linux/drivers/char/agp/generic.c

1337 lines
34 KiB
C
Raw Normal View History

/*
* AGPGART driver.
* Copyright (C) 2004 Silicon Graphics, Inc.
* Copyright (C) 2002-2005 Dave Jones.
* Copyright (C) 1999 Jeff Hartmann.
* Copyright (C) 1999 Precision Insight, Inc.
* Copyright (C) 1999 Xi Graphics, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* JEFF HARTMANN, OR ANY OTHER CONTRIBUTORS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* TODO:
* - Allocate more than order 0 pages to avoid too much linear map splitting.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/miscdevice.h>
#include <linux/pm.h>
#include <linux/agp_backend.h>
#include <linux/vmalloc.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
#include "agp.h"
__u32 *agp_gatt_table;
int agp_memory_reserved;
/*
* Needed by the Nforce GART driver for the time being. Would be
* nice to do this some other way instead of needing this export.
*/
EXPORT_SYMBOL_GPL(agp_memory_reserved);
/*
* Generic routines for handling agp_memory structures -
* They use the basic page allocation routines to do the brunt of the work.
*/
void agp_free_key(int key)
{
if (key < 0)
return;
if (key < MAXKEY)
clear_bit(key, agp_bridge->key_list);
}
EXPORT_SYMBOL(agp_free_key);
static int agp_get_key(void)
{
int bit;
bit = find_first_zero_bit(agp_bridge->key_list, MAXKEY);
if (bit < MAXKEY) {
set_bit(bit, agp_bridge->key_list);
return bit;
}
return -1;
}
/*
* Use kmalloc if possible for the page list. Otherwise fall back to
* vmalloc. This speeds things up and also saves memory for small AGP
* regions.
*/
void agp_alloc_page_array(size_t size, struct agp_memory *mem)
{
mem->memory = NULL;
mem->vmalloc_flag = 0;
if (size <= 2*PAGE_SIZE)
mem->memory = kmalloc(size, GFP_KERNEL | __GFP_NORETRY);
if (mem->memory == NULL) {
mem->memory = vmalloc(size);
mem->vmalloc_flag = 1;
}
}
EXPORT_SYMBOL(agp_alloc_page_array);
void agp_free_page_array(struct agp_memory *mem)
{
if (mem->vmalloc_flag) {
vfree(mem->memory);
} else {
kfree(mem->memory);
}
}
EXPORT_SYMBOL(agp_free_page_array);
static struct agp_memory *agp_create_user_memory(unsigned long num_agp_pages)
{
struct agp_memory *new;
unsigned long alloc_size = num_agp_pages*sizeof(struct page *);
new = kzalloc(sizeof(struct agp_memory), GFP_KERNEL);
if (new == NULL)
return NULL;
new->key = agp_get_key();
if (new->key < 0) {
kfree(new);
return NULL;
}
agp_alloc_page_array(alloc_size, new);
if (new->memory == NULL) {
agp_free_key(new->key);
kfree(new);
return NULL;
}
new->num_scratch_pages = 0;
return new;
}
struct agp_memory *agp_create_memory(int scratch_pages)
{
struct agp_memory *new;
new = kzalloc(sizeof(struct agp_memory), GFP_KERNEL);
if (new == NULL)
return NULL;
new->key = agp_get_key();
if (new->key < 0) {
kfree(new);
return NULL;
}
agp_alloc_page_array(PAGE_SIZE * scratch_pages, new);
if (new->memory == NULL) {
agp_free_key(new->key);
kfree(new);
return NULL;
}
new->num_scratch_pages = scratch_pages;
new->type = AGP_NORMAL_MEMORY;
return new;
}
EXPORT_SYMBOL(agp_create_memory);
/**
* agp_free_memory - free memory associated with an agp_memory pointer.
*
* @curr: agp_memory pointer to be freed.
*
* It is the only function that can be called when the backend is not owned
* by the caller. (So it can free memory on client death.)
*/
void agp_free_memory(struct agp_memory *curr)
{
size_t i;
if (curr == NULL)
return;
if (curr->is_bound == TRUE)
agp_unbind_memory(curr);
if (curr->type >= AGP_USER_TYPES) {
agp_generic_free_by_type(curr);
return;
}
if (curr->type != 0) {
curr->bridge->driver->free_by_type(curr);
return;
}
if (curr->page_count != 0) {
for (i = 0; i < curr->page_count; i++) {
curr->bridge->driver->agp_destroy_page(gart_to_virt(curr->memory[i]));
}
flush_agp_mappings();
}
agp_free_key(curr->key);
agp_free_page_array(curr);
kfree(curr);
}
EXPORT_SYMBOL(agp_free_memory);
#define ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
/**
* agp_allocate_memory - allocate a group of pages of a certain type.
*
* @page_count: size_t argument of the number of pages
* @type: u32 argument of the type of memory to be allocated.
*
* Every agp bridge device will allow you to allocate AGP_NORMAL_MEMORY which
* maps to physical ram. Any other type is device dependent.
*
* It returns NULL whenever memory is unavailable.
