linux/drivers/target/target_core_sbc.c

1425 lines
38 KiB
C
Raw Normal View History

/*
* SCSI Block Commands (SBC) parsing and emulation.
*
* (c) Copyright 2002-2013 Datera, Inc.
*
* Nicholas A. Bellinger <nab@kernel.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ratelimit.h>
#include <linux/crc-t10dif.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
#include "target_core_internal.h"
#include "target_core_ua.h"
#include "target_core_alua.h"
static sense_reason_t
sbc_check_prot(struct se_device *, struct se_cmd *, unsigned char *, u32, bool);
static sense_reason_t
sbc_emulate_readcapacity(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
unsigned char *cdb = cmd->t_task_cdb;
unsigned long long blocks_long = dev->transport->get_blocks(dev);
unsigned char *rbuf;
unsigned char buf[8];
u32 blocks;
/*
* SBC-2 says:
* If the PMI bit is set to zero and the LOGICAL BLOCK
* ADDRESS field is not set to zero, the device server shall
* terminate the command with CHECK CONDITION status with
* the sense key set to ILLEGAL REQUEST and the additional
* sense code set to INVALID FIELD IN CDB.
*
* In SBC-3, these fields are obsolete, but some SCSI
* compliance tests actually check this, so we might as well
* follow SBC-2.
*/
if (!(cdb[8] & 1) && !!(cdb[2] | cdb[3] | cdb[4] | cdb[5]))
return TCM_INVALID_CDB_FIELD;
if (blocks_long >= 0x00000000ffffffff)
blocks = 0xffffffff;
else
blocks = (u32)blocks_long;
buf[0] = (blocks >> 24) & 0xff;
buf[1] = (blocks >> 16) & 0xff;
buf[2] = (blocks >> 8) & 0xff;
buf[3] = blocks & 0xff;
buf[4] = (dev->dev_attrib.block_size >> 24) & 0xff;
buf[5] = (dev->dev_attrib.block_size >> 16) & 0xff;
buf[6] = (dev->dev_attrib.block_size >> 8) & 0xff;
buf[7] = dev->dev_attrib.block_size & 0xff;
rbuf = transport_kmap_data_sg(cmd);
if (rbuf) {
memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
transport_kunmap_data_sg(cmd);
}
target_complete_cmd_with_length(cmd, GOOD, 8);
return 0;
}
static sense_reason_t
sbc_emulate_readcapacity_16(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
struct se_session *sess = cmd->se_sess;
unsigned char *rbuf;
unsigned char buf[32];
unsigned long long blocks = dev->transport->get_blocks(dev);
memset(buf, 0, sizeof(buf));
buf[0] = (blocks >> 56) & 0xff;
buf[1] = (blocks >> 48) & 0xff;
buf[2] = (blocks >> 40) & 0xff;
buf[3] = (blocks >> 32) & 0xff;
buf[4] = (blocks >> 24) & 0xff;
buf[5] = (blocks >> 16) & 0xff;
buf[6] = (blocks >> 8) & 0xff;
buf[7] = blocks & 0xff;
buf[8] = (dev->dev_attrib.block_size >> 24) & 0xff;
buf[9] = (dev->dev_attrib.block_size >> 16) & 0xff;
buf[10] = (dev->dev_attrib.block_size >> 8) & 0xff;
buf[11] = dev->dev_attrib.block_size & 0xff;
/*
* Set P_TYPE and PROT_EN bits for DIF support
*/
if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
if (dev->dev_attrib.pi_prot_type)
buf[12] = (dev->dev_attrib.pi_prot_type - 1) << 1 | 0x1;
}
if (dev->transport->get_lbppbe)
buf[13] = dev->transport->get_lbppbe(dev) & 0x0f;
if (dev->transport->get_alignment_offset_lbas) {
u16 lalba = dev->transport->get_alignment_offset_lbas(dev);
buf[14] = (lalba >> 8) & 0x3f;
buf[15] = lalba & 0xff;
}
/*
* Set Thin Provisioning Enable bit following sbc3r22 in section
* READ CAPACITY (16) byte 14 if emulate_tpu or emulate_tpws is enabled.
*/
if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
buf[14] |= 0x80;
rbuf = transport_kmap_data_sg(cmd);
if (rbuf) {
memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
transport_kunmap_data_sg(cmd);
}
target_complete_cmd_with_length(cmd, GOOD, 32);
return 0;
}
sector_t sbc_get_write_same_sectors(struct se_cmd *cmd)
{
u32 num_blocks;
if (cmd->t_task_cdb[0] == WRITE_SAME)
num_blocks = get_unaligned_be16(&cmd->t_task_cdb[7]);
else if (cmd->t_task_cdb[0] == WRITE_SAME_16)
num_blocks = get_unaligned_be32(&cmd->t_task_cdb[10]);
else /* WRITE_SAME_32 via VARIABLE_LENGTH_CMD */
num_blocks = get_unaligned_be32(&cmd->t_task_cdb[28]);
/*
* Use the explicit range when non zero is supplied, otherwise calculate
* the remaining range based on ->get_blocks() - starting LBA.
*/
if (num_blocks)
return num_blocks;
return cmd->se_dev->transport->get_blocks(cmd->se_dev) -
cmd->t_task_lba + 1;
}
EXPORT_SYMBOL(sbc_get_write_same_sectors);
static sense_reason_t
sbc_emulate_noop(struct se_cmd *cmd)
{
target_complete_cmd(cmd, GOOD);
return 0;
}
static inline u32 sbc_get_size(struct se_cmd *cmd, u32 sectors)
{
return cmd->se_dev->dev_attrib.block_size * sectors;
}
static inline u32 transport_get_sectors_6(unsigned char *cdb)
{
/*
* Use 8-bit sector value. SBC-3 says:
*
* A TRANSFER LENGTH field set to zero specifies that 256
* logical blocks shall be written. Any other value
* specifies the number of logical blocks that shall be
* written.
