linux/fs/gfs2/ops_file.c

679 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License version 2.
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
#include <linux/fs.h>
#include <linux/gfs2_ondisk.h>
#include <linux/ext2_fs.h>
#include <linux/crc32.h>
#include <linux/lm_interface.h>
#include <linux/writeback.h>
#include <asm/uaccess.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "dir.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "lm.h"
#include "log.h"
#include "meta_io.h"
#include "ops_file.h"
#include "ops_vm.h"
#include "quota.h"
#include "rgrp.h"
#include "trans.h"
#include "util.h"
#include "eaops.h"
/*
* Most fields left uninitialised to catch anybody who tries to
* use them. f_flags set to prevent file_accessed() from touching
* any other part of this. Its use is purely as a flag so that we
* know (in readpage()) whether or not do to locking.
*/
struct file gfs2_internal_file_sentinel = {
.f_flags = O_NOATIME|O_RDONLY,
};
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
static int gfs2_read_actor(read_descriptor_t *desc, struct page *page,
unsigned long offset, unsigned long size)
{
char *kaddr;
unsigned long count = desc->count;
if (size > count)
size = count;
kaddr = kmap(page);
memcpy(desc->arg.data, kaddr + offset, size);
kunmap(page);
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
desc->count = count - size;
desc->written += size;
desc->arg.buf += size;
return size;
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
}
int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
char *buf, loff_t *pos, unsigned size)
{
struct inode *inode = &ip->i_inode;
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
read_descriptor_t desc;
desc.written = 0;
desc.arg.data = buf;
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
desc.count = size;
desc.error = 0;
do_generic_mapping_read(inode->i_mapping, ra_state,
&gfs2_internal_file_sentinel, pos, &desc,
gfs2_read_actor);
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
return desc.written ? desc.written : desc.error;
}
/**
* gfs2_llseek - seek to a location in a file
* @file: the file
* @offset: the offset
* @origin: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
*
* SEEK_END requires the glock for the file because it references the
* file's size.
*
* Returns: The new offset, or errno
*/
static loff_t gfs2_llseek(struct file *file, loff_t offset, int origin)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
struct gfs2_holder i_gh;
loff_t error;
if (origin == 2) {
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
&i_gh);
if (!error) {
error = remote_llseek(file, offset, origin);
gfs2_glock_dq_uninit(&i_gh);
}
} else
error = remote_llseek(file, offset, origin);
return error;
}
/**
* gfs2_readdir - Read directory entries from a directory
* @file: The directory to read from
* @dirent: Buffer for dirents
* @filldir: Function used to do the copying
*
* Returns: errno
*/
static int gfs2_readdir(struct file *file, void *dirent, filldir_t filldir)
{
struct inode *dir = file->f_mapping->host;
struct gfs2_inode *dip = GFS2_I(dir);
struct gfs2_holder d_gh;
u64 offset = file->f_pos;
int error;
gfs2_holder_init(dip->i_gl, LM_ST_SHARED, GL_ATIME, &d_gh);
error = gfs2_glock_nq_atime(&d_gh);
if (error) {
gfs2_holder_uninit(&d_gh);
return error;
}
error = gfs2_dir_read(dir, &offset, dirent, filldir);
gfs2_glock_dq_uninit(&d_gh);
file->f_pos = offset;
return error;
}
/**
* fsflags_cvt
* @table: A table of 32 u32 flags
* @val: a 32 bit value to convert
*
* This function can be used to convert between fsflags values and
* GFS2's own flags values.