*/
struct agp_memory *agp_allocate_memory(struct agp_bridge_data *bridge,
size_t page_count, u32 type)
{
int scratch_pages;
struct agp_memory *new;
size_t i;
if (!bridge)
return NULL;
if ((atomic_read(&bridge->current_memory_agp) + page_count) > bridge->max_memory_agp)
return NULL;
if (type >= AGP_USER_TYPES) {
new = agp_generic_alloc_user(page_count, type);
if (new)
new->bridge = bridge;
return new;
}
if (type != 0) {
new = bridge->driver->alloc_by_type(page_count, type);
if (new)
new->bridge = bridge;
return new;
}
scratch_pages = (page_count + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;
new = agp_create_memory(scratch_pages);
if (new == NULL)
return NULL;
for (i = 0; i < page_count; i++) {
void *addr = bridge->driver->agp_alloc_page(bridge);
if (addr == NULL) {
agp_free_memory(new);
return NULL;
}
new->memory[i] = virt_to_gart(addr);
new->page_count++;
}
new->bridge = bridge;
flush_agp_mappings();
return new;
}
EXPORT_SYMBOL(agp_allocate_memory);
/* End - Generic routines for handling agp_memory structures */
static int agp_return_size(void)
{
int current_size;
void *temp;
temp = agp_bridge->current_size;
switch (agp_bridge->driver->size_type) {
case U8_APER_SIZE:
current_size = A_SIZE_8(temp)->size;
break;
case U16_APER_SIZE:
current_size = A_SIZE_16(temp)->size;
break;
case U32_APER_SIZE:
current_size = A_SIZE_32(temp)->size;
break;
case LVL2_APER_SIZE:
current_size = A_SIZE_LVL2(temp)->size;
break;
case FIXED_APER_SIZE:
current_size = A_SIZE_FIX(temp)->size;
break;
default:
current_size = 0;
break;
}
current_size -= (agp_memory_reserved / (1024*1024));
if (current_size <0)
current_size = 0;
return current_size;
}
int agp_num_entries(void)
{
int num_entries;
void *temp;
temp = agp_bridge->current_size;
switch (agp_bridge->driver->size_type) {
case U8_APER_SIZE:
num_entries = A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
num_entries = A_SIZE_32(temp)->num_entries;
break;
case LVL2_APER_SIZE:
num_entries = A_SIZE_LVL2(temp)->num_entries;
break;
case FIXED_APER_SIZE:
num_entries = A_SIZE_FIX(temp)->num_entries;
break;
default:
num_entries = 0;
break;
}
num_entries -= agp_memory_reserved>>PAGE_SHIFT;
if (num_entries<0)
num_entries = 0;
return num_entries;
}
EXPORT_SYMBOL_GPL(agp_num_entries);
/**
* agp_copy_info - copy bridge state information
*
* @info: agp_kern_info pointer. The caller should insure that this pointer is valid.
*
* This function copies information about the agp bridge device and the state of
* the agp backend into an agp_kern_info pointer.
*/
int agp_copy_info(struct agp_bridge_data *bridge, struct agp_kern_info *info)
{
memset(info, 0, sizeof(struct agp_kern_info));
if (!bridge) {
info->chipset = NOT_SUPPORTED;
return -EIO;
}
info->version.major = bridge->version->major;
info->version.minor = bridge->version->minor;
info->chipset = SUPPORTED;
info->device = bridge->dev;
if (bridge->mode & AGPSTAT_MODE_3_0)
info->mode = bridge->mode & ~AGP3_RESERVED_MASK;
else
info->mode = bridge->mode & ~AGP2_RESERVED_MASK;
info->aper_base = bridge->gart_bus_addr;
info->aper_size = agp_return_size();
info->max_memory = bridge->max_memory_agp;
info->current_memory = atomic_read(&bridge->current_memory_agp);
info->cant_use_aperture = bridge->driver->cant_use_aperture;
info->vm_ops = bridge->vm_ops;
info->page_mask = ~0UL;
return 0;
}
EXPORT_SYMBOL(agp_copy_info);
/* End - Routine to copy over information structure */
/*
* Routines for handling swapping of agp_memory into the GATT -
* These routines take agp_memory and insert them into the GATT.
* They call device specific routines to actually write to the GATT.
*/
/**
* agp_bind_memory - Bind an agp_memory structure into the GATT.
*
* @curr: agp_memory pointer
* @pg_start: an offset into the graphics aperture translation table
*
* It returns -EINVAL if the pointer == NULL.
* It returns -EBUSY if the area of the table requested is already in use.
*/
int agp_bind_memory(struct agp_memory *curr, off_t pg_start)
{
int ret_val;
if (curr == NULL)
return -EINVAL;
if (curr->is_bound == TRUE) {
printk(KERN_INFO PFX "memory %p is already bound!\n", curr);
return -EINVAL;
}
if (curr->is_flushed == FALSE) {
curr->bridge->driver->cache_flush();
curr->is_flushed = TRUE;
}
ret_val = curr->bridge->driver->insert_memory(curr, pg_start, curr->type);
if (ret_val != 0)
return ret_val;
curr->is_bound = TRUE;
curr->pg_start = pg_start;
return 0;
}
EXPORT_SYMBOL(agp_bind_memory);
/**
* agp_unbind_memory - Removes an agp_memory structure from the GATT
*
* @curr: agp_memory pointer to be removed from the GATT.