*/
return cdb[4] ? : 256;
}
static inline u32 transport_get_sectors_10(unsigned char *cdb)
{
return (u32)(cdb[7] << 8) + cdb[8];
}
static inline u32 transport_get_sectors_12(unsigned char *cdb)
{
return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
}
static inline u32 transport_get_sectors_16(unsigned char *cdb)
{
return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
(cdb[12] << 8) + cdb[13];
}
/*
* Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
*/
static inline u32 transport_get_sectors_32(unsigned char *cdb)
{
return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
(cdb[30] << 8) + cdb[31];
}
static inline u32 transport_lba_21(unsigned char *cdb)
{
return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
}
static inline u32 transport_lba_32(unsigned char *cdb)
{
return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
}
static inline unsigned long long transport_lba_64(unsigned char *cdb)
{
unsigned int __v1, __v2;
__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
}
/*
* For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
*/
static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
{
unsigned int __v1, __v2;
__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
}
static sense_reason_t
sbc_setup_write_same(struct se_cmd *cmd, unsigned char *flags, struct sbc_ops *ops)
{
struct se_device *dev = cmd->se_dev;
sector_t end_lba = dev->transport->get_blocks(dev) + 1;
unsigned int sectors = sbc_get_write_same_sectors(cmd);
sense_reason_t ret;
if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
pr_err("WRITE_SAME PBDATA and LBDATA"
" bits not supported for Block Discard"
" Emulation\n");
return TCM_UNSUPPORTED_SCSI_OPCODE;
}
if (sectors > cmd->se_dev->dev_attrib.max_write_same_len) {
pr_warn("WRITE_SAME sectors: %u exceeds max_write_same_len: %u\n",
sectors, cmd->se_dev->dev_attrib.max_write_same_len);
return TCM_INVALID_CDB_FIELD;
}
/*
* Sanity check for LBA wrap and request past end of device.
*/
if (((cmd->t_task_lba + sectors) < cmd->t_task_lba) ||
((cmd->t_task_lba + sectors) > end_lba)) {
pr_err("WRITE_SAME exceeds last lba %llu (lba %llu, sectors %u)\n",
(unsigned long long)end_lba, cmd->t_task_lba, sectors);
return TCM_ADDRESS_OUT_OF_RANGE;
}
/* We always have ANC_SUP == 0 so setting ANCHOR is always an error */
if (flags[0] & 0x10) {
pr_warn("WRITE SAME with ANCHOR not supported\n");
return TCM_INVALID_CDB_FIELD;
}
/*
* Special case for WRITE_SAME w/ UNMAP=1 that ends up getting
* translated into block discard requests within backend code.
*/
if (flags[0] & 0x08) {
if (!ops->execute_write_same_unmap)
return TCM_UNSUPPORTED_SCSI_OPCODE;
if (!dev->dev_attrib.emulate_tpws) {
pr_err("Got WRITE_SAME w/ UNMAP=1, but backend device"
" has emulate_tpws disabled\n");
return TCM_UNSUPPORTED_SCSI_OPCODE;
}
cmd->execute_cmd = ops->execute_write_same_unmap;
return 0;
}
if (!ops->execute_write_same)
return TCM_UNSUPPORTED_SCSI_OPCODE;
ret = sbc_check_prot(dev, cmd, &cmd->t_task_cdb[0], sectors, true);
if (ret)
return ret;
cmd->execute_cmd = ops->execute_write_same;
return 0;
}
static sense_reason_t xdreadwrite_callback(struct se_cmd *cmd)
{
unsigned char *buf, *addr;
struct scatterlist *sg;
unsigned int offset;
sense_reason_t ret = TCM_NO_SENSE;
int i, count;
/*
* From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
*
* 1) read the specified logical block(s);
* 2) transfer logical blocks from the data-out buffer;
* 3) XOR the logical blocks transferred from the data-out buffer with
* the logical blocks read, storing the resulting XOR data in a buffer;
* 4) if the DISABLE WRITE bit is set to zero, then write the logical
* blocks transferred from the data-out buffer; and
* 5) transfer the resulting XOR data to the data-in buffer.
*/
buf = kmalloc(cmd->data_length, GFP_KERNEL);
if (!buf) {
pr_err("Unable to allocate xor_callback buf\n");
return TCM_OUT_OF_RESOURCES;
}
/*
* Copy the scatterlist WRITE buffer located at cmd->t_data_sg
* into the locally allocated *buf
*/
sg_copy_to_buffer(cmd->t_data_sg,
cmd->t_data_nents,
buf,
cmd->data_length);
/*
* Now perform the XOR against the BIDI read memory located at
* cmd->t_mem_bidi_list
*/
offset = 0;
for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
addr = kmap_atomic(sg_page(sg));
if (!addr) {
ret = TCM_OUT_OF_RESOURCES;
goto out;
}
for (i = 0; i < sg->length; i++)
*(addr + sg->offset + i) ^= *(buf + offset + i);
offset += sg->length;
kunmap_atomic(addr);
}
out:
kfree(buf);
return ret;
}
static sense_reason_t
sbc_execute_rw(struct se_cmd *cmd)
{
return cmd->execute_rw(cmd, cmd->t_data_sg, cmd->t_data_nents,
cmd->data_direction);
}
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
static sense_reason_t compare_and_write_post(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
/*
* Only set SCF_COMPARE_AND_WRITE_POST to force a response fall-through
* within target_complete_ok_work() if the command was successfully
* sent to the backend driver.
