count << COOKIEBITS) +
((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
& COOKIEMASK));
}
static __u32 check_tcp_syn_cookie(__u32 cookie, const struct in6_addr *saddr,
const struct in6_addr *daddr, __be16 sport,
__be16 dport, __u32 sseq)
{
__u32 diff, count = tcp_cookie_time();
cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
if (diff >= MAX_SYNCOOKIE_AGE)
return (__u32)-1;
return (cookie -
cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
& COOKIEMASK;
}
u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
const struct tcphdr *th, __u16 *mssp)
{
int mssind;
const __u16 mss = *mssp;
for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
if (mss >= msstab[mssind])
break;
*mssp = msstab[mssind];
return secure_tcp_syn_cookie(&iph->saddr, &iph->daddr, th->source,
th->dest, ntohl(th->seq), mssind);
}
EXPORT_SYMBOL_GPL(__cookie_v6_init_sequence);
__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mssp)
{
const struct ipv6hdr *iph = ipv6_hdr(skb);
const struct tcphdr *th = tcp_hdr(skb);
return __cookie_v6_init_sequence(iph, th, mssp);
}
int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
__u32 cookie)
{
__u32 seq = ntohl(th->seq) - 1;
__u32 mssind = check_tcp_syn_cookie(cookie, &iph->saddr, &iph->daddr,
th->source, th->dest, seq);
return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
}
EXPORT_SYMBOL_GPL(__cookie_v6_check);
struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
{
struct tcp_options_received tcp_opt;
struct inet_request_sock *ireq;
struct tcp_request_sock *treq;
struct ipv6_pinfo *np = inet6_sk(sk);
struct tcp_sock *tp = tcp_sk(sk);
const struct tcphdr *th = tcp_hdr(skb);
__u32 cookie = ntohl(th->ack_seq) - 1;
struct sock *ret = sk;
struct request_sock *req;
int mss;
struct dst_entry *dst;
__u8 rcv_wscale;
if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
goto out;
if (tcp_synq_no_recent_overflow(sk))
goto out;
mss = __cookie_v6_check(ipv6_hdr(skb), th, cookie);
if (mss == 0) {
__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
goto out;
}
__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
/* check for timestamp cookie support */
memset(&tcp_opt, 0, sizeof(tcp_opt));
tcp_parse_options(skb, &tcp_opt, 0, NULL);
syncookies: split cookie_check_timestamp() into two functions The function cookie_check_timestamp(), both called from IPv4/6 context, is being used to decode the echoed timestamp from the SYN/ACK into TCP options used for follow-up communication with the peer. We can remove ECN handling from that function, split it into a separate one, and simply rename the original function into cookie_decode_options(). cookie_decode_options() just fills in tcp_option struct based on the echoed timestamp received from the peer. Anything that fails in this function will actually discard the request socket. While this is the natural place for decoding options such as ECN which commit 172d69e63c7f ("syncookies: add support for ECN") added, we argue that in particular for ECN handling, it can be checked at a later point in time as the request sock would actually not need to be dropped from this, but just ECN support turned off. Therefore, we split this functionality into cookie_ecn_ok(), which tells us if the timestamp indicates ECN support AND the tcp_ecn sysctl is enabled. This prepares for per-route ECN support: just looking at the tcp_ecn sysctl won't be enough anymore at that point; if the timestamp indicates ECN and sysctl tcp_ecn == 0, we will also need to check the ECN dst metric. This would mean adding a route lookup to cookie_check_timestamp(), which we definitely want to avoid. As we already do a route lookup at a later point in cookie_{v4,v6}_check(), we can simply make use of that as well for the new cookie_ecn_ok() function w/o any additional cost. Joint work with Daniel Borkmann. Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-03 17:35:02 +01:00
if (!cookie_timestamp_decode(&tcp_opt))
goto out;
ret = NULL;
req = inet_reqsk_alloc(&tcp6_request_sock_ops, sk, false);
if (!req)
goto out;
ireq = inet_rsk(req);
treq = tcp_rsk(req);
treq->tfo_listener = false;
if (security_inet_conn_request(sk, skb, req))
goto out_free;
req->mss = mss;
ireq->ir_rmt_port = th->source;
ireq->ir_num = ntohs(th->dest);
ireq->ir_v6_rmt_addr = ipv6_hdr(skb)->saddr;
ireq->ir_v6_loc_addr = ipv6_hdr(skb)->daddr;
if (ipv6_opt_accepted(sk, skb, &TCP_SKB_CB(skb)->header.h6) ||
np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo ||
np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim) {
atomic_inc(&skb->users);
ireq->pktopts = skb;
}
ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
/* So that link locals have meaning */
if (!sk->sk_bound_dev_if &&
ipv6_addr_type(&ireq->ir_v6_rmt_addr) & IPV6_ADDR_LINKLOCAL)
ireq->ir_iif = tcp_v6_iif(skb);
ireq->ir_mark = inet_request_mark(sk, skb);
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-27 23:16:46 +00:00
req->num_retrans = 0;
ireq->snd_wscale = tcp_opt.snd_wscale;