*
* It returns -EINVAL if this piece of agp_memory is not currently bound to
* the graphics aperture translation table or if the agp_memory pointer == NULL
*/
int agp_unbind_memory(struct agp_memory *curr)
{
int ret_val;
if (curr == NULL)
return -EINVAL;
if (curr->is_bound != TRUE) {
printk(KERN_INFO PFX "memory %p was not bound!\n", curr);
return -EINVAL;
}
ret_val = curr->bridge->driver->remove_memory(curr, curr->pg_start, curr->type);
if (ret_val != 0)
return ret_val;
curr->is_bound = FALSE;
curr->pg_start = 0;
return 0;
}
EXPORT_SYMBOL(agp_unbind_memory);
/* End - Routines for handling swapping of agp_memory into the GATT */
/* Generic Agp routines - Start */
static void agp_v2_parse_one(u32 *requested_mode, u32 *bridge_agpstat, u32 *vga_agpstat)
{
u32 tmp;
if (*requested_mode & AGP2_RESERVED_MASK) {
printk(KERN_INFO PFX "reserved bits set (%x) in mode 0x%x. Fixed.\n",
*requested_mode & AGP2_RESERVED_MASK, *requested_mode);
*requested_mode &= ~AGP2_RESERVED_MASK;
}
/*
* Some dumb bridges are programmed to disobey the AGP2 spec.
* This is likely a BIOS misprogramming rather than poweron default, or
* it would be a lot more common.
* https://bugs.freedesktop.org/show_bug.cgi?id=8816
* AGPv2 spec 6.1.9 states:
* The RATE field indicates the data transfer rates supported by this
* device. A.G.P. devices must report all that apply.
* Fix them up as best we can.
*/
switch (*bridge_agpstat & 7) {
case 4:
*bridge_agpstat |= (AGPSTAT2_2X | AGPSTAT2_1X);
printk(KERN_INFO PFX "BIOS bug. AGP bridge claims to only support x4 rate"
"Fixing up support for x2 & x1\n");
break;
case 2:
*bridge_agpstat |= AGPSTAT2_1X;
printk(KERN_INFO PFX "BIOS bug. AGP bridge claims to only support x2 rate"
"Fixing up support for x1\n");
break;
default:
break;
}
/* Check the speed bits make sense. Only one should be set. */
tmp = *requested_mode & 7;
switch (tmp) {
case 0:
printk(KERN_INFO PFX "%s tried to set rate=x0. Setting to x1 mode.\n", current->comm);
*requested_mode |= AGPSTAT2_1X;
break;
case 1:
case 2:
break;
case 3:
*requested_mode &= ~(AGPSTAT2_1X); /* rate=2 */
break;
case 4:
break;
case 5:
case 6:
case 7:
*requested_mode &= ~(AGPSTAT2_1X|AGPSTAT2_2X); /* rate=4*/
break;
}
/* disable SBA if it's not supported */
if (!((*bridge_agpstat & AGPSTAT_SBA) && (*vga_agpstat & AGPSTAT_SBA) && (*requested_mode & AGPSTAT_SBA)))
*bridge_agpstat &= ~AGPSTAT_SBA;
/* Set rate */
if (!((*bridge_agpstat & AGPSTAT2_4X) && (*vga_agpstat & AGPSTAT2_4X) && (*requested_mode & AGPSTAT2_4X)))
*bridge_agpstat &= ~AGPSTAT2_4X;
if (!((*bridge_agpstat & AGPSTAT2_2X) && (*vga_agpstat & AGPSTAT2_2X) && (*requested_mode & AGPSTAT2_2X)))
*bridge_agpstat &= ~AGPSTAT2_2X;
if (!((*bridge_agpstat & AGPSTAT2_1X) && (*vga_agpstat & AGPSTAT2_1X) && (*requested_mode & AGPSTAT2_1X)))
*bridge_agpstat &= ~AGPSTAT2_1X;
/* Now we know what mode it should be, clear out the unwanted bits. */
if (*bridge_agpstat & AGPSTAT2_4X)
*bridge_agpstat &= ~(AGPSTAT2_1X | AGPSTAT2_2X); /* 4X */
if (*bridge_agpstat & AGPSTAT2_2X)
*bridge_agpstat &= ~(AGPSTAT2_1X | AGPSTAT2_4X); /* 2X */
if (*bridge_agpstat & AGPSTAT2_1X)
*bridge_agpstat &= ~(AGPSTAT2_2X | AGPSTAT2_4X); /* 1X */
/* Apply any errata. */
if (agp_bridge->flags & AGP_ERRATA_FASTWRITES)
*bridge_agpstat &= ~AGPSTAT_FW;
if (agp_bridge->flags & AGP_ERRATA_SBA)
*bridge_agpstat &= ~AGPSTAT_SBA;
if (agp_bridge->flags & AGP_ERRATA_1X) {
*bridge_agpstat &= ~(AGPSTAT2_2X | AGPSTAT2_4X);
*bridge_agpstat |= AGPSTAT2_1X;
}
/* If we've dropped down to 1X, disable fast writes. */
if (*bridge_agpstat & AGPSTAT2_1X)
*bridge_agpstat &= ~AGPSTAT_FW;
}
/*
* requested_mode = Mode requested by (typically) X.