*/
spin_lock_irq(&cmd->t_state_lock);
if ((cmd->transport_state & CMD_T_SENT) && !cmd->scsi_status)
cmd->se_cmd_flags |= SCF_COMPARE_AND_WRITE_POST;
spin_unlock_irq(&cmd->t_state_lock);
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
/*
* Unlock ->caw_sem originally obtained during sbc_compare_and_write()
* before the original READ I/O submission.
*/
up(&dev->caw_sem);
return TCM_NO_SENSE;
}
static sense_reason_t compare_and_write_callback(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
struct scatterlist *write_sg = NULL, *sg;
unsigned char *buf = NULL, *addr;
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
struct sg_mapping_iter m;
unsigned int offset = 0, len;
unsigned int nlbas = cmd->t_task_nolb;
unsigned int block_size = dev->dev_attrib.block_size;
unsigned int compare_len = (nlbas * block_size);
sense_reason_t ret = TCM_NO_SENSE;
int rc, i;
/*
* Handle early failure in transport_generic_request_failure(),
* which will not have taken ->caw_mutex yet..
*/
if (!cmd->t_data_sg || !cmd->t_bidi_data_sg)
return TCM_NO_SENSE;
/*
* Immediately exit + release dev->caw_sem if command has already
* been failed with a non-zero SCSI status.
*/
if (cmd->scsi_status) {
pr_err("compare_and_write_callback: non zero scsi_status:"
" 0x%02x\n", cmd->scsi_status);
goto out;
}
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
buf = kzalloc(cmd->data_length, GFP_KERNEL);
if (!buf) {
pr_err("Unable to allocate compare_and_write buf\n");
ret = TCM_OUT_OF_RESOURCES;
goto out;
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
}
write_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
GFP_KERNEL);
if (!write_sg) {
pr_err("Unable to allocate compare_and_write sg\n");
ret = TCM_OUT_OF_RESOURCES;
goto out;
}
sg_init_table(write_sg, cmd->t_data_nents);
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
/*
* Setup verify and write data payloads from total NumberLBAs.
*/
rc = sg_copy_to_buffer(cmd->t_data_sg, cmd->t_data_nents, buf,
cmd->data_length);
if (!rc) {
pr_err("sg_copy_to_buffer() failed for compare_and_write\n");
ret = TCM_OUT_OF_RESOURCES;
goto out;
}
/*
* Compare against SCSI READ payload against verify payload
*/
for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, i) {
addr = (unsigned char *)kmap_atomic(sg_page(sg));
if (!addr) {
ret = TCM_OUT_OF_RESOURCES;
goto out;
}
len = min(sg->length, compare_len);
if (memcmp(addr, buf + offset, len)) {
pr_warn("Detected MISCOMPARE for addr: %p buf: %p\n",
addr, buf + offset);
kunmap_atomic(addr);
goto miscompare;
}
kunmap_atomic(addr);
offset += len;
compare_len -= len;
if (!compare_len)
break;
}
i = 0;
len = cmd->t_task_nolb * block_size;
sg_miter_start(&m, cmd->t_data_sg, cmd->t_data_nents, SG_MITER_TO_SG);
/*
* Currently assumes NoLB=1 and SGLs are PAGE_SIZE..
*/
while (len) {
sg_miter_next(&m);
if (block_size < PAGE_SIZE) {
sg_set_page(&write_sg[i], m.page, block_size,
block_size);
} else {
sg_miter_next(&m);
sg_set_page(&write_sg[i], m.page, block_size,
0);
}
len -= block_size;
i++;
}
sg_miter_stop(&m);
/*
* Save the original SGL + nents values before updating to new
* assignments, to be released in transport_free_pages() ->
* transport_reset_sgl_orig()
*/
cmd->t_data_sg_orig = cmd->t_data_sg;
cmd->t_data_sg = write_sg;
cmd->t_data_nents_orig = cmd->t_data_nents;
cmd->t_data_nents = 1;
cmd->sam_task_attr = TCM_HEAD_TAG;
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
cmd->transport_complete_callback = compare_and_write_post;
/*
* Now reset ->execute_cmd() to the normal sbc_execute_rw() handler
* for submitting the adjusted SGL to write instance user-data.
*/
cmd->execute_cmd = sbc_execute_rw;
spin_lock_irq(&cmd->t_state_lock);
cmd->t_state = TRANSPORT_PROCESSING;
cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
spin_unlock_irq(&cmd->t_state_lock);
__target_execute_cmd(cmd);
kfree(buf);
return ret;
miscompare:
pr_warn("Target/%s: Send MISCOMPARE check condition and sense\n",
dev->transport->name);
ret = TCM_MISCOMPARE_VERIFY;
out:
/*
* In the MISCOMPARE or failure case, unlock ->caw_sem obtained in
* sbc_compare_and_write() before the original READ I/O submission.
*/
up(&dev->caw_sem);
kfree(write_sg);
kfree(buf);
return ret;
}
static sense_reason_t
sbc_compare_and_write(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
sense_reason_t ret;
int rc;
/*
* Submit the READ first for COMPARE_AND_WRITE to perform the
* comparision using SGLs at cmd->t_bidi_data_sg..
*/
rc = down_interruptible(&dev->caw_sem);
if ((rc != 0) || signal_pending(current)) {
cmd->transport_complete_callback = NULL;
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
}
/*
* Reset cmd->data_length to individual block_size in order to not
* confuse backend drivers that depend on this value matching the
* size of the I/O being submitted.