ireq->sack_ok = tcp_opt.sack_ok;
ireq->wscale_ok = tcp_opt.wscale_ok;
ireq->tstamp_ok = tcp_opt.saw_tstamp;
req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
tcp: usec resolution SYN/ACK RTT Currently SYN/ACK RTT is measured in jiffies. For LAN the SYN/ACK RTT is often measured as 0ms or sometimes 1ms, which would affect RTT estimation and min RTT samping used by some congestion control. This patch improves SYN/ACK RTT to be usec resolution if platform supports it. While the timestamping of SYN/ACK is done in request sock, the RTT measurement is carefully arranged to avoid storing another u64 timestamp in tcp_sock. For regular handshake w/o SYNACK retransmission, the RTT is sampled right after the child socket is created and right before the request sock is released (tcp_check_req() in tcp_minisocks.c) For Fast Open the child socket is already created when SYN/ACK was sent, the RTT is sampled in tcp_rcv_state_process() after processing the final ACK an right before the request socket is released. If the SYN/ACK was retransmistted or SYN-cookie was used, we rely on TCP timestamps to measure the RTT. The sample is taken at the same place in tcp_rcv_state_process() after the timestamp values are validated in tcp_validate_incoming(). Note that we do not store TS echo value in request_sock for SYN-cookies, because the value is already stored in tp->rx_opt used by tcp_ack_update_rtt(). One side benefit is that the RTT measurement now happens before initializing congestion control (of the passive side). Therefore the congestion control can use the SYN/ACK RTT. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-18 11:36:14 -07:00
treq->snt_synack.v64 = 0;
treq->rcv_isn = ntohl(th->seq) - 1;
treq->snt_isn = cookie;
/*
* We need to lookup the dst_entry to get the correct window size.
* This is taken from tcp_v6_syn_recv_sock. Somebody please enlighten
* me if there is a preferred way.
*/
{
struct in6_addr *final_p, final;
struct flowi6 fl6;
memset(&fl6, 0, sizeof(fl6));
fl6.flowi6_proto = IPPROTO_TCP;
fl6.daddr = ireq->ir_v6_rmt_addr;
final_p = fl6_update_dst(&fl6, rcu_dereference(np->opt), &final);
fl6.saddr = ireq->ir_v6_loc_addr;
fl6.flowi6_oif = ireq->ir_iif;
fl6.flowi6_mark = ireq->ir_mark;
fl6.fl6_dport = ireq->ir_rmt_port;
fl6.fl6_sport = inet_sk(sk)->inet_sport;
security_req_classify_flow(req, flowi6_to_flowi(&fl6));
dst = ip6_dst_lookup_flow(sk, &fl6, final_p);
if (IS_ERR(dst))
goto out_free;
}
req->rsk_window_clamp = tp->window_clamp ? :dst_metric(dst, RTAX_WINDOW);
tcp_select_initial_window(tcp_full_space(sk), req->mss,
&req->rsk_rcv_wnd, &req->rsk_window_clamp,
ireq->wscale_ok, &rcv_wscale,
dst_metric(dst, RTAX_INITRWND));
ireq->rcv_wscale = rcv_wscale;
net: allow setting ecn via routing table This patch allows to set ECN on a per-route basis in case the sysctl tcp_ecn is not set to 1. In other words, when ECN is set for specific routes, it provides a tcp_ecn=1 behaviour for that route while the rest of the stack acts according to the global settings. One can use 'ip route change dev $dev $net features ecn' to toggle this. Having a more fine-grained per-route setting can be beneficial for various reasons, for example, 1) within data centers, or 2) local ISPs may deploy ECN support for their own video/streaming services [1], etc. There was a recent measurement study/paper [2] which scanned the Alexa's publicly available top million websites list from a vantage point in US, Europe and Asia: Half of the Alexa list will now happily use ECN (tcp_ecn=2, most likely blamed to commit 255cac91c3 ("tcp: extend ECN sysctl to allow server-side only ECN") ;)); the break in connectivity on-path was found is about 1 in 10,000 cases. Timeouts rather than receiving back RSTs were much more common in the negotiation phase (and mostly seen in the Alexa middle band, ranks around 50k-150k): from 12-thousand hosts on which there _may_ be ECN-linked connection failures, only 79 failed with RST when _not_ failing with RST when ECN is not requested. It's unclear though, how much equipment in the wild actually marks CE when buffers start to fill up. We thought about a fallback to non-ECN for retransmitted SYNs as another global option (which could perhaps one day be made default), but as Eric points out, there's much more work needed to detect broken middleboxes. Two examples Eric mentioned are buggy firewalls that accept only a single SYN per flow, and middleboxes that successfully let an ECN flow establish, but later mark CE for all packets (so cwnd converges to 1). [1] http://www.ietf.org/proceedings/89/slides/slides-89-tsvarea-1.pdf, p.15 [2] http://ecn.ethz.ch/ Joint work with Daniel Borkmann. Reference: http://thread.gmane.org/gmane.linux.network/335797 Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-03 17:35:03 +01:00
ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), dst);
ret = tcp_get_cookie_sock(sk, skb, req, dst);
out:
return ret;
out_free:
reqsk_free(req);
return NULL;
}