* bridge_agpstat = PCI_AGP_STATUS from agp bridge.
* vga_agpstat = PCI_AGP_STATUS from graphic card.
*/
static void agp_v3_parse_one(u32 *requested_mode, u32 *bridge_agpstat, u32 *vga_agpstat)
{
u32 origbridge=*bridge_agpstat, origvga=*vga_agpstat;
u32 tmp;
if (*requested_mode & AGP3_RESERVED_MASK) {
printk(KERN_INFO PFX "reserved bits set (%x) in mode 0x%x. Fixed.\n",
*requested_mode & AGP3_RESERVED_MASK, *requested_mode);
*requested_mode &= ~AGP3_RESERVED_MASK;
}
/* Check the speed bits make sense. */
tmp = *requested_mode & 7;
if (tmp == 0) {
printk(KERN_INFO PFX "%s tried to set rate=x0. Setting to AGP3 x4 mode.\n", current->comm);
*requested_mode |= AGPSTAT3_4X;
}
if (tmp >= 3) {
printk(KERN_INFO PFX "%s tried to set rate=x%d. Setting to AGP3 x8 mode.\n", current->comm, tmp * 4);
*requested_mode = (*requested_mode & ~7) | AGPSTAT3_8X;
}
/* ARQSZ - Set the value to the maximum one.
* Don't allow the mode register to override values. */
*bridge_agpstat = ((*bridge_agpstat & ~AGPSTAT_ARQSZ) |
max_t(u32,(*bridge_agpstat & AGPSTAT_ARQSZ),(*vga_agpstat & AGPSTAT_ARQSZ)));
/* Calibration cycle.
* Don't allow the mode register to override values. */
*bridge_agpstat = ((*bridge_agpstat & ~AGPSTAT_CAL_MASK) |
min_t(u32,(*bridge_agpstat & AGPSTAT_CAL_MASK),(*vga_agpstat & AGPSTAT_CAL_MASK)));
/* SBA *must* be supported for AGP v3 */
*bridge_agpstat |= AGPSTAT_SBA;
/*
* Set speed.
* Check for invalid speeds. This can happen when applications
* written before the AGP 3.0 standard pass AGP2.x modes to AGP3 hardware
*/
if (*requested_mode & AGPSTAT_MODE_3_0) {
/*
* Caller hasn't a clue what it is doing. Bridge is in 3.0 mode,
* have been passed a 3.0 mode, but with 2.x speed bits set.
* AGP2.x 4x -> AGP3.0 4x.
*/
if (*requested_mode & AGPSTAT2_4X) {
printk(KERN_INFO PFX "%s passes broken AGP3 flags (%x). Fixed.\n",
current->comm, *requested_mode);
*requested_mode &= ~AGPSTAT2_4X;
*requested_mode |= AGPSTAT3_4X;
}
} else {
/*
* The caller doesn't know what they are doing. We are in 3.0 mode,
* but have been passed an AGP 2.x mode.
* Convert AGP 1x,2x,4x -> AGP 3.0 4x.
*/
printk(KERN_INFO PFX "%s passes broken AGP2 flags (%x) in AGP3 mode. Fixed.\n",
current->comm, *requested_mode);
*requested_mode &= ~(AGPSTAT2_4X | AGPSTAT2_2X | AGPSTAT2_1X);
*requested_mode |= AGPSTAT3_4X;
}
if (*requested_mode & AGPSTAT3_8X) {
if (!(*bridge_agpstat & AGPSTAT3_8X)) {
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
printk(KERN_INFO PFX "%s requested AGPx8 but bridge not capable.\n", current->comm);
return;
}
if (!(*vga_agpstat & AGPSTAT3_8X)) {
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
printk(KERN_INFO PFX "%s requested AGPx8 but graphic card not capable.\n", current->comm);
return;
}
/* All set, bridge & device can do AGP x8*/
*bridge_agpstat &= ~(AGPSTAT3_4X | AGPSTAT3_RSVD);
goto done;
} else if (*requested_mode & AGPSTAT3_4X) {
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
goto done;
} else {
/*
* If we didn't specify an AGP mode, we see if both
* the graphics card, and the bridge can do x8, and use if so.
* If not, we fall back to x4 mode.