*/
cmd->data_length = cmd->t_task_nolb * dev->dev_attrib.block_size;
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
ret = cmd->execute_rw(cmd, cmd->t_bidi_data_sg, cmd->t_bidi_data_nents,
DMA_FROM_DEVICE);
if (ret) {
cmd->transport_complete_callback = NULL;
up(&dev->caw_sem);
return ret;
}
/*
* Unlock of dev->caw_sem to occur in compare_and_write_callback()
* upon MISCOMPARE, or in compare_and_write_done() upon completion
* of WRITE instance user-data.
*/
return TCM_NO_SENSE;
}
static int
sbc_set_prot_op_checks(u8 protect, bool fabric_prot, enum target_prot_type prot_type,
bool is_write, struct se_cmd *cmd)
{
if (is_write) {
cmd->prot_op = fabric_prot ? TARGET_PROT_DOUT_STRIP :
protect ? TARGET_PROT_DOUT_PASS :
TARGET_PROT_DOUT_INSERT;
switch (protect) {
case 0x0:
case 0x3:
cmd->prot_checks = 0;
break;
case 0x1:
case 0x5:
cmd->prot_checks = TARGET_DIF_CHECK_GUARD;
if (prot_type == TARGET_DIF_TYPE1_PROT)
cmd->prot_checks |= TARGET_DIF_CHECK_REFTAG;
break;
case 0x2:
if (prot_type == TARGET_DIF_TYPE1_PROT)
cmd->prot_checks = TARGET_DIF_CHECK_REFTAG;
break;
case 0x4:
cmd->prot_checks = TARGET_DIF_CHECK_GUARD;
break;
default:
pr_err("Unsupported protect field %d\n", protect);
return -EINVAL;
}
} else {
cmd->prot_op = fabric_prot ? TARGET_PROT_DIN_INSERT :
protect ? TARGET_PROT_DIN_PASS :
TARGET_PROT_DIN_STRIP;
switch (protect) {
case 0x0:
case 0x1:
case 0x5:
cmd->prot_checks = TARGET_DIF_CHECK_GUARD;
if (prot_type == TARGET_DIF_TYPE1_PROT)
cmd->prot_checks |= TARGET_DIF_CHECK_REFTAG;
break;
case 0x2:
if (prot_type == TARGET_DIF_TYPE1_PROT)
cmd->prot_checks = TARGET_DIF_CHECK_REFTAG;
break;
case 0x3:
cmd->prot_checks = 0;
break;
case 0x4:
cmd->prot_checks = TARGET_DIF_CHECK_GUARD;
break;
default:
pr_err("Unsupported protect field %d\n", protect);
return -EINVAL;
}
}
return 0;
}
static sense_reason_t
sbc_check_prot(struct se_device *dev, struct se_cmd *cmd, unsigned char *cdb,
u32 sectors, bool is_write)
{
u8 protect = cdb[1] >> 5;
int sp_ops = cmd->se_sess->sup_prot_ops;
int pi_prot_type = dev->dev_attrib.pi_prot_type;
bool fabric_prot = false;
if (!cmd->t_prot_sg || !cmd->t_prot_nents) {
if (unlikely(protect &&
!dev->dev_attrib.pi_prot_type && !cmd->se_sess->sess_prot_type)) {
pr_err("CDB contains protect bit, but device + fabric does"
" not advertise PROTECT=1 feature bit\n");
return TCM_INVALID_CDB_FIELD;
}
if (cmd->prot_pto)
return TCM_NO_SENSE;
}
switch (dev->dev_attrib.pi_prot_type) {
case TARGET_DIF_TYPE3_PROT:
cmd->reftag_seed = 0xffffffff;
break;
case TARGET_DIF_TYPE2_PROT:
if (protect)
return TCM_INVALID_CDB_FIELD;
cmd->reftag_seed = cmd->t_task_lba;
break;
case TARGET_DIF_TYPE1_PROT:
cmd->reftag_seed = cmd->t_task_lba;
break;
case TARGET_DIF_TYPE0_PROT:
/*
* See if the fabric supports T10-PI, and the session has been
* configured to allow export PROTECT=1 feature bit with backend
* devices that don't support T10-PI.
*/
fabric_prot = is_write ?
!!(sp_ops & (TARGET_PROT_DOUT_PASS | TARGET_PROT_DOUT_STRIP)) :
!!(sp_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DIN_INSERT));
if (fabric_prot && cmd->se_sess->sess_prot_type) {
pi_prot_type = cmd->se_sess->sess_prot_type;
break;
}
/* Fallthrough */
default:
return TCM_NO_SENSE;
}
if (sbc_set_prot_op_checks(protect, fabric_prot, pi_prot_type, is_write, cmd))
return TCM_INVALID_CDB_FIELD;
cmd->prot_type = pi_prot_type;
cmd->prot_length = dev->prot_length * sectors;
/**
* In case protection information exists over the wire
* we modify command data length to describe pure data.