*
* Returns: the converted flags
*/
static u32 fsflags_cvt(const u32 *table, u32 val)
{
u32 res = 0;
while(val) {
if (val & 1)
res |= *table;
table++;
val >>= 1;
}
return res;
}
static const u32 fsflags_to_gfs2[32] = {
[3] = GFS2_DIF_SYNC,
[4] = GFS2_DIF_IMMUTABLE,
[5] = GFS2_DIF_APPENDONLY,
[7] = GFS2_DIF_NOATIME,
[12] = GFS2_DIF_EXHASH,
[14] = GFS2_DIF_JDATA,
[20] = GFS2_DIF_DIRECTIO,
};
static const u32 gfs2_to_fsflags[32] = {
[gfs2fl_Sync] = FS_SYNC_FL,
[gfs2fl_Immutable] = FS_IMMUTABLE_FL,
[gfs2fl_AppendOnly] = FS_APPEND_FL,
[gfs2fl_NoAtime] = FS_NOATIME_FL,
[gfs2fl_ExHash] = FS_INDEX_FL,
[gfs2fl_Jdata] = FS_JOURNAL_DATA_FL,
[gfs2fl_Directio] = FS_DIRECTIO_FL,
[gfs2fl_InheritDirectio] = FS_DIRECTIO_FL,
[gfs2fl_InheritJdata] = FS_JOURNAL_DATA_FL,
};
static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder gh;
int error;
u32 fsflags;
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, GL_ATIME, &gh);
error = gfs2_glock_nq_atime(&gh);
if (error)
return error;
fsflags = fsflags_cvt(gfs2_to_fsflags, ip->i_di.di_flags);
if (put_user(fsflags, ptr))
error = -EFAULT;
gfs2_glock_dq_m(1, &gh);
gfs2_holder_uninit(&gh);
return error;
}
void gfs2_set_inode_flags(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_dinode_host *di = &ip->i_di;
unsigned int flags = inode->i_flags;
flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
if (di->di_flags & GFS2_DIF_IMMUTABLE)
flags |= S_IMMUTABLE;
if (di->di_flags & GFS2_DIF_APPENDONLY)
flags |= S_APPEND;
if (di->di_flags & GFS2_DIF_NOATIME)
flags |= S_NOATIME;
if (di->di_flags & GFS2_DIF_SYNC)
flags |= S_SYNC;
inode->i_flags = flags;
}
/* Flags that can be set by user space */
#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
GFS2_DIF_DIRECTIO| \
GFS2_DIF_IMMUTABLE| \
GFS2_DIF_APPENDONLY| \
GFS2_DIF_NOATIME| \
GFS2_DIF_SYNC| \
GFS2_DIF_SYSTEM| \
GFS2_DIF_INHERIT_DIRECTIO| \
GFS2_DIF_INHERIT_JDATA)
/**
* gfs2_set_flags - set flags on an inode
* @inode: The inode
* @flags: The flags to set
* @mask: Indicates which flags are valid
*
*/
static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct buffer_head *bh;
struct gfs2_holder gh;
int error;
u32 new_flags, flags;
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
if (error)
return error;
flags = ip->i_di.di_flags;
new_flags = (flags & ~mask) | (reqflags & mask);
if ((new_flags ^ flags) == 0)
goto out;
if (S_ISDIR(inode->i_mode)) {
if ((new_flags ^ flags) & GFS2_DIF_JDATA)
new_flags ^= (GFS2_DIF_JDATA|GFS2_DIF_INHERIT_JDATA);
if ((new_flags ^ flags) & GFS2_DIF_DIRECTIO)
new_flags ^= (GFS2_DIF_DIRECTIO|GFS2_DIF_INHERIT_DIRECTIO);
}
error = -EINVAL;
if ((new_flags ^ flags) & ~GFS2_FLAGS_USER_SET)
goto out;
error = -EPERM;
if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
goto out;
if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
goto out;
if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
!capable(CAP_LINUX_IMMUTABLE))
goto out;
if (!IS_IMMUTABLE(inode)) {
error = permission(inode, MAY_WRITE, NULL);
if (error)
goto out;
}
error = gfs2_trans_begin(sdp, RES_DINODE, 0);
if (error)
goto out;
error = gfs2_meta_inode_buffer(ip, &bh);
if (error)
goto out_trans_end;
gfs2_trans_add_bh(ip->i_gl, bh, 1);
ip->i_di.di_flags = new_flags;
gfs2_dinode_out(ip, bh->b_data);
brelse(bh);
gfs2_set_inode_flags(inode);
out_trans_end:
gfs2_trans_end(sdp);
out:
gfs2_glock_dq_uninit(&gh);
return error;
}
static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
{
u32 fsflags, gfsflags;
if (get_user(fsflags, ptr))
return -EFAULT;
gfsflags = fsflags_cvt(fsflags_to_gfs2, fsflags);
return do_gfs2_set_flags(filp, gfsflags, ~0);
}
static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch(cmd) {
case FS_IOC_GETFLAGS:
return gfs2_get_flags(filp, (u32 __user *)arg);
case FS_IOC_SETFLAGS:
return gfs2_set_flags(filp, (u32 __user *)arg);
}
return -ENOTTY;
}
/**
* gfs2_mmap -
* @file: The file to map
* @vma: The VMA which described the mapping
*
* Returns: 0 or error code
*/
static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
struct gfs2_holder i_gh;
int error;
gfs2_holder_init(ip->i_gl, LM_ST_SHARED, GL_ATIME, &i_gh);
error = gfs2_glock_nq_atime(&i_gh);
if (error) {
gfs2_holder_uninit(&i_gh);
return error;
}