*/
if ((*bridge_agpstat & AGPSTAT3_8X) && (*vga_agpstat & AGPSTAT3_8X)) {
printk(KERN_INFO PFX "No AGP mode specified. Setting to highest mode "
"supported by bridge & card (x8).\n");
*bridge_agpstat &= ~(AGPSTAT3_4X | AGPSTAT3_RSVD);
*vga_agpstat &= ~(AGPSTAT3_4X | AGPSTAT3_RSVD);
} else {
printk(KERN_INFO PFX "Fell back to AGPx4 mode because");
if (!(*bridge_agpstat & AGPSTAT3_8X)) {
printk(KERN_INFO PFX "bridge couldn't do x8. bridge_agpstat:%x (orig=%x)\n",
*bridge_agpstat, origbridge);
*bridge_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*bridge_agpstat |= AGPSTAT3_4X;
}
if (!(*vga_agpstat & AGPSTAT3_8X)) {
printk(KERN_INFO PFX "graphics card couldn't do x8. vga_agpstat:%x (orig=%x)\n",
*vga_agpstat, origvga);
*vga_agpstat &= ~(AGPSTAT3_8X | AGPSTAT3_RSVD);
*vga_agpstat |= AGPSTAT3_4X;
}
}
}
done:
/* Apply any errata. */
if (agp_bridge->flags & AGP_ERRATA_FASTWRITES)
*bridge_agpstat &= ~AGPSTAT_FW;
if (agp_bridge->flags & AGP_ERRATA_SBA)
*bridge_agpstat &= ~AGPSTAT_SBA;
if (agp_bridge->flags & AGP_ERRATA_1X) {
*bridge_agpstat &= ~(AGPSTAT2_2X | AGPSTAT2_4X);
*bridge_agpstat |= AGPSTAT2_1X;
}
}
/**
* agp_collect_device_status - determine correct agp_cmd from various agp_stat's
* @bridge: an agp_bridge_data struct allocated for the AGP host bridge.
* @requested_mode: requested agp_stat from userspace (Typically from X)
* @bridge_agpstat: current agp_stat from AGP bridge.
*
* This function will hunt for an AGP graphics card, and try to match
* the requested mode to the capabilities of both the bridge and the card.
*/
u32 agp_collect_device_status(struct agp_bridge_data *bridge, u32 requested_mode, u32 bridge_agpstat)
{
struct pci_dev *device = NULL;
u32 vga_agpstat;
u8 cap_ptr;
for (;;) {
device = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, device);
if (!device) {
printk(KERN_INFO PFX "Couldn't find an AGP VGA controller.\n");
return 0;
}
cap_ptr = pci_find_capability(device, PCI_CAP_ID_AGP);
if (cap_ptr)
break;
}
/*
* Ok, here we have a AGP device. Disable impossible
* settings, and adjust the readqueue to the minimum.
*/
pci_read_config_dword(device, cap_ptr+PCI_AGP_STATUS, &vga_agpstat);
/* adjust RQ depth */
bridge_agpstat = ((bridge_agpstat & ~AGPSTAT_RQ_DEPTH) |
min_t(u32, (requested_mode & AGPSTAT_RQ_DEPTH),
min_t(u32, (bridge_agpstat & AGPSTAT_RQ_DEPTH), (vga_agpstat & AGPSTAT_RQ_DEPTH))));
/* disable FW if it's not supported */
if (!((bridge_agpstat & AGPSTAT_FW) &&
(vga_agpstat & AGPSTAT_FW) &&
(requested_mode & AGPSTAT_FW)))
bridge_agpstat &= ~AGPSTAT_FW;
/* Check to see if we are operating in 3.0 mode */
if (agp_bridge->mode & AGPSTAT_MODE_3_0)
agp_v3_parse_one(&requested_mode, &bridge_agpstat, &vga_agpstat);
else
agp_v2_parse_one(&requested_mode, &bridge_agpstat, &vga_agpstat);
pci_dev_put(device);
return bridge_agpstat;
}
EXPORT_SYMBOL(agp_collect_device_status);
void agp_device_command(u32 bridge_agpstat, int agp_v3)
{
struct pci_dev *device = NULL;
int mode;
mode = bridge_agpstat & 0x7;
if (agp_v3)
mode *= 4;
for_each_pci_dev(device) {
u8 agp = pci_find_capability(device, PCI_CAP_ID_AGP);
if (!agp)
continue;
printk(KERN_INFO PFX "Putting AGP V%d device at %s into %dx mode\n",
agp_v3 ? 3 : 2, pci_name(device), mode);
pci_write_config_dword(device, agp + PCI_AGP_COMMAND, bridge_agpstat);
}
}
EXPORT_SYMBOL(agp_device_command);
void get_agp_version(struct agp_bridge_data *bridge)
{
u32 ncapid;
/* Exit early if already set by errata workarounds. */
if (bridge->major_version != 0)
return;
pci_read_config_dword(bridge->dev, bridge->capndx, &ncapid);
bridge->major_version = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
bridge->minor_version = (ncapid >> AGP_MINOR_VERSION_SHIFT) & 0xf;
}
EXPORT_SYMBOL(get_agp_version);
void agp_generic_enable(struct agp_bridge_data *bridge, u32 requested_mode)
{
u32 bridge_agpstat, temp;
get_agp_version(agp_bridge);
printk(KERN_INFO PFX "Found an AGP %d.%d compliant device at %s.\n",
agp_bridge->major_version,
agp_bridge->minor_version,
pci_name(agp_bridge->dev));
pci_read_config_dword(agp_bridge->dev,
agp_bridge->capndx + PCI_AGP_STATUS, &bridge_agpstat);