* The actual transfer length is data length + protection
* length
**/
if (protect)
cmd->data_length = sectors * dev->dev_attrib.block_size;
pr_debug("%s: prot_type=%d, data_length=%d, prot_length=%d "
"prot_op=%d prot_checks=%d\n",
__func__, cmd->prot_type, cmd->data_length, cmd->prot_length,
cmd->prot_op, cmd->prot_checks);
return TCM_NO_SENSE;
}
static int
sbc_check_dpofua(struct se_device *dev, struct se_cmd *cmd, unsigned char *cdb)
{
if (cdb[1] & 0x10) {
if (!dev->dev_attrib.emulate_dpo) {
pr_err("Got CDB: 0x%02x with DPO bit set, but device"
" does not advertise support for DPO\n", cdb[0]);
return -EINVAL;
}
}
if (cdb[1] & 0x8) {
if (!dev->dev_attrib.emulate_fua_write ||
!dev->dev_attrib.emulate_write_cache) {
pr_err("Got CDB: 0x%02x with FUA bit set, but device"
" does not advertise support for FUA write\n",
cdb[0]);
return -EINVAL;
}
cmd->se_cmd_flags |= SCF_FUA;
}
return 0;
}
sense_reason_t
sbc_parse_cdb(struct se_cmd *cmd, struct sbc_ops *ops)
{
struct se_device *dev = cmd->se_dev;
unsigned char *cdb = cmd->t_task_cdb;
unsigned int size;
u32 sectors = 0;
sense_reason_t ret;
switch (cdb[0]) {
case READ_6:
sectors = transport_get_sectors_6(cdb);
cmd->t_task_lba = transport_lba_21(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case READ_10:
sectors = transport_get_sectors_10(cdb);
cmd->t_task_lba = transport_lba_32(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
ret = sbc_check_prot(dev, cmd, cdb, sectors, false);
if (ret)
return ret;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case READ_12:
sectors = transport_get_sectors_12(cdb);
cmd->t_task_lba = transport_lba_32(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
ret = sbc_check_prot(dev, cmd, cdb, sectors, false);
if (ret)
return ret;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case READ_16:
sectors = transport_get_sectors_16(cdb);
cmd->t_task_lba = transport_lba_64(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
ret = sbc_check_prot(dev, cmd, cdb, sectors, false);
if (ret)
return ret;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case WRITE_6:
sectors = transport_get_sectors_6(cdb);
cmd->t_task_lba = transport_lba_21(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case WRITE_10:
case WRITE_VERIFY:
sectors = transport_get_sectors_10(cdb);
cmd->t_task_lba = transport_lba_32(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
ret = sbc_check_prot(dev, cmd, cdb, sectors, true);
if (ret)
return ret;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case WRITE_12:
sectors = transport_get_sectors_12(cdb);
cmd->t_task_lba = transport_lba_32(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
ret = sbc_check_prot(dev, cmd, cdb, sectors, true);
if (ret)
return ret;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case WRITE_16:
sectors = transport_get_sectors_16(cdb);
cmd->t_task_lba = transport_lba_64(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
ret = sbc_check_prot(dev, cmd, cdb, sectors, true);
if (ret)
return ret;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
break;
case XDWRITEREAD_10:
if (cmd->data_direction != DMA_TO_DEVICE ||
!(cmd->se_cmd_flags & SCF_BIDI))
return TCM_INVALID_CDB_FIELD;
sectors = transport_get_sectors_10(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
cmd->t_task_lba = transport_lba_32(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
/*
* Setup BIDI XOR callback to be run after I/O completion.
*/
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
cmd->transport_complete_callback = &xdreadwrite_callback;
break;
case VARIABLE_LENGTH_CMD:
{
u16 service_action = get_unaligned_be16(&cdb[8]);
switch (service_action) {
case XDWRITEREAD_32:
sectors = transport_get_sectors_32(cdb);
if (sbc_check_dpofua(dev, cmd, cdb))
return TCM_INVALID_CDB_FIELD;
/*
* Use WRITE_32 and READ_32 opcodes for the emulated
* XDWRITE_READ_32 logic.
*/
cmd->t_task_lba = transport_lba_64_ext(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB;
/*
* Setup BIDI XOR callback to be run during after I/O
* completion.
*/
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_execute_rw;
cmd->transport_complete_callback = &xdreadwrite_callback;
break;
case WRITE_SAME_32:
sectors = transport_get_sectors_32(cdb);
if (!sectors) {
pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
" supported\n");
return TCM_INVALID_CDB_FIELD;
}
size = sbc_get_size(cmd, 1);
cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
ret = sbc_setup_write_same(cmd, &cdb[10], ops);
if (ret)
return ret;
break;
default:
pr_err("VARIABLE_LENGTH_CMD service action"
" 0x%04x not supported\n", service_action);
return TCM_UNSUPPORTED_SCSI_OPCODE;
}
break;
}
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
case COMPARE_AND_WRITE:
sectors = cdb[13];
/*
* Currently enforce COMPARE_AND_WRITE for a single sector
*/
if (sectors > 1) {
pr_err("COMPARE_AND_WRITE contains NoLB: %u greater"
" than 1\n", sectors);
return TCM_INVALID_CDB_FIELD;
}
/*
* Double size because we have two buffers, note that
* zero is not an error..
