linux/fs/ext4/fsync.c

183 lines
5.0 KiB
C
Raw Normal View History

/*
* linux/fs/ext4/fsync.c
*
* Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
* from
* Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
* from
* linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
*
* ext4fs fsync primitive
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*
* Removed unnecessary code duplication for little endian machines
* and excessive __inline__s.
* Andi Kleen, 1997
*
* Major simplications and cleanup - we only need to do the metadata, because
* we can depend on generic_block_fdatasync() to sync the data blocks.
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/writeback.h>
#include <linux/jbd2.h>
#include <linux/blkdev.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include <trace/events/ext4.h>
/*
* If we're not journaling and this is a just-created file, we have to
* sync our parent directory (if it was freshly created) since
* otherwise it will only be written by writeback, leaving a huge
* window during which a crash may lose the file. This may apply for
* the parent directory's parent as well, and so on recursively, if
* they are also freshly created.
*/
static int ext4_sync_parent(struct inode *inode)
{
struct dentry *dentry = NULL;
struct inode *next;
int ret = 0;
if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
return 0;
inode = igrab(inode);
while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
dentry = d_find_any_alias(inode);
if (!dentry)
break;
next = igrab(dentry->d_parent->d_inode);
dput(dentry);
if (!next)
break;
iput(inode);
inode = next;
ret = sync_mapping_buffers(inode->i_mapping);
if (ret)
break;
ret = sync_inode_metadata(inode, 1);
if (ret)
break;
}
iput(inode);
return ret;
}
/**
* __sync_file - generic_file_fsync without the locking and filemap_write
* @inode: inode to sync
* @datasync: only sync essential metadata if true
*
* This is just generic_file_fsync without the locking. This is needed for
* nojournal mode to make sure this inodes data/metadata makes it to disk
* properly. The i_mutex should be held already.
*/
static int __sync_inode(struct inode *inode, int datasync)
{
int err;
int ret;
ret = sync_mapping_buffers(inode->i_mapping);
if (!(inode->i_state & I_DIRTY))
return ret;
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
return ret;
err = sync_inode_metadata(inode, 1);
if (ret == 0)
ret = err;
return ret;
}
/*
* akpm: A new design for ext4_sync_file().
*
* This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
* There cannot be a transaction open by this task.
* Another task could have dirtied this inode. Its data can be in any
* state in the journalling system.
*
* What we do is just kick off a commit and wait on it. This will snapshot the
* inode to disk.
*
* i_mutex lock is held when entering and exiting this function
*/
int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct ext4_inode_info *ei = EXT4_I(inode);
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
int ret, err;
tid_t commit_tid;
bool needs_barrier = false;
J_ASSERT(ext4_journal_current_handle() == NULL);
trace_ext4_sync_file_enter(file, datasync);
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (ret)
return ret;
mutex_lock(&inode->i_mutex);
if (inode->i_sb->s_flags & MS_RDONLY)
goto out;
ext4: fix ext4_flush_completed_IO wait semantics BUG #1) All places where we call ext4_flush_completed_IO are broken because buffered io and DIO/AIO goes through three stages 1) submitted io, 2) completed io (in i_completed_io_list) conversion pended 3) finished io (conversion done) And by calling ext4_flush_completed_IO we will flush only requests which were in (2) stage, which is wrong because: 1) punch_hole and truncate _must_ wait for all outstanding unwritten io regardless to it's state. 2) fsync and nolock_dio_read should also wait because there is a time window between end_page_writeback() and ext4_add_complete_io() As result integrity fsync is broken in case of buffered write to fallocated region: fsync blkdev_completion ->filemap_write_and_wait_range ->ext4_end_bio ->end_page_writeback <-- filemap_write_and_wait_range return ->ext4_flush_completed_IO sees empty i_completed_io_list but pended conversion still exist ->ext4_add_complete_io BUG #2) Race window becomes wider due to the 'ext4: completed_io locking cleanup V4' patch series This patch make following changes: 1) ext4_flush_completed_io() now first try to flush completed io and when wait for any outstanding unwritten io via ext4_unwritten_wait() 2) Rename function to more appropriate name. 3) Assert that all callers of ext4_flush_unwritten_io should hold i_mutex to prevent endless wait Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Reviewed-by: Jan Kara <jack@suse.cz>
2012-10-05 15:31:55 +00:00
ret = ext4_flush_unwritten_io(inode);
if (ret < 0)
goto out;
if (!journal) {
ret = __sync_inode(inode, datasync);
if (!ret && !hlist_empty(&inode->i_dentry))
ret = ext4_sync_parent(inode);
goto out;
}
/*
* data=writeback,ordered:
* The caller's filemap_fdatawrite()/wait will sync the data.
* Metadata is in the journal, we wait for proper transaction to
* commit here.
*
* data=journal:
* filemap_fdatawrite won't do anything (the buffers are clean).
* ext4_force_commit will write the file data into the journal and
* will wait on that.
* filemap_fdatawait() will encounter a ton of newly-dirtied pages
* (they were dirtied by commit). But that's OK - the blocks are
* safe in-journal, which is all fsync() needs to ensure.
*/
if (ext4_should_journal_data(inode)) {
ret = ext4_force_commit(inode->i_sb);
goto out;
}
commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
if (journal->j_flags & JBD2_BARRIER &&
!jbd2_trans_will_send_data_barrier(journal, commit_tid))
needs_barrier = true;
jbd2_log_start_commit(journal, commit_tid);
ret = jbd2_log_wait_commit(journal, commit_tid);
if (needs_barrier) {
err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
if (!ret)
ret = err;
}
out:
mutex_unlock(&inode->i_mutex);
trace_ext4_sync_file_exit(inode, ret);
return ret;
}