[GFS2] Make journaled data files identical to normal files on disk This is a very large patch, with a few still to be resolved issues so you might want to check out the previous head of the tree since this is known to be unstable. Fixes for the various bugs will be forthcoming shortly. This patch removes the special data format which has been used up till now for journaled data files. Directories still retain the old format so that they will remain on disk compatible with earlier releases. As a result you can now do the following with journaled data files: 1) mmap them 2) export them over NFS 3) convert to/from normal files whenever you want to (the zero length restriction is gone) In addition the level at which GFS' locking is done has changed for all files (since they all now use the page cache) such that the locking is done at the page cache level rather than the level of the fs operations. This should mean that things like loopback mounts and other things which touch the page cache directly should now work. Current known issues: 1. There is a lock mode inversion problem related to the resource group hold function which needs to be resolved. 2. Any significant amount of I/O causes an oops with an offset of hex 320 (NULL pointer dereference) which appears to be related to a journaled data buffer appearing on a list where it shouldn't be. 3. Direct I/O writes are disabled for the time being (will reappear later) 4. There is probably a deadlock between the page lock and GFS' locks under certain combinations of mmap and fs operation I/O. 5. Issue relating to ref counting on internally used inodes causes a hang on umount (discovered before this patch, and not fixed by it) 6. One part of the directory metadata is different from GFS1 and will need to be resolved before next release. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2006-02-08 11:50:51 +00:00
/* This is VM_MAYWRITE instead of VM_WRITE because a call
to mprotect() can turn on VM_WRITE later. */
if ((vma->vm_flags & (VM_MAYSHARE | VM_MAYWRITE)) ==
(VM_MAYSHARE | VM_MAYWRITE))
vma->vm_ops = &gfs2_vm_ops_sharewrite;
else
vma->vm_ops = &gfs2_vm_ops_private;
mm: merge populate and nopage into fault (fixes nonlinear) Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes the virtual address -> file offset differently from linear mappings. ->populate is a layering violation because the filesystem/pagecache code should need to know anything about the virtual memory mapping. The hitch here is that the ->nopage handler didn't pass down enough information (ie. pgoff). But it is more logical to pass pgoff rather than have the ->nopage function calculate it itself anyway (because that's a similar layering violation). Having the populate handler install the pte itself is likewise a nasty thing to be doing. This patch introduces a new fault handler that replaces ->nopage and ->populate and (later) ->nopfn. Most of the old mechanism is still in place so there is a lot of duplication and nice cleanups that can be removed if everyone switches over. The rationale for doing this in the first place is that nonlinear mappings are subject to the pagefault vs invalidate/truncate race too, and it seemed stupid to duplicate the synchronisation logic rather than just consolidate the two. After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in pagecache. Seems like a fringe functionality anyway. NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no users have hit mainline yet. [akpm@linux-foundation.org: cleanup] [randy.dunlap@oracle.com: doc. fixes for readahead] [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:59 +00:00
vma->vm_flags |= VM_CAN_INVALIDATE|VM_CAN_NONLINEAR;
mm: fix fault vs invalidate race for linear mappings Fix the race between invalidate_inode_pages and do_no_page. Andrea Arcangeli identified a subtle race between invalidation of pages from pagecache with userspace mappings, and do_no_page. The issue is that invalidation has to shoot down all mappings to the page, before it can be discarded from the pagecache. Between shooting down ptes to a particular page, and actually dropping the struct page from the pagecache, do_no_page from any process might fault on that page and establish a new mapping to the page just before it gets discarded from the pagecache. The most common case where such invalidation is used is in file truncation. This case was catered for by doing a sort of open-coded seqlock between the file's i_size, and its truncate_count. Truncation will decrease i_size, then increment truncate_count before unmapping userspace pages; do_no_page will read truncate_count, then find the page if it is within i_size, and then check truncate_count under the page table lock and back out and retry if it had subsequently been changed (ptl will serialise against unmapping, and ensure a potentially updated truncate_count is actually visible). Complexity and documentation issues aside, the locking protocol fails in the case where we would