*/
size = 2 * sbc_get_size(cmd, sectors);
cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
cmd->t_task_nolb = sectors;
cmd->se_cmd_flags |= SCF_SCSI_DATA_CDB | SCF_COMPARE_AND_WRITE;
cmd->execute_rw = ops->execute_rw;
cmd->execute_cmd = sbc_compare_and_write;
cmd->transport_complete_callback = compare_and_write_callback;
break;
case READ_CAPACITY:
size = READ_CAP_LEN;
cmd->execute_cmd = sbc_emulate_readcapacity;
break;
case SERVICE_ACTION_IN_16:
switch (cmd->t_task_cdb[1] & 0x1f) {
case SAI_READ_CAPACITY_16:
cmd->execute_cmd = sbc_emulate_readcapacity_16;
break;
case SAI_REPORT_REFERRALS:
cmd->execute_cmd = target_emulate_report_referrals;
break;
default:
pr_err("Unsupported SA: 0x%02x\n",
cmd->t_task_cdb[1] & 0x1f);
return TCM_INVALID_CDB_FIELD;
}
size = (cdb[10] << 24) | (cdb[11] << 16) |
(cdb[12] << 8) | cdb[13];
break;
case SYNCHRONIZE_CACHE:
case SYNCHRONIZE_CACHE_16:
if (cdb[0] == SYNCHRONIZE_CACHE) {
sectors = transport_get_sectors_10(cdb);
cmd->t_task_lba = transport_lba_32(cdb);
} else {
sectors = transport_get_sectors_16(cdb);
cmd->t_task_lba = transport_lba_64(cdb);
}
if (ops->execute_sync_cache) {
cmd->execute_cmd = ops->execute_sync_cache;
goto check_lba;
}
size = 0;
cmd->execute_cmd = sbc_emulate_noop;
break;
case UNMAP:
if (!ops->execute_unmap)
return TCM_UNSUPPORTED_SCSI_OPCODE;
if (!dev->dev_attrib.emulate_tpu) {
pr_err("Got UNMAP, but backend device has"
" emulate_tpu disabled\n");
return TCM_UNSUPPORTED_SCSI_OPCODE;
}
size = get_unaligned_be16(&cdb[7]);
cmd->execute_cmd = ops->execute_unmap;
break;
case WRITE_SAME_16:
sectors = transport_get_sectors_16(cdb);
if (!sectors) {
pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
return TCM_INVALID_CDB_FIELD;
}
size = sbc_get_size(cmd, 1);
cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
ret = sbc_setup_write_same(cmd, &cdb[1], ops);
if (ret)
return ret;
break;
case WRITE_SAME:
sectors = transport_get_sectors_10(cdb);
if (!sectors) {
pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
return TCM_INVALID_CDB_FIELD;
}
size = sbc_get_size(cmd, 1);
cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
/*
* Follow sbcr26 with WRITE_SAME (10) and check for the existence
* of byte 1 bit 3 UNMAP instead of original reserved field
*/
ret = sbc_setup_write_same(cmd, &cdb[1], ops);
if (ret)
return ret;
break;
case VERIFY:
size = 0;
sectors = transport_get_sectors_10(cdb);
cmd->t_task_lba = transport_lba_32(cdb);
cmd->execute_cmd = sbc_emulate_noop;
goto check_lba;
case REZERO_UNIT:
case SEEK_6:
case SEEK_10:
/*
* There are still clients out there which use these old SCSI-2
* commands. This mainly happens when running VMs with legacy
* guest systems, connected via SCSI command pass-through to
* iSCSI targets. Make them happy and return status GOOD.
*/
size = 0;
cmd->execute_cmd = sbc_emulate_noop;
break;
default:
ret = spc_parse_cdb(cmd, &size);
if (ret)
return ret;
}
/* reject any command that we don't have a handler for */
if (!cmd->execute_cmd)
return TCM_UNSUPPORTED_SCSI_OPCODE;
if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
unsigned long long end_lba;
check_lba:
end_lba = dev->transport->get_blocks(dev) + 1;
if (((cmd->t_task_lba + sectors) < cmd->t_task_lba) ||
((cmd->t_task_lba + sectors) > end_lba)) {
pr_err("cmd exceeds last lba %llu "
"(lba %llu, sectors %u)\n",
end_lba, cmd->t_task_lba, sectors);
return TCM_ADDRESS_OUT_OF_RANGE;
}
target: Add support for COMPARE_AND_WRITE emulation This patch adds support for COMPARE_AND_WRITE emulation on a per block basis. This logic is used as an atomic test and set primative currently used by VMWare ESX VAAI for performing array side locking of individual VMFS extent ownership. This includes the COMPARE_AND_WRITE CDB parsing within sbc_parse_cdb(), and does the majority of the work within the compare_and_write_callback() to perform the verify instance user data comparision, and subsequent write instance user data I/O submission upon a successfull comparision. The synchronization is enforced by se_device->caw_sem, that is obtained before the initial READ I/O submission in sbc_compare_and_write(). The mutex is then released upon MISCOMPARE in compare_and_write_callback(), or upon WRITE instance user-data completion in compare_and_write_post(). The implementation currently assumes a single logical block (NoLB=1). v4 changes: - Explicitly clear cmd->transport_complete_callback for two failure cases in sbc_compare_and_write() in order to avoid double unlock of ->caw_sem in compare_and_write_callback() (Dan Carpenter) v3 changes: - Convert se_device->caw_mutex to ->caw_sem v2 changes: - Set SCF_COMPARE_AND_WRITE and cmd->execute_cmd() to sbc_compare_and_write() during setup in sbc_parse_cdb() - Use sbc_compare_and_write() for initial READ submission with DMA_FROM_DEVICE - Reset cmd->execute_cmd() to sbc_execute_rw() for write instance user-data in compare_and_write_callback() - Drop SCF_BIDI command flag usage - Set TRANSPORT_PROCESSING + transport_state flags before write instance submission, and convert to __target_execute_cmd() - Prevent sbc_get_size() from being being called twice to generate incorrect size in sbc_parse_cdb() - Enforce se_device->caw_mutex synchronization between initial READ I/O submission, and final WRITE I/O completion. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin Petersen <martin.petersen@oracle.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: James Bottomley <JBottomley@Parallels.com> Cc: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Nicholas Bellinger <nab@daterainc.com>
2013-08-19 22:20:28 +00:00
if (!(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE))
size = sbc_get_size(cmd, sectors);
}
return target_cmd_size_check(cmd, size);
}
EXPORT_SYMBOL(sbc_parse_cdb);
u32 sbc_get_device_type(struct se_device *dev)
{
return TYPE_DISK;
}
EXPORT_SYMBOL(sbc_get_device_type);
sense_reason_t
sbc_execute_unmap(struct se_cmd *cmd,
sense_reason_t (*do_unmap_fn)(struct se_cmd *, void *,
sector_t, sector_t),
void *priv)
{
struct se_device *dev = cmd->se_dev;
unsigned char *buf, *ptr = NULL;
sector_t lba;
int size;
u32 range;
sense_reason_t ret = 0;
int dl, bd_dl;
/* We never set ANC_SUP */
if (cmd->t_task_cdb[1])
return TCM_INVALID_CDB_FIELD;
if (cmd->data_length == 0) {
target_complete_cmd(cmd, SAM_STAT_GOOD);
return 0;
}
if (cmd->data_length < 8) {
pr_warn("UNMAP parameter list length %u too small\n",
cmd->data_length);
return TCM_PARAMETER_LIST_LENGTH_ERROR;
}
buf = transport_kmap_data_sg(cmd);
if (!buf)
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
dl = get_unaligned_be16(&buf[0]);
bd_dl = get_unaligned_be16(&buf[2]);
size = cmd->data_length - 8;
if (bd_dl > size)
pr_warn("UNMAP parameter list length %u too small, ignoring bd_dl %u\n",
cmd->data_length, bd_dl);
else
size = bd_dl;
if (size / 16 > dev->dev_attrib.max_unmap_block_desc_count) {
ret = TCM_INVALID_PARAMETER_LIST;
goto err;
}
/* First UNMAP block descriptor starts at 8 byte offset */
ptr = &buf[8];
pr_debug("UNMAP: Sub: %s Using dl: %u bd_dl: %u size: %u"
" ptr: %p\n", dev->transport->name, dl, bd_dl, size, ptr);
while (size >= 16) {
lba = get_unaligned_be64(&ptr[0]);
range = get_unaligned_be32(&ptr[8]);
pr_debug("UNMAP: Using lba: %llu and range: %u\n",
(unsigned long long)lba, range);
if (range > dev->dev_attrib.max_unmap_lba_count) {
ret = TCM_INVALID_PARAMETER_LIST;
goto err;
}
if (lba + range > dev->transport->get_blocks(dev) + 1) {
ret = TCM_ADDRESS_OUT_OF_RANGE;
goto err;
}
ret = do_unmap_fn(cmd, priv, lba, range);
if (ret)
goto err;
ptr += 16;
size -= 16;
}
err:
transport_kunmap_data_sg(cmd);
if (!ret)
target_complete_cmd(cmd, GOOD);
return ret;
}
EXPORT_SYMBOL(sbc_execute_unmap);
void
sbc_dif_generate(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
struct se_dif_v1_tuple *sdt;
struct scatterlist *dsg, *psg = cmd->t_prot_sg;
sector_t sector = cmd->t_task_lba;
void *daddr, *paddr;
int i, j, offset = 0;
for_each_sg(cmd->t_data_sg, dsg, cmd->t_data_nents, i) {
daddr = kmap_atomic(sg_page(dsg)) + dsg->offset;
paddr = kmap_atomic(sg_page(psg)) + psg->offset;
for (j = 0; j < dsg->length; j += dev->dev_attrib.block_size) {
if (offset >= psg->length) {
kunmap_atomic(paddr);
psg = sg_next(psg);
paddr = kmap_atomic(sg_page(psg)) + psg->offset;
offset = 0;
}
sdt = paddr + offset;
sdt->guard_tag = cpu_to_be16(crc_t10dif(daddr + j,
dev->dev_attrib.block_size));
if (cmd->prot_type == TARGET_DIF_TYPE1_PROT)
sdt->ref_tag = cpu_to_be32(sector & 0xffffffff);
sdt->app_tag = 0;
pr_debug("DIF WRITE INSERT sector: %llu guard_tag: 0x%04x"
" app_tag: 0x%04x ref_tag: %u\n",
(unsigned long long)sector, sdt->guard_tag,
sdt->app_tag, be32_to_cpu(sdt->ref_tag));
sector++;
offset += sizeof(struct se_dif_v1_tuple);
}
kunmap_atomic(paddr);
kunmap_atomic(daddr);
}
}
static sense_reason_t
sbc_dif_v1_verify(struct se_cmd *cmd, struct se_dif_v1_tuple *sdt,
const void *p, sector_t sector, unsigned int ei_lba)
{
struct se_device *dev = cmd->se_dev;
int block_size = dev->dev_attrib.block_size;
__be16 csum;
csum = cpu_to_be16(crc_t10dif(p, block_size));
if (sdt->guard_tag != csum) {
pr_err("DIFv1 checksum failed on sector %llu guard tag 0x%04x"
" csum 0x%04x\n", (unsigned long long)sector,
be16_to_cpu(sdt->guard_tag), be16_to_cpu(csum));
return TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED;
}