bridge_agpstat = agp_collect_device_status(agp_bridge, requested_mode, bridge_agpstat);
if (bridge_agpstat == 0)
/* Something bad happened. FIXME: Return error code? */
return;
bridge_agpstat |= AGPSTAT_AGP_ENABLE;
/* Do AGP version specific frobbing. */
if (bridge->major_version >= 3) {
if (bridge->mode & AGPSTAT_MODE_3_0) {
/* If we have 3.5, we can do the isoch stuff. */
if (bridge->minor_version >= 5)
agp_3_5_enable(bridge);
agp_device_command(bridge_agpstat, TRUE);
return;
} else {
/* Disable calibration cycle in RX91<1> when not in AGP3.0 mode of operation.*/
bridge_agpstat &= ~(7<<10) ;
pci_read_config_dword(bridge->dev,
bridge->capndx+AGPCTRL, &temp);
temp |= (1<<9);
pci_write_config_dword(bridge->dev,
bridge->capndx+AGPCTRL, temp);
printk(KERN_INFO PFX "Device is in legacy mode,"
" falling back to 2.x\n");
}
}
/* AGP v<3 */
agp_device_command(bridge_agpstat, FALSE);
}
EXPORT_SYMBOL(agp_generic_enable);
int agp_generic_create_gatt_table(struct agp_bridge_data *bridge)
{
char *table;
char *table_end;
int size;
int page_order;
int num_entries;
int i;
void *temp;
struct page *page;
/* The generic routines can't handle 2 level gatt's */
if (bridge->driver->size_type == LVL2_APER_SIZE)
return -EINVAL;
table = NULL;
i = bridge->aperture_size_idx;
temp = bridge->current_size;
size = page_order = num_entries = 0;
if (bridge->driver->size_type != FIXED_APER_SIZE) {
do {
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
size = A_SIZE_8(temp)->size;
page_order =
A_SIZE_8(temp)->page_order;
num_entries =
A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
size = A_SIZE_16(temp)->size;
page_order = A_SIZE_16(temp)->page_order;
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
size = A_SIZE_32(temp)->size;
page_order = A_SIZE_32(temp)->page_order;
num_entries = A_SIZE_32(temp)->num_entries;
break;
/* This case will never really happen. */
case FIXED_APER_SIZE:
case LVL2_APER_SIZE:
default:
size = page_order = num_entries = 0;
break;
}
table = alloc_gatt_pages(page_order);
if (table == NULL) {
i++;
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
bridge->current_size = A_IDX8(bridge);
break;
case U16_APER_SIZE:
bridge->current_size = A_IDX16(bridge);
break;
case U32_APER_SIZE:
bridge->current_size = A_IDX32(bridge);
break;
/* These cases will never really happen. */
case FIXED_APER_SIZE:
case LVL2_APER_SIZE:
default:
break;
}
temp = bridge->current_size;
} else {
bridge->aperture_size_idx = i;
}
} while (!table && (i < bridge->driver->num_aperture_sizes));
} else {
size = ((struct aper_size_info_fixed *) temp)->size;
page_order = ((struct aper_size_info_fixed *) temp)->page_order;
num_entries = ((struct aper_size_info_fixed *) temp)->num_entries;
table = alloc_gatt_pages(page_order);
}
if (table == NULL)
return -ENOMEM;
table_end = table + ((PAGE_SIZE * (1 << page_order)) - 1);
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
SetPageReserved(page);
bridge->gatt_table_real = (u32 *) table;
agp_gatt_table = (void *)table;
bridge->driver->cache_flush();
bridge->gatt_table = ioremap_nocache(virt_to_gart(table),
(PAGE_SIZE * (1 << page_order)));
bridge->driver->cache_flush();
if (bridge->gatt_table == NULL) {
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
ClearPageReserved(page);
free_gatt_pages(table, page_order);
return -ENOMEM;
}
bridge->gatt_bus_addr = virt_to_gart(bridge->gatt_table_real);
/* AK: bogus, should encode addresses > 4GB */
for (i = 0; i < num_entries; i++) {
writel(bridge->scratch_page, bridge->gatt_table+i);
readl(bridge->gatt_table+i); /* PCI Posting. */
}
return 0;
}
EXPORT_SYMBOL(agp_generic_create_gatt_table);
int agp_generic_free_gatt_table(struct agp_bridge_data *bridge)
{
int page_order;
char *table, *table_end;
void *temp;
struct page *page;
temp = bridge->current_size;
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
page_order = A_SIZE_8(temp)->page_order;
break;
case U16_APER_SIZE:
page_order = A_SIZE_16(temp)->page_order;
break;
case U32_APER_SIZE:
page_order = A_SIZE_32(temp)->page_order;
break;
case FIXED_APER_SIZE:
