mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-24 10:28:57 +00:00
247 lines
7.1 KiB
C
247 lines
7.1 KiB
C
|
/*
|
||
|
* Generic waiting primitives.
|
||
|
*
|
||
|
* (C) 2004 William Irwin, Oracle
|
||
|
*/
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/hash.h>
|
||
|
|
||
|
void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
|
||
|
spin_lock_irqsave(&q->lock, flags);
|
||
|
__add_wait_queue(q, wait);
|
||
|
spin_unlock_irqrestore(&q->lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL(add_wait_queue);
|
||
|
|
||
|
void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
wait->flags |= WQ_FLAG_EXCLUSIVE;
|
||
|
spin_lock_irqsave(&q->lock, flags);
|
||
|
__add_wait_queue_tail(q, wait);
|
||
|
spin_unlock_irqrestore(&q->lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL(add_wait_queue_exclusive);
|
||
|
|
||
|
void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&q->lock, flags);
|
||
|
__remove_wait_queue(q, wait);
|
||
|
spin_unlock_irqrestore(&q->lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL(remove_wait_queue);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Note: we use "set_current_state()" _after_ the wait-queue add,
|
||
|
* because we need a memory barrier there on SMP, so that any
|
||
|
* wake-function that tests for the wait-queue being active
|
||
|
* will be guaranteed to see waitqueue addition _or_ subsequent
|
||
|
* tests in this thread will see the wakeup having taken place.
|
||
|
*
|
||
|
* The spin_unlock() itself is semi-permeable and only protects
|
||
|
* one way (it only protects stuff inside the critical region and
|
||
|
* stops them from bleeding out - it would still allow subsequent
|
||
|
* loads to move into the the critical region).
|
||
|
*/
|
||
|
void fastcall
|
||
|
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
|
||
|
spin_lock_irqsave(&q->lock, flags);
|
||
|
if (list_empty(&wait->task_list))
|
||
|
__add_wait_queue(q, wait);
|
||
|
/*
|
||
|
* don't alter the task state if this is just going to
|
||
|
* queue an async wait queue callback
|
||
|
*/
|
||
|
if (is_sync_wait(wait))
|
||
|
set_current_state(state);
|
||
|
spin_unlock_irqrestore(&q->lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL(prepare_to_wait);
|
||
|
|
||
|
void fastcall
|
||
|
prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
wait->flags |= WQ_FLAG_EXCLUSIVE;
|
||
|
spin_lock_irqsave(&q->lock, flags);
|
||
|
if (list_empty(&wait->task_list))
|
||
|
__add_wait_queue_tail(q, wait);
|
||
|
/*
|
||
|
* don't alter the task state if this is just going to
|
||
|
* queue an async wait queue callback
|
||
|
*/
|
||
|
if (is_sync_wait(wait))
|
||
|
set_current_state(state);
|
||
|
spin_unlock_irqrestore(&q->lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL(prepare_to_wait_exclusive);
|
||
|
|
||
|
void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
__set_current_state(TASK_RUNNING);
|
||
|
/*
|
||
|
* We can check for list emptiness outside the lock
|
||
|
* IFF:
|
||
|
* - we use the "careful" check that verifies both
|
||
|
* the next and prev pointers, so that there cannot
|
||
|
* be any half-pending updates in progress on other
|
||
|
* CPU's that we haven't seen yet (and that might
|
||
|
* still change the stack area.
|
||
|
* and
|
||
|
* - all other users take the lock (ie we can only
|
||
|
* have _one_ other CPU that looks at or modifies
|
||
|
* the list).
|
||
|
*/
|
||
|
if (!list_empty_careful(&wait->task_list)) {
|
||
|
spin_lock_irqsave(&q->lock, flags);
|
||
|
list_del_init(&wait->task_list);
|
||
|
spin_unlock_irqrestore(&q->lock, flags);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(finish_wait);
|
||
|
|
||
|
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
|
||
|
{
|
||
|
int ret = default_wake_function(wait, mode, sync, key);
|
||
|
|
||
|
if (ret)
|
||
|
list_del_init(&wait->task_list);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(autoremove_wake_function);
|
||
|
|
||
|
int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
|
||
|
{
|
||
|
struct wait_bit_key *key = arg;
|
||
|
struct wait_bit_queue *wait_bit
|
||
|
= container_of(wait, struct wait_bit_queue, wait);
|
||
|
|
||
|
if (wait_bit->key.flags != key->flags ||
|
||
|
wait_bit->key.bit_nr != key->bit_nr ||
|
||
|
test_bit(key->bit_nr, key->flags))
|
||
|
return 0;
|
||
|
else
|
||
|
return autoremove_wake_function(wait, mode, sync, key);
|
||
|
}
|
||
|
EXPORT_SYMBOL(wake_bit_function);
|
||
|
|
||
|
/*
|
||
|
* To allow interruptible waiting and asynchronous (i.e. nonblocking)
|
||
|
* waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
|
||
|
* permitted return codes. Nonzero return codes halt waiting and return.