if (cmd->prot_type == TARGET_DIF_TYPE1_PROT &&
be32_to_cpu(sdt->ref_tag) != (sector & 0xffffffff)) {
pr_err("DIFv1 Type 1 reference failed on sector: %llu tag: 0x%08x"
" sector MSB: 0x%08x\n", (unsigned long long)sector,
be32_to_cpu(sdt->ref_tag), (u32)(sector & 0xffffffff));
return TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED;
}
if (cmd->prot_type == TARGET_DIF_TYPE2_PROT &&
be32_to_cpu(sdt->ref_tag) != ei_lba) {
pr_err("DIFv1 Type 2 reference failed on sector: %llu tag: 0x%08x"
" ei_lba: 0x%08x\n", (unsigned long long)sector,
be32_to_cpu(sdt->ref_tag), ei_lba);
return TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED;
}
return 0;
}
static void
sbc_dif_copy_prot(struct se_cmd *cmd, unsigned int sectors, bool read,
struct scatterlist *sg, int sg_off)
{
struct se_device *dev = cmd->se_dev;
struct scatterlist *psg;
void *paddr, *addr;
unsigned int i, len, left;
unsigned int offset = sg_off;
if (!sg)
return;
left = sectors * dev->prot_length;
for_each_sg(cmd->t_prot_sg, psg, cmd->t_prot_nents, i) {
unsigned int psg_len, copied = 0;
paddr = kmap_atomic(sg_page(psg)) + psg->offset;
psg_len = min(left, psg->length);
while (psg_len) {
len = min(psg_len, sg->length - offset);
addr = kmap_atomic(sg_page(sg)) + sg->offset + offset;
if (read)
memcpy(paddr + copied, addr, len);
else
memcpy(addr, paddr + copied, len);
left -= len;
offset += len;
copied += len;
psg_len -= len;
if (offset >= sg->length) {
sg = sg_next(sg);
offset = 0;
}
kunmap_atomic(addr);
}
kunmap_atomic(paddr);
}
}
sense_reason_t
sbc_dif_verify_write(struct se_cmd *cmd, sector_t start, unsigned int sectors,
unsigned int ei_lba, struct scatterlist *sg, int sg_off)
{
struct se_device *dev = cmd->se_dev;
struct se_dif_v1_tuple *sdt;
struct scatterlist *dsg, *psg = cmd->t_prot_sg;
sector_t sector = start;
void *daddr, *paddr;
int i, j, offset = 0;
sense_reason_t rc;
for_each_sg(cmd->t_data_sg, dsg, cmd->t_data_nents, i) {
daddr = kmap_atomic(sg_page(dsg)) + dsg->offset;
paddr = kmap_atomic(sg_page(psg)) + psg->offset;
for (j = 0; j < dsg->length; j += dev->dev_attrib.block_size) {
if (offset >= psg->length) {
kunmap_atomic(paddr);
psg = sg_next(psg);
paddr = kmap_atomic(sg_page(psg)) + psg->offset;
offset = 0;
}
sdt = paddr + offset;
pr_debug("DIF WRITE sector: %llu guard_tag: 0x%04x"
" app_tag: 0x%04x ref_tag: %u\n",
(unsigned long long)sector, sdt->guard_tag,
sdt->app_tag, be32_to_cpu(sdt->ref_tag));
rc = sbc_dif_v1_verify(cmd, sdt, daddr + j, sector,
ei_lba);
if (rc) {
kunmap_atomic(paddr);
kunmap_atomic(daddr);
cmd->bad_sector = sector;
return rc;
}
sector++;
ei_lba++;
offset += sizeof(struct se_dif_v1_tuple);
}
kunmap_atomic(paddr);
kunmap_atomic(daddr);
}
sbc_dif_copy_prot(cmd, sectors, false, sg, sg_off);
return 0;
}
EXPORT_SYMBOL(sbc_dif_verify_write);
static sense_reason_t
__sbc_dif_verify_read(struct se_cmd *cmd, sector_t start, unsigned int sectors,
unsigned int ei_lba, struct scatterlist *sg, int sg_off)
{
struct se_device *dev = cmd->se_dev;
struct se_dif_v1_tuple *sdt;
struct scatterlist *dsg, *psg = sg;
sector_t sector = start;
void *daddr, *paddr;
int i, j, offset = sg_off;
sense_reason_t rc;
for_each_sg(cmd->t_data_sg, dsg, cmd->t_data_nents, i) {
daddr = kmap_atomic(sg_page(dsg)) + dsg->offset;
paddr = kmap_atomic(sg_page(psg)) + sg->offset;
for (j = 0; j < dsg->length; j += dev->dev_attrib.block_size) {
if (offset >= psg->length) {
kunmap_atomic(paddr);
psg = sg_next(psg);
paddr = kmap_atomic(sg_page(psg)) + psg->offset;
offset = 0;
}
sdt = paddr + offset;
pr_debug("DIF READ sector: %llu guard_tag: 0x%04x"
" app_tag: 0x%04x ref_tag: %u\n",
(unsigned long long)sector, sdt->guard_tag,
sdt->app_tag, be32_to_cpu(sdt->ref_tag));
if (sdt->app_tag == cpu_to_be16(0xffff)) {
sector++;
offset += sizeof(struct se_dif_v1_tuple);
continue;
}
rc = sbc_dif_v1_verify(cmd, sdt, daddr + j, sector,
ei_lba);
if (rc) {
kunmap_atomic(paddr);
kunmap_atomic(daddr);
cmd->bad_sector = sector;
return rc;
}
sector++;
ei_lba++;
offset += sizeof(struct se_dif_v1_tuple);
}
kunmap_atomic(paddr);
kunmap_atomic(daddr);
}
return 0;
}
sense_reason_t
sbc_dif_read_strip(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
u32 sectors = cmd->prot_length / dev->prot_length;
return __sbc_dif_verify_read(cmd, cmd->t_task_lba, sectors, 0,
cmd->t_prot_sg, 0);
}
sense_reason_t
sbc_dif_verify_read(struct se_cmd *cmd, sector_t start, unsigned int sectors,
unsigned int ei_lba, struct scatterlist *sg, int sg_off)
{
sense_reason_t rc;
rc = __sbc_dif_verify_read(cmd, start, sectors, ei_lba, sg, sg_off);
if (rc)
return rc;
sbc_dif_copy_prot(cmd, sectors, true, sg, sg_off);
return 0;
}
EXPORT_SYMBOL(sbc_dif_verify_read);