page_order = A_SIZE_FIX(temp)->page_order;
break;
case LVL2_APER_SIZE:
/* The generic routines can't deal with 2 level gatt's */
return -EINVAL;
break;
default:
page_order = 0;
break;
}
/* Do not worry about freeing memory, because if this is
* called, then all agp memory is deallocated and removed
* from the table. */
iounmap(bridge->gatt_table);
table = (char *) bridge->gatt_table_real;
table_end = table + ((PAGE_SIZE * (1 << page_order)) - 1);
for (page = virt_to_page(table); page <= virt_to_page(table_end); page++)
ClearPageReserved(page);
free_gatt_pages(bridge->gatt_table_real, page_order);
agp_gatt_table = NULL;
bridge->gatt_table = NULL;
bridge->gatt_table_real = NULL;
bridge->gatt_bus_addr = 0;
return 0;
}
EXPORT_SYMBOL(agp_generic_free_gatt_table);
int agp_generic_insert_memory(struct agp_memory * mem, off_t pg_start, int type)
{
int num_entries;
size_t i;
off_t j;
void *temp;
struct agp_bridge_data *bridge;
int mask_type;
bridge = mem->bridge;
if (!bridge)
return -EINVAL;
if (mem->page_count == 0)
return 0;
temp = bridge->current_size;
switch (bridge->driver->size_type) {
case U8_APER_SIZE:
num_entries = A_SIZE_8(temp)->num_entries;
break;
case U16_APER_SIZE:
num_entries = A_SIZE_16(temp)->num_entries;
break;
case U32_APER_SIZE:
num_entries = A_SIZE_32(temp)->num_entries;
break;
case FIXED_APER_SIZE:
num_entries = A_SIZE_FIX(temp)->num_entries;
break;
case LVL2_APER_SIZE:
/* The generic routines can't deal with 2 level gatt's */
return -EINVAL;
break;
default:
num_entries = 0;
break;
}
num_entries -= agp_memory_reserved/PAGE_SIZE;
if (num_entries < 0) num_entries = 0;
if (type != mem->type)
return -EINVAL;
mask_type = bridge->driver->agp_type_to_mask_type(bridge, type);
if (mask_type != 0) {
/* The generic routines know nothing of memory types */
return -EINVAL;
}
/* AK: could wrap */
if ((pg_start + mem->page_count) > num_entries)
return -EINVAL;
j = pg_start;
while (j < (pg_start + mem->page_count)) {
if (!PGE_EMPTY(bridge, readl(bridge->gatt_table+j)))
return -EBUSY;
j++;
}
if (mem->is_flushed == FALSE) {
bridge->driver->cache_flush();
mem->is_flushed = TRUE;
}
for (i = 0, j = pg_start; i < mem->page_count; i++, j++) {
writel(bridge->driver->mask_memory(bridge, mem->memory[i], mask_type),
bridge->gatt_table+j);
}
readl(bridge->gatt_table+j-1); /* PCI Posting. */
bridge->driver->tlb_flush(mem);
return 0;
}
EXPORT_SYMBOL(agp_generic_insert_memory);
int agp_generic_remove_memory(struct agp_memory *mem, off_t pg_start, int type)
{
size_t i;
struct agp_bridge_data *bridge;
int mask_type;
bridge = mem->bridge;
if (!bridge)
return -EINVAL;
if (mem->page_count == 0)
return 0;
if (type != mem->type)
return -EINVAL;
mask_type = bridge->driver->agp_type_to_mask_type(bridge, type);
if (mask_type != 0) {
/* The generic routines know nothing of memory types */
return -EINVAL;
}
/* AK: bogus, should encode addresses > 4GB */
for (i = pg_start; i < (mem->page_count + pg_start); i++) {
writel(bridge->scratch_page, bridge->gatt_table+i);
}
readl(bridge->gatt_table+i-1); /* PCI Posting. */
bridge->driver->tlb_flush(mem);
return 0;
}
EXPORT_SYMBOL(agp_generic_remove_memory);
struct agp_memory *agp_generic_alloc_by_type(size_t page_count, int type)
{
return NULL;
}
EXPORT_SYMBOL(agp_generic_alloc_by_type);
void agp_generic_free_by_type(struct agp_memory *curr)
{
agp_free_page_array(curr);
agp_free_key(curr->key);
kfree(curr);
}
EXPORT_SYMBOL(agp_generic_free_by_type);
struct agp_memory *agp_generic_alloc_user(size_t page_count, int type)
{
struct agp_memory *new;
int i;
int pages;
pages = (page_count + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;
new = agp_create_user_memory(page_count);
if (new == NULL)
return NULL;
for (i = 0; i < page_count; i++)
new->memory[i] = 0;
new->page_count = 0;
new->type = type;
new->num_scratch_pages = pages;
return new;
}
EXPORT_SYMBOL(agp_generic_alloc_user);
/*
* Basic Page Allocation Routines -
* These routines handle page allocation and by default they reserve the allocated
* memory. They also handle incrementing the current_memory_agp value, Which is checked
* against a maximum value.