|
||
|
*/
|
||
|
int __sched fastcall
|
||
|
__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
|
||
|
int (*action)(void *), unsigned mode)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
do {
|
||
|
prepare_to_wait(wq, &q->wait, mode);
|
||
|
if (test_bit(q->key.bit_nr, q->key.flags))
|
||
|
ret = (*action)(q->key.flags);
|
||
|
} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
|
||
|
finish_wait(wq, &q->wait);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(__wait_on_bit);
|
||
|
|
||
|
int __sched fastcall out_of_line_wait_on_bit(void *word, int bit,
|
||
|
int (*action)(void *), unsigned mode)
|
||
|
{
|
||
|
wait_queue_head_t *wq = bit_waitqueue(word, bit);
|
||
|
DEFINE_WAIT_BIT(wait, word, bit);
|
||
|
|
||
|
return __wait_on_bit(wq, &wait, action, mode);
|
||
|
}
|
||
|
EXPORT_SYMBOL(out_of_line_wait_on_bit);
|
||
|
|
||
|
int __sched fastcall
|
||
|
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
|
||
|
int (*action)(void *), unsigned mode)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
do {
|
||
|
prepare_to_wait_exclusive(wq, &q->wait, mode);
|
||
|
if (test_bit(q->key.bit_nr, q->key.flags)) {
|
||
|
if ((ret = (*action)(q->key.flags)))
|
||
|
break;
|
||
|
}
|
||
|
} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
|
||
|
finish_wait(wq, &q->wait);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(__wait_on_bit_lock);
|
||
|
|
||
|
int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit,
|
||
|
int (*action)(void *), unsigned mode)
|
||
|
{
|
||
|
wait_queue_head_t *wq = bit_waitqueue(word, bit);
|
||
|
DEFINE_WAIT_BIT(wait, word, bit);
|
||
|
|
||
|
return __wait_on_bit_lock(wq, &wait, action, mode);
|
||
|
}
|
||
|
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
|
||
|
|
||
|
void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
|
||
|
{
|
||
|
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
|
||
|
if (waitqueue_active(wq))
|
||
|
__wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key);
|
||
|
}
|
||
|
EXPORT_SYMBOL(__wake_up_bit);
|
||
|
|
||
|
/**
|
||
|
* wake_up_bit - wake up a waiter on a bit
|
||
|
* @word: the word being waited on, a kernel virtual address
|
||
|
* @bit: the bit of the word being waited on
|
||
|
*
|
||
|
* There is a standard hashed waitqueue table for generic use. This
|
||
|
* is the part of the hashtable's accessor API that wakes up waiters
|
||
|
* on a bit. For instance, if one were to have waiters on a bitflag,
|
||
|
* one would call wake_up_bit() after clearing the bit.
|
||
|
*
|
||
|
* In order for this to function properly, as it uses waitqueue_active()
|
||
|
* internally, some kind of memory barrier must be done prior to calling
|
||
|
* this. Typically, this will be smp_mb__after_clear_bit(), but in some
|
||
|
* cases where bitflags are manipulated non-atomically under a lock, one
|
||
|
* may need to use a less regular barrier, such fs/inode.c's smp_mb(),
|
||
|
* because spin_unlock() does not guarantee a memory barrier.
|
||
|
*/
|
||
|
void fastcall wake_up_bit(void *word, int bit)
|
||
|
{
|
||
|
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
|
||
|
}
|
||
|
EXPORT_SYMBOL(wake_up_bit);
|
||
|
|
||
|
fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit)
|
||
|
{
|
||
|
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
|
||
|
const struct zone *zone = page_zone(virt_to_page(word));
|
||
|
unsigned long val = (unsigned long)word << shift | bit;
|
||
|
|
||
|
return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
|
||
|
}
|
||
|
EXPORT_SYMBOL(bit_waitqueue);
|