like to invalidate pagecache inside i_size. do_no_page can come in anytime and filemap_nopage is not aware of the invalidation in progress (as it is when it is outside i_size). The end result is that dangling (->mapping == NULL) pages that appear to be from a particular file may be mapped into userspace with nonsense data. Valid mappings to the same place will see a different page. Andrea implemented two working fixes, one using a real seqlock, another using a page->flags bit. He also proposed using the page lock in do_no_page, but that was initially considered too heavyweight. However, it is not a global or per-file lock, and the page cacheline is modified in do_no_page to increment _count and _mapcount anyway, so a further modification should not be a large performance hit. Scalability is not an issue. This patch implements this latter approach. ->nopage implementations return with the page locked if it is possible for their underlying file to be invalidated (in that case, they must set a special vm_flags bit to indicate so). do_no_page only unlocks the page after setting up the mapping completely. invalidation is excluded because it holds the page lock during invalidation of each page (and ensures that the page is not mapped while holding the lock). This also allows significant simplifications in do_no_page, because we have the page locked in the right place in the pagecache from the start. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 08:46:57 +00:00
gfs2_glock_dq_uninit(&i_gh);
return error;
}
/**
* gfs2_open - open a file
* @inode: the inode to open
* @file: the struct file for this opening
*
* Returns: errno
*/
static int gfs2_open(struct inode *inode, struct file *file)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_holder i_gh;
struct gfs2_file *fp;
int error;
fp = kzalloc(sizeof(struct gfs2_file), GFP_KERNEL);
if (!fp)
return -ENOMEM;
mutex_init(&fp->f_fl_mutex);
gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
file->private_data = fp;
if (S_ISREG(ip->i_inode.i_mode)) {
error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
&i_gh);
if (error)
goto fail;
if (!(file->f_flags & O_LARGEFILE) &&
ip->i_di.di_size > MAX_NON_LFS) {
error = -EFBIG;
goto fail_gunlock;
}
/* Listen to the Direct I/O flag */
if (ip->i_di.di_flags & GFS2_DIF_DIRECTIO)
file->f_flags |= O_DIRECT;
gfs2_glock_dq_uninit(&i_gh);
}
return 0;
fail_gunlock:
gfs2_glock_dq_uninit(&i_gh);
fail:
file->private_data = NULL;
kfree(fp);
return error;
}
/**
* gfs2_close - called to close a struct file
* @inode: the inode the struct file belongs to
* @file: the struct file being closed
*
* Returns: errno
*/
static int gfs2_close(struct inode *inode, struct file *file)
{
struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
struct gfs2_file *fp;
fp = file->private_data;
file->private_data = NULL;
if (gfs2_assert_warn(sdp, fp))
return -EIO;
kfree(fp);
return 0;
}
/**
* gfs2_fsync - sync the dirty data for a file (across the cluster)
* @file: the file that points to the dentry (we ignore this)
* @dentry: the dentry that points to the inode to sync
*
* The VFS will flush "normal" data for us. We only need to worry
* about metadata here. For journaled data, we just do a log flush
* as we can't avoid it. Otherwise we can just bale out if datasync
* is set. For stuffed inodes we must flush the log in order to
* ensure that all data is on disk.
*
* The call to write_inode_now() is there to write back metadata and
* the inode itself. It does also try and write the data, but thats
* (hopefully) a no-op due to the VFS having already called filemap_fdatawrite()
* for us.
*
* Returns: errno
*/
static int gfs2_fsync(struct file *file, struct dentry *dentry, int datasync)
{
struct inode *inode = dentry->d_inode;
int sync_state = inode->i_state & (I_DIRTY_SYNC|I_DIRTY_DATASYNC);
int ret = 0;
if (gfs2_is_jdata(GFS2_I(inode))) {
gfs2_log_flush(GFS2_SB(inode), GFS2_I(inode)->i_gl);
return 0;
}
if (sync_state != 0) {
if (!datasync)
ret = write_inode_now(inode, 0);
if (gfs2_is_stuffed(GFS2_I(inode)))
gfs2_log_flush(GFS2_SB(inode), GFS2_I(inode)->i_gl);
}
return ret;
}
/**
* gfs2_setlease - acquire/release a file lease
* @file: the file pointer
* @arg: lease type
* @fl: file lock
*
* Returns: errno
*/
static int gfs2_setlease(struct file *file, long arg, struct file_lock **fl)
{
struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
/*
* We don't currently have a way to enforce a lease across the whole
* cluster; until we do, disable leases (by just returning -EINVAL),
* unless the administrator has requested purely local locking.