*/
void *agp_generic_alloc_page(struct agp_bridge_data *bridge)
{
struct page * page;
page = alloc_page(GFP_KERNEL | GFP_DMA32);
if (page == NULL)
return NULL;
map_page_into_agp(page);
get_page(page);
SetPageLocked(page);
atomic_inc(&agp_bridge->current_memory_agp);
return page_address(page);
}
EXPORT_SYMBOL(agp_generic_alloc_page);
void agp_generic_destroy_page(void *addr)
{
struct page *page;
if (addr == NULL)
return;
page = virt_to_page(addr);
unmap_page_from_agp(page);
put_page(page);
unlock_page(page);
free_page((unsigned long)addr);
atomic_dec(&agp_bridge->current_memory_agp);
}
EXPORT_SYMBOL(agp_generic_destroy_page);
/* End Basic Page Allocation Routines */
/**
* agp_enable - initialise the agp point-to-point connection.
*
* @mode: agp mode register value to configure with.
*/
void agp_enable(struct agp_bridge_data *bridge, u32 mode)
{
if (!bridge)
return;
bridge->driver->agp_enable(bridge, mode);
}
EXPORT_SYMBOL(agp_enable);
/* When we remove the global variable agp_bridge from all drivers
* then agp_alloc_bridge and agp_generic_find_bridge need to be updated
*/
struct agp_bridge_data *agp_generic_find_bridge(struct pci_dev *pdev)
{
if (list_empty(&agp_bridges))
return NULL;
return agp_bridge;
}
static void ipi_handler(void *null)
{
flush_agp_cache();
}
void global_cache_flush(void)
{
if (on_each_cpu(ipi_handler, NULL, 1, 1) != 0)
panic(PFX "timed out waiting for the other CPUs!\n");
}
EXPORT_SYMBOL(global_cache_flush);
unsigned long agp_generic_mask_memory(struct agp_bridge_data *bridge,
unsigned long addr, int type)
{
/* memory type is ignored in the generic routine */
if (bridge->driver->masks)
return addr | bridge->driver->masks[0].mask;
else
return addr;
}
EXPORT_SYMBOL(agp_generic_mask_memory);
int agp_generic_type_to_mask_type(struct agp_bridge_data *bridge,
int type)
{
if (type >= AGP_USER_TYPES)
return 0;
return type;
}
EXPORT_SYMBOL(agp_generic_type_to_mask_type);
/*
* These functions are implemented according to the AGPv3 spec,
* which covers implementation details that had previously been
* left open.
*/
int agp3_generic_fetch_size(void)
{
u16 temp_size;
int i;
struct aper_size_info_16 *values;
pci_read_config_word(agp_bridge->dev, agp_bridge->capndx+AGPAPSIZE, &temp_size);
values = A_SIZE_16(agp_bridge->driver->aperture_sizes);
for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
if (temp_size == values[i].size_value) {
agp_bridge->previous_size =
agp_bridge->current_size = (void *) (values + i);
agp_bridge->aperture_size_idx = i;
return values[i].size;
}
}
return 0;
}
EXPORT_SYMBOL(agp3_generic_fetch_size);
void agp3_generic_tlbflush(struct agp_memory *mem)
{
u32 ctrl;
pci_read_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, &ctrl);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, ctrl & ~AGPCTRL_GTLBEN);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, ctrl);
}
EXPORT_SYMBOL(agp3_generic_tlbflush);
int agp3_generic_configure(void)
{
u32 temp;
struct aper_size_info_16 *current_size;
current_size = A_SIZE_16(agp_bridge->current_size);
pci_read_config_dword(agp_bridge->dev, AGP_APBASE, &temp);
agp_bridge->gart_bus_addr = (temp & PCI_BASE_ADDRESS_MEM_MASK);
/* set aperture size */
pci_write_config_word(agp_bridge->dev, agp_bridge->capndx+AGPAPSIZE, current_size->size_value);
/* set gart pointer */
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPGARTLO, agp_bridge->gatt_bus_addr);
/* enable aperture and GTLB */
pci_read_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, &temp);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, temp | AGPCTRL_APERENB | AGPCTRL_GTLBEN);
return 0;
}
EXPORT_SYMBOL(agp3_generic_configure);
void agp3_generic_cleanup(void)
{
u32 ctrl;
pci_read_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, &ctrl);
pci_write_config_dword(agp_bridge->dev, agp_bridge->capndx+AGPCTRL, ctrl & ~AGPCTRL_APERENB);
}
EXPORT_SYMBOL(agp3_generic_cleanup);
const struct aper_size_info_16 agp3_generic_sizes[AGP_GENERIC_SIZES_ENTRIES] =
{
{4096, 1048576, 10,0x000},
{2048, 524288, 9, 0x800},
{1024, 262144, 8, 0xc00},
{ 512, 131072, 7, 0xe00},
{ 256, 65536, 6, 0xf00},
{ 128, 32768, 5, 0xf20},
{ 64, 16384, 4, 0xf30},
{ 32, 8192, 3, 0xf38},
{ 16, 4096, 2, 0xf3c},
{ 8, 2048, 1, 0xf3e},
{ 4, 1024, 0, 0xf3f}
};
EXPORT_SYMBOL(agp3_generic_sizes);