*/
if (!sdp->sd_args.ar_localflocks)
return -EINVAL;
return setlease(file, arg, fl);
}
/**
* gfs2_lock - acquire/release a posix lock on a file
* @file: the file pointer
* @cmd: either modify or retrieve lock state, possibly wait
* @fl: type and range of lock
*
* Returns: errno
*/
static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
struct lm_lockname name =
{ .ln_number = ip->i_no_addr,
.ln_type = LM_TYPE_PLOCK };
if (!(fl->fl_flags & FL_POSIX))
return -ENOLCK;
if ((ip->i_inode.i_mode & (S_ISGID | S_IXGRP)) == S_ISGID)
return -ENOLCK;
if (sdp->sd_args.ar_localflocks) {
if (IS_GETLK(cmd)) {
posix_test_lock(file, fl);
return 0;
} else {
return posix_lock_file_wait(file, fl);
}
}
if (cmd == F_CANCELLK) {
/* Hack: */
cmd = F_SETLK;
fl->fl_type = F_UNLCK;
}
if (IS_GETLK(cmd))
return gfs2_lm_plock_get(sdp, &name, file, fl);
else if (fl->fl_type == F_UNLCK)
return gfs2_lm_punlock(sdp, &name, file, fl);
else
return gfs2_lm_plock(sdp, &name, file, cmd, fl);
}
static int do_flock(struct file *file, int cmd, struct file_lock *fl)
{
struct gfs2_file *fp = file->private_data;
struct gfs2_holder *fl_gh = &fp->f_fl_gh;
struct gfs2_inode *ip = GFS2_I(file->f_path.dentry->d_inode);
struct gfs2_glock *gl;
unsigned int state;
int flags;
int error = 0;
state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY) | GL_EXACT | GL_NOCACHE;
mutex_lock(&fp->f_fl_mutex);
gl = fl_gh->gh_gl;
if (gl) {
if (fl_gh->gh_state == state)
goto out;
gfs2_glock_hold(gl);
flock_lock_file_wait(file,
&(struct file_lock){.fl_type = F_UNLCK});
gfs2_glock_dq_uninit(fl_gh);
} else {
error = gfs2_glock_get(GFS2_SB(&ip->i_inode),
ip->i_no_addr, &gfs2_flock_glops,
CREATE, &gl);
if (error)
goto out;
}
gfs2_holder_init(gl, state, flags, fl_gh);
gfs2_glock_put(gl);
error = gfs2_glock_nq(fl_gh);
if (error) {
gfs2_holder_uninit(fl_gh);
if (error == GLR_TRYFAILED)
error = -EAGAIN;
} else {
error = flock_lock_file_wait(file, fl);
gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
}
out:
mutex_unlock(&fp->f_fl_mutex);
return error;
}
static void do_unflock(struct file *file, struct file_lock *fl)
{
struct gfs2_file *fp = file->private_data;
struct gfs2_holder *fl_gh = &fp->f_fl_gh;
mutex_lock(&fp->f_fl_mutex);
flock_lock_file_wait(file, fl);
if (fl_gh->gh_gl)
gfs2_glock_dq_uninit(fl_gh);
mutex_unlock(&fp->f_fl_mutex);
}
/**
* gfs2_flock - acquire/release a flock lock on a file
* @file: the file pointer
* @cmd: either modify or retrieve lock state, possibly wait
* @fl: type and range of lock
*
* Returns: errno
*/
static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
{
struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
if (!(fl->fl_flags & FL_FLOCK))
return -ENOLCK;
if ((ip->i_inode.i_mode & (S_ISGID | S_IXGRP)) == S_ISGID)
return -ENOLCK;
if (sdp->sd_args.ar_localflocks)
return flock_lock_file_wait(file, fl);
if (fl->fl_type == F_UNLCK) {
do_unflock(file, fl);
return 0;
} else {
return do_flock(file, cmd, fl);
}
}
const struct file_operations gfs2_file_fops = {
.llseek = gfs2_llseek,
.read = do_sync_read,
.aio_read = generic_file_aio_read,
.write = do_sync_write,
.aio_write = generic_file_aio_write,
.unlocked_ioctl = gfs2_ioctl,
.mmap = gfs2_mmap,
.open = gfs2_open,
.release = gfs2_close,
.fsync = gfs2_fsync,
.lock = gfs2_lock,
.flock = gfs2_flock,
.splice_read = generic_file_splice_read,
.splice_write = generic_file_splice_write,
.setlease = gfs2_setlease,
};
const struct file_operations gfs2_dir_fops = {
.readdir = gfs2_readdir,
.unlocked_ioctl = gfs2_ioctl,
.open = gfs2_open,
.release = gfs2_close,
.fsync = gfs2_fsync,
.lock = gfs2_lock,
.flock = gfs2